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ERROR ANALYSIS OF LINEARIZED SEMI-IMPLICIT

GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR

PARABOLIC EQUATIONS

BUYANG LI AND WEIWEI SUN

Abstract. This paper is concerned with the time-step condition of commonly-used linearized
semi-implicit schemes for nonlinear parabolic PDEs with Galerkin finite element approximations.
In particular, we study the time-dependent nonlinear Joule heating equations. We present optimal
error estimates of the semi-implicit Euler scheme in both the L2 norm and the H1 norm without
any time-step restriction. Theoretical analysis is based on a new splitting of error function and
precise analysis of a corresponding time-discrete system. The method used in this paper is appli-
cable for more general nonlinear parabolic systems and many other linearized (semi)-implicit time
discretizations for which previous works often require certain restriction on the time-step size τ .

Key words. Nonlinear parabolic system, unconditionally optimal error estimate, linearized semi-
implicit scheme, Galerkin method.

1. Introduction

In the last several decades, numerous effort has been devoted to the development
of efficient numerical schemes for nonlinear parabolic PDEs arising from a variety
of physical applications. A key issue to those schemes is the time-step condition.
Usually, fully implicit schemes are unconditionally stable. However, at each time
step, one has to solve a system of nonlinear equations. An explicit scheme is
much easy in computation. But it suffers the severely restricted time-step size for
convergence. A popular and widely-used approach is a linearized (semi)-implicit
scheme, such as linearized semi-implicit Euler scheme. At each time step, the
scheme only requires the solution of a linear system. To study the error estimate of
linearized (semi)-implicit schemes, the boundedness of numerical solution (or error
function) in L∞ norm or a stronger norm is often required. If a priori estimate
for numerical solution in such a norm cannot be obtained, one may employ the
induction method with inverse inequality to bound the numerical solution, such as

(1.1) ‖Rhu(·, tn)− Un
h ‖L∞ ≤ Ch−d/2‖Rhu(·, tn)− Un

h ‖L2 ≤ Ch−d/2(τp + hr+1),

where u(·, tn) and Un
h are the exact solution and numerical solution, respectively,

Rh is some projection operator and d is the dimension. The above inequality, how-
ever, results in a time-step restriction, particularly for problems in three spatial
dimensions. Such a technique has been widely used in the error analysis for many
different nonlinear parabolic PDEs, e.g., see [1, 16, 18, 20, 21] for Navier-Stokes
equations, [2, 11, 36] for nonlinear Joule heating problems, [15, 25, 27] for porous
media flows, [7, 12, 13, 28] for viscoelastic fluid flow, [22, 35] for KdV equations
and [10, 29] for some other equations. In all these works, error estimates were
established under certain time-step restrictions. We believe that these time-step
restrictions may not be necessary in most cases. In this paper, we only focus our
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attention to a time-dependent and nonlinear Joule heating system by a linearized
semi-implicit scheme. However, our approach is applicable for more general non-
linear parabolic PDEs and many other time discretizations to obtain optimal error
estimates unconditionally.

The time-dependent nonlinear Joule heating system is defined by

∂u

∂t
−∆u = σ(u)|∇φ|2,(1.2)

−∇ · (σ(u)∇φ) = 0,(1.3)

for x ∈ Ω and t ∈ [0, T ], where Ω is a bounded smooth domain in R
d, d = 2, 3. The

initial and boundary conditions are given by

u(x, t) = 0, φ(x, t) = g(x, t) for x ∈ ∂Ω, t ∈ [0, T ],

u(x, 0) = u0(x) for x ∈ Ω.
(1.4)

The nonlinear system above describes the model of electric heating of a con-
ducting body, where u is the temperature, φ is the electric potential, and σ is the
temperature-dependent electric conductivity. Following the previous works [11, 36],
we assume that σ ∈ C1(R) and

κ ≤ σ(s) ≤ K,(1.5)

for some positive constants κ and K.
Theoretical analysis for the Joule heating system was done by several authors [3,

5, 8, 34, 31, 32, 33]. Among these works, Yuan [33] proved existence and uniqueness
of a Cα solution in three-dimensional space. Based on this result, further regularity
can be derived with suitable assumption on the initial and boundary conditions.
Numerical methods and analysis for the Joule heating system can be found in
[2, 4, 11, 30, 36, 37, 38]. For the system in two-dimensional space, optimal L2 error
estimate of a mixed finite element method with the linearized semi-implicit Euler
scheme was obtained in [36] under a weak time-step condition. Error analysis for
the three-dimensional model was given in [11], in which the linearized semi-implicit
Euler scheme with a linear Galerkin FEM was used. An optimal L2-error estimate
was presented under the time step restriction τ ≤ O(h1/2). A more general time
discretization with higher-order finite element approximations was studied in [2].
An optimal L2-norm error estimate was given under the conditions τ ≤ O(h3/2p)
and r ≥ 2 where p is the order of the discrete scheme in time direction and r is the
degree of piecewise polynomial approximations used. No optimal error estimates
in H1-norm have been obtained.

The main idea of this paper is a splitting of the numerical error into the temporal
direction and the spatial direction by introducing a corresponding time-discrete
parabolic system (or elliptic system). Error bounds of the Galerkin finite element
methods for the time-discrete parabolic equations in certain norm is dependent only
upon the spatial mesh size h and independent of the time-step size τ . If a suitable
regularity of the solution of the time-discrete equations can be proved, numerical
solution in the L∞ norm (or stronger norm) is bounded unconditionally by the
induction assumption

(1.6) ‖RhU
n − Un

h ‖L∞ ≤ Ch−d/2‖RhU
n − Un

h ‖L2 ≤ Ch−d/2hr+1

where Un is the solution of the time-discrete equations. With the boundedness,
optimal error estimates can be established for the fully discrete scheme without
any time-step restriction. In this paper, we analyze the linearized (semi-implicit)
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backward Euler scheme with the standard Galerkin approximation in spatial di-
rections for the nonlinear Joule heating system (1.2)-(1.4). With the splitting, we
present unconditionally optimal error estimates in both the L2 norm and the H1

norm.
The rest of the paper is organized as follows. In Section 2, we present the

linearized semi-implicit Euler scheme with a linear Galerkin finite element approx-
imation in spatial direction and our main results. After introducing the corre-
sponding time-discrete parabolic system, we provide in Section 3 a priori estimates
and optimal error estimates for the time-discrete solution, which imply the suitable
regularity of the time-discrete solution. With the regularity obtained, we present
optimal error estimates of the Galerkin finite element solution in L2-norm with-
out any time-step restriction, and the optimal error estimate in H1 norm follows
immediately due to the nature of our approach. The concluding remarks are pre-
sented in Section 4. Extension to r-order Galerkin finite element approximation is
straightforward with the corresponding assumptions of regularity.

2. Galerkin methods and main results

Let Ω be a bounded convex and smooth domain in R
d (d = 2, 3). For any integer

k ≥ 0 and 1 ≤ p < ∞. Let W k
p (Ω) be the Sobolev space with the norm

‖f‖Wk
p
=

(∑

|β|≤k

∫

Ω

|Dβf |p dx

) 1
p

,

where

Dβ =
∂|β|

∂xβ1

1 · · ·∂xβd

d

for the multi-index β = (β1, · · · , βd), β1 ≥ 0, · · · , βd ≥ 0, and |β| = β1 + · · ·+ βd.
For any integer k ≥ 0 and 0 < α < 1, let Ck+α(Ω) denote the usual Hölder space
with the norm

‖f‖Ck+α =
∑

|β|≤k

‖Dβf‖C(Ω) +
∑

|β|=k

sup
x,y∈Ω

|Dβf(x)−Dβf(y)|

|x− y|α

and let C0(Ω) be the space of continuous functions on Ω vanishing on the boundary
∂Ω. For any Banach space X and function f : [0, T ] → X , we define the norm

‖f‖Lp((0,T );X) =





(∫ T

0

‖f(t)‖pXdt

) 1
p

, 1 ≤ p < ∞,

ess supt∈(0,T )‖f(t)‖X , p = ∞.

With the boundary conditions (1.4), the weak formulation of the system (1.2)-
(1.3) is defined by

(ut, ξu) + (∇u, ∇ξu) = (σ(u)|∇φ|2, ξu),(2.1)

(σ(u)∇φ, ∇ξφ) = 0(2.2)

for any ξu, ξφ ∈ H1
0 (Ω) and a.e. t ∈ (0, T ).

Let πh be a regular division of Ω into triangles in R
2 or tetrahedras in R

3, i.e.
Ω = ∪jΩj , and denote by h = maxj{diamΩj} the mesh size. For a triangle Ωj at

the boundary, we define Ω̃j as the triangle with one curved side (or a tetrahedra

with one curved face in R
3) with the same vertices as Ωj , and set Dj = Ω̃j\Ωj. For
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an interior triangle, we set Ω̃j = Ωj and Dj = ∅. For a given division πh, we define
the finite element spaces [26]:

Vh = {vh ∈ C(Ω) : vh|Ωj is linear for each element and vh = 0 on Dj},

Sh = {vh ∈ C(Ω) : vh|Ω̃j
is linear for each element}.

It follows that Vh is a subspace of H1
0 (Ω) and Sh is a subspace of H1(Ω). For any

function v ∈ Sh, we define Λhv as the function which satisfies Λhv = 0 on Dj and

Λhv = v on Tj . We define Π̃h : C(Ω) → Sh to be the Lagrangian interpolation

operator, i.e. Π̃hv coincides with v at each vertex of the triangular division of Ω,

and set Πh = ΛhΠ̃h. Clearly, Πh is a projection operator from C0(Ω) onto Vh.
Let {tn}Nn=0 be a partition in the time direction with tn = nτ , T = Nτ and

un = u(x, tn), φn = φ(x, tn) .

For any sequence of functions {fn}Nn=0, we define

Dtf
n+1 =

fn+1 − fn

τ
.

For simplicity, we assume that g ∈ H1(Ω). The fully discrete finite element
scheme is to find Un

h , Φ
n
h−gn ∈ Vh for n = 0, 1, · · · , N such that for all ξu, ξφ ∈ Vh

(
DtU

n+1
h , ξu

)
+
(
∇Un+1

h , ∇ξu
)
=
(
σ(Un

h )|∇Φn
h |

2, ξu
)
,(2.3)

(
σ(Un

h )∇Φn
h , ∇ξφ

)
= 0,(2.4)

with the initial conditions U0
h = Rhu

0.
In the rest part of this paper, we always assume that the solution to the ini-

tial/boundary value problem (1.2)-(1.4) exists and satisfies

‖u‖L∞((0,T );H2) + ‖ut‖L∞((0,T );L2) + ‖ut‖L2((0,T );H2) + ‖utt‖L2((0,T );L2)

+ ‖u0‖H2 + ‖φ‖L∞((0,T );W 2,12/5) + ‖φt‖L2((0,T );H1) + ‖∇φ‖L∞((0,T );Cα)

+ ‖g‖L∞((0,T );W 2,12/5) + ‖gt‖L2((0,T );H1) + ‖∇g‖L∞((0,T );Cα) ≤ C.(2.5)

We denote by C a generic positive constant, which is independent of n, h and τ and
ǫ a generic small positive constant. We present our main results in the following
theorem.

Theorem 2.1 Suppose that the system (1.2)-(1.3) with the initial and boundary
conditions (1.4) has a unique solution (u, φ) satisfying (2.5). Then there exist
positive constants τ0 and h0 such that when τ < τ0 and h < h0, the finite element
system (2.3)-(2.4) admits a unique solution (Un

h , Φ
n
h), n = 1, · · · , N , such that

max
1≤n≤N

‖Un
h − un‖L2 + max

1≤n≤N
‖Φn

h − φn‖L2 ≤ C(τ + h2),(2.6)

max
1≤n≤N

‖Un
h − un‖H1 + max

1≤n≤N
‖Φn

h − φn‖H1 ≤ C(τ + h).(2.7)

For U0 = u0 and Φ0, we define Un and Φn to be the solution of the following
discrete parabolic system (or elliptic system)

DtU
n+1 −∆Un+1 = σ(Un)|∇Φn|2, 0 ≤ n ≤ N − 1,(2.8)

−∇ · (σ(Un)∇Φn) = 0, 0 ≤ n ≤ N,(2.9)

with the boundary conditions

Un+1(x) = 0, Φn(x) = g(x, tn) for x ∈ ∂Ω.(2.10)
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We will present the proof of Theorem 2.1 in the next two sections. The key to
our proof is the following error splitting

‖Un
h − un‖ ≤ ‖en‖+ ‖enh‖+ ‖Un −RhU

n‖,

‖Φn
h − φn‖ ≤ ‖ηn‖+ ‖ηnh‖+ ‖Φn − Pn

h Φ
n‖

for any norm ‖ · ‖, where

en = Un − un, enh = Un
h −RhU

n,

ηn = Φn − φn, ηnh = Φn
h − Pn

h Φ
n ,

with Rh : H1
0 (Ω) → Vh being the Riesz projection operator, i.e.
(
∇(v −Rhv),∇w

)
= 0, for all v ∈ H1

0 (Ω) and w ∈ Vh.

and Pn
h Φ

n = g(·, tn) + Πh(Φ
n − g(·, tn)) for n = 0, 1, 2, · · · , N .

With the definition of the operator Πh, P
n
h and Rh, the following estimates hold

[23]: for any 2 ≤ p < ∞, there exists a positive constant C (independent of the
function v) such that

‖v −Πhv‖Lp + h‖v −Πhv‖W 1,p ≤ Ch2‖v‖W 2,p ,(2.11)

‖Φn − Pn
h Φ

n‖Lp + h‖Φn − Pn
h Φ

n‖W 1,p ≤ Ch2‖Φn − gn‖W 2,p ,(2.12)

‖v −Rhv‖Lp + h‖v −Rhv‖W 1,p ≤ Ch2‖v‖W 2,p(2.13)

hold for all v ∈ W 2,p(Ω)
⋂

H1
0 (Ω).

3. Error estimates

We analyze the error function (en, ηn) from the linearized semi-implicit Euler
scheme (time-discrete system) and the errors function (enh, η

n
h ) of the Galerkin fi-

nite element method for the time-discrete system in the following two subsections,
respectively.

3.1. The time-discrete solution. In this subsection, we prove the existence and
uniqueness of the time-discrete system (2.8)-(2.10) and establish the error bounds
for (en, ηn).

Theorem 3.1 Suppose that the system (1.2)-(1.4) has a unique solution (u, φ)
satisfying (2.5). Then there exists a positive constant τ0 such that when τ < τ0, the
time-discrete system (2.8)-(2.10) admits a unique solution (Un,Φn) such that

max
1≤n≤N

‖Un‖H2 + max
1≤n≤N

‖DtU
n‖L2 +

(
N∑

n=1

τ‖DtU
n‖2H2

)1/2

≤ C,(3.1)

max
1≤n≤N

‖Φn‖H2 + max
1≤n≤N

‖∇Φn‖L∞ ≤ C(3.2)

and

max
1≤n≤N

‖en‖H1 + max
1≤n≤N

‖ηn‖H1 ≤ Cτ.(3.3)

Proof We rewrite the system (1.2)-(1.3) by

Dtu
n+1 −∆un+1 = σ(un)|∇φn|2 +Rn+1

1 ,(3.4)

−∇ · (σ(un)∇φn) = 0,(3.5)
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where Rn+1
1 is the truncation errors due to the time discretization, i.e.

Rn+1
1 = Dtu

n+1 −
∂u

∂t

∣∣∣
t=tn+1

+ (σ(un+1)− σ(un))|∇φn+1|2

+σ(un)∇(φn+1 + φn) · ∇(φn+1 − φn).

With the regularity given in (2.5), we have

‖Rn+1
1 ‖L2 ≤ C,

∑N−1
n=0 ‖Rn+1

1 ‖2L2τ ≤ Cτ2.(3.6)

Subtracting the equations (3.4)-(3.5) from the equations (2.8)-(2.9), respectively,
we obtain

Dte
n+1 −∆en+1 = (σ(Un)− σ(un))|∇φn|2

+ σ(Un)(∇φn +∇Φn) · ∇ηn +Rn+1
1 ,(3.7)

−∇ · (σ(Un)∇ηn) = ∇ · [(σ(un)− σ(Un))∇φn] ,(3.8)

with the boundary condition en+1 = ηn = 0 on ∂Ω. An alternative to the last
equation is

−∇ · (σ(un)∇ηn) = ∇ · [(σ(un)− σ(Un))(∇φn +∇ηn)].(3.9)

Multiplying the equation (3.8) by ηn+1 and integrating the result over Ω, we have

‖∇ηn‖2L2 ≤ C‖en‖L2‖∇ηn‖L2

which leads to

(3.10) ‖∇ηn‖L2 ≤ C‖en‖L2 .

Similarly, multiplying (3.7) by en+1 and integrating it over Ω gives

Dt

(
1

2
‖en+1‖2L2

)
+‖∇en+1‖2L2

≤ C‖en‖L2‖en+1‖L2‖∇φn‖L∞ +
(
σ(Un)(∇φn +∇Φn)en+1, ∇ηn

)

+ ‖Rn+1
1 ‖L2‖en+1‖L2 .

By (2.9) and using integrating by part,

|
(
σ(Un)(∇φn +∇Φn)en+1, ∇ηn

)
|

≤|
(
σ(Un)en+1∇φn, ∇ηn

)
|

+ |
(
en+1∇ · (σ(Un)∇Φn) + σ(Un)∇Φn · ∇en+1, ηn

)
|

≤C(‖en+1‖L2‖∇ηn‖L2 + ‖∇φn‖L∞‖∇en+1‖L2‖ηn‖L2 + ‖∇ηn‖L2‖∇en+1‖L2‖ηn‖L∞) .

Applying the maximum principle to the elliptic equation (2.9) shows that ‖Φn‖L∞ ≤
C and therefore,

‖ηn‖L∞ ≤ C,

for n = 0, 1, 2, · · · . It follows that

Dt

(
1

2
‖en+1‖2L2

)
+
1

2
‖∇en+1‖2L2

≤ C‖en‖2L2 + C‖en+1‖2L2 + C‖ηn‖2H1 + C‖Rn+1
1 ‖2L2

≤ C‖en‖2L2 + C‖en+1‖2L2 + C‖Rn+1
1 ‖2L2,
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where we have used (3.10) in the last step. By applying Gronwall’s inequality,
combined with (3.6), we derive that there exists a small positive constant τ0 such
that when τ < τ0,

max
1≤n≤N

‖en‖2L2 + max
1≤n≤N

‖ηn‖2H1 +

N∑

n=1

‖en‖2H1τ ≤ Cτ2.(3.11)

In particular, the above estimate implies that

‖Un‖2H1 ≤ C(3.12)

and

‖DtU
n+1‖L2 ≤ ‖Dtu

n+1‖L2 + ‖Dte
n+1‖L2 ≤ C.

With the above inequalities, we derive from (2.8) that

‖Un+1‖H2 ≤ C + C‖∇Φn‖2L4.(3.13)

Since H2(Ω) →֒ Cα(Ω) in R
d with d = 2, 3, ‖en‖Cα ≤ C. By applying the W 1,4

estimate [6, 24] to (3.9), we get

‖∇ηn‖L4 ≤ ‖(σ(un)− σ(Un))∇Φn‖L4

≤ C0‖e
n‖L∞(‖∇φn‖L4 + ‖∇ηn‖L4)

where C0 is some positive constant. By assuming that C0‖en‖L∞ < 1/2, we derive
that

‖∇ηn‖L4 ≤ C

and (3.13) implies that

‖en+1‖H2 ≤ ‖un+1‖H2 + ‖Un+1‖H2 ≤ C(3.14)

and

‖en+1‖L∞ ≤ ‖en+1‖
1/2
H1 ‖e

n+1‖
1/2
H2 ≤ Cτ1/4.

From the above derivation, one can see that there exists τ0 > 0 such that if τ < τ0,
then C0‖en‖L∞ < 1/2 implies C0‖en+1‖L∞ < 1/2 as well as (3.14). In addition,
we see that ‖∇Φn‖L4 ≤ C and therefore,

max
1≤n≤N

‖Un‖Cα ≤ C.(3.15)

By applying Schauder’s estimates ([9], page 74) to (2.9), we derive that

max
1≤n≤N

‖∇Φn‖Cα ≤ C,(3.16)

which together with (3.12) and (2.9) leads to

max
1≤n≤N

‖Φn‖H2 ≤ C.(3.17)

Multiplying (3.7) by−∆en+1 and summing up the equations for n = 0, 1, · · · , N−
1, we obtain

max
1≤n≤N

‖en‖2H1 +

N∑

n=1

τ‖∆en‖2L2

≤
N−1∑

n=0

τ
(
‖(σ(Un)− σ(un))|∇φn|2‖2L2 + ‖σ(Un)(∇φn +∇Φn) · ∇ηn‖2L2 + ‖Rn+1

1 ‖2L2

)

≤Cτ2.
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It follows that

max
1≤n≤N

‖en‖H1 ≤ Cτ,

and
N∑

n=1

τ‖∆Dte
n‖2L2 ≤ Cτ−2

N∑

n=1

τ‖∆en‖2L2 ≤ C.

By the theory of elliptic equations [9, 14], ‖Dte
n‖H2 ≤ C‖∆Dte

n‖L2 for n =
1, · · · , N , and so

N∑

n=1

τ‖Dte
n‖2H2 ≤ C.(3.18)

The proof of Theorem 3.1 is complete.

3.2. The fully-discrete finite element solution. Here we study the error (enh, η
n
h)

of the Galerkin finite element method for the time-discrete system (2.8)-(2.10).

Theorem 3.2 Suppose that the system (1.2)-(1.4) has a solution (u, φ) satisfying
(2.5). Then there exist positive constants h0 and τ0 such that when h < h0 and
τ < τ0, the fully-discrete system (2.3)-(2.4) admits a unique solution (Un

h ,Φ
n
h) such

that

‖enh‖L2 + ‖ηnh‖L2 ≤ Ch2,(3.19)

‖enh‖H1 + ‖ηnh‖H1 ≤ Ch.(3.20)

Note that the condition of τ < τ0 is to ensure that Theorem 3.1 holds. For the
given Un

h , the error estimate for the equation (2.4) is given in the following Lemma.

Lemma 3.1 Suppose that the system (1.2)-(1.4) has a unique solution (u, φ) sat-
isfying (2.5). Then

‖∇(Φn
h − Φn)‖L2 ≤ C

(
h+ ‖enh‖L2

)
,

‖Φn
h − Φn‖L2 ≤ C

(
h2 + ‖enh‖L2 + h−d/6‖enh‖

2
L2

)
,

where (Un
h , Φ

n
h) and (Un, Φn) are the solution of the finite element system (2.3)-

(2.4) and the time-discrete system (2.8)-(2.10), respectively.

Remark 3.1 The proof of the above lemma is similar as that of Lemma 3.2 in [11],
in which the factor h−d/6 appears when ‖enh‖L3 reduces to ‖enh‖L2 via the inverse
inequality. More important is that in [11], enh is the difference between the exact
solution of the system (1.2)-(1.3) and the fully discrete finite element solution. The
restriction for the time-step size, τ ≤ τ0h

d/6, was required when the preliminary
error bound ‖enh‖L2 ≤ C(τ + h2) was used by induction in the second inequality of
Lemma 3.1. However, in our approach, enh is the difference between the solution of
the time-discrete system (2.8)-(2.10) and the fully discrete finite element solution.
Thus, the induction assumption shows that ‖enh‖L2 ≤ Ch2 and then, we can prove
the optimal error bound of the scheme unconditionally.

Proof of Theorem 3.2 At each time step of the scheme, one only needs to solve two
uncoupled linear discrete systems. Due to the assumption (1.5), it is easy to see that
coefficient matrices in both systems are symmetric and positive definite. Existence
and uniqueness of the Galerkin finite element solution follows immediately. It is seen
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that the inequality (3.20) follows from (3.19) via the inverse inequality. Therefore,
it suffices to prove (3.19).

The weak formulation of the time-discrete system (2.8)-(2.10) is

(
DtU

n+1, ξu
)
+
(
∇Un+1, ∇ξu

)
=
(
σ(Un)|∇Φn|2, ξu

)
,(3.21)

(
σ(Un)∇Φn, ∇ξφ

)
= 0,(3.22)

for any ξu, ξφ ∈ Vh. From the above equations and the finite element system
(2.3)-(2.4), we find that the error function (enh, η

n
h ) satisfies

(
Dte

n+1
h , ξu

)
+
(
∇en+1

h , ∇ξu
)

=
(
Dt(U

n+1 −RhU
n+1), ξu

)
+
(
(σ(Un

h )− σ(Un))|∇Φn|2, ξu
)

+ 2
(
(σ(Un

h )− σ(Un))∇Φn · ∇(Φn
h − Φn), ξu

)

+
(
σ(Un

h )|∇(Φn
h − Φn)|2, ξu

)

+ 2
(
σ(Un)∇Φn · ∇(Φn

h − Φn), ξu
)

:= (R̄n+1
1 , ξu) + (R̄n+1

2 , ξu) + (R̄n+1
3 , ξu) + (R̄n+1

4 , ξu) + (R̄n+1
5 , ξu),(3.23)

and

(
σ(Un

h )∇ηnh , ∇ξφ
)
=
(
(σ(Un

h )− σ(Un))∇Φn, ∇ξφ
)

+
(
σ(Un

h )∇(Φn − Pn
h Φ

n), ∇ξφ
)

(3.24)

for all ξu, ξφ ∈ Vh.
Since ηnh = 0 on ∂Ω, we can take ξφ = ηnh in (3.24) to get

‖∇ηnh‖L2 ≤ C‖enh‖L2 + Ch,(3.25)

where we have noted the fact that ‖∇(φn − Pn
h φ

n)‖L2 ≤ Ch. With the above
inequality, from Lemma 3.1 we derive that

‖ηnh‖L2 ≤ Ch2 + C‖enh‖L2 .(3.26)

Taking ξu = en+1
h in (3.23), the right-hand side is estimated by

(R̄n+1
1 , en+1

h ) ≤ ‖en+1
h ‖2L2 + C‖DtU

n+1 −RhDtU
n+1‖2L2

≤ ‖en+1
h ‖2L2 + C‖DtU

n+1‖2H2h4,(3.27)

(R̄n+1
2 , en+1

h ) ≤ C‖en+1
h ‖L2(‖enh‖L2 + ‖Un −RhU

n‖L2)

≤ C(‖en+1
h ‖2L2 + ‖enh‖

2
L2 + h4),(3.28)

(R̄n+1
3 , en+1

h ) ≤ C‖en+1
h ‖L6(‖enh‖L2 + ‖Un −RhU

n‖L2)

× (‖∇ηn+1
h ‖L3 + ‖Φn − Pn

h Φ
n‖L3)

≤ C‖en+1
h ‖H1(‖enh‖L2 + Ch2)(‖∇ηnh‖L3 + Ch)

≤ ǫ‖en+1
h ‖2H1 + Cǫ−1(‖enh‖L2 + Ch2)2

× (Ch−d/6‖∇ηnh‖L2 + Ch)2,(3.29)

(R̄n+1
5 , en+1

h ) ≤ C‖Φn
h − Φn‖2L2 + C‖en+1

h ‖2L2

≤ C‖en+1
h ‖2L2 + C

(
h4 + ‖enh‖

2
L2

)
(3.30)
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and

(R̄n+1
4 , en+1

h ) ≤ C‖enh‖L∞(‖∇ηnh‖
2
L2 + ‖∇(Φn − Pn

h Φ
n)‖2L2)

≤ Ch−1/2‖en+1
h ‖H1(‖enh‖

2
L2 + h2)

≤ ǫ‖en+1
h ‖2H1 + Cǫ−1h−1‖enh‖

4
L2 + Cǫ−1h3 .(3.31)

With the above estimates, by choosing a ǫ small enough, (3.23) reduces to

Dt

(
‖en+1

h ‖2L2

)
+ ‖∇en+1

h ‖2L2

≤ C
(
‖en+1

h ‖2L2 + ‖enh‖
2
L2 + h−1‖enh‖

4
L2

)
+ Ch3 + C‖DtU

n+1‖2H2h4,(3.32)

which holds for 0 ≤ n ≤ N − 1.
Now we prove that

‖enh‖L2 ≤ h1/2 for 0 ≤ n ≤ N(3.33)

by using mathematical induction. Clearly, this inequality holds for n = 0. If we
assume that this inequality holds for 0 ≤ n ≤ k, then the inequality (3.32) reduces
to

Dt

(
‖en+1

h ‖2L2

)
+ ‖∇en+1

h ‖2L2 ≤C
(
‖en+1

h ‖2L2 + ‖enh‖
2
L2

)
+ Ch3 + C‖DtU

n+1‖2H2h4

(3.34)

for 0 ≤ n ≤ k. By applying Gronwall’s inequality, we derive that

‖ek+1
h ‖2L2 ≤ C1h

3 ≤ h if h < 1/C
1/2
1 .(3.35)

This completes the induction.
With (3.33), we can apply Gronwall’s inequality to (3.32) and get

max
1≤n≤N

‖enh‖L2 ≤ Ch3/2(3.36)

Since ηn+1
h ∈ H1

0 (Ω), from the estimates (3.25)-(3.26) we see that

max
1≤n≤N

‖ηnh‖H1 ≤ Ch.(3.37)

Finally, by applying the W 1,p estimate to the equation (3.24), we get

‖∇ηnh‖L12/5 ≤ C‖Un
h − Un‖L12/5 + C‖∇(Φn − Pn

h Φ
n)‖L12/5 ≤ Ch(3.38)

and therefore, we obtain a refined estimate:

(R̄n+1
4 , en+1

h ) ≤ C‖enh‖L6(‖∇ηnh‖
2
L12/5 + ‖∇(Φn − Pn

h Φ
n)‖2L12/5)

≤ ǫ‖enh‖
2
L6 + Cǫ−1‖∇ηnh‖

4
L12/5 + Cǫ−1‖∇(Φn − Pn

h Φ
n)‖4L12/5

≤ ǫ‖enh‖
2
H1 + Cǫ−1h4 .(3.39)

With the estimates (3.27)-(3.30) and (3.39), the equation (3.23) reduces to

Dt

(
‖en+1

h ‖2L2

)
+ ‖∇en+1

h ‖2L2 ≤ C‖enh‖
2
L2 + Ch4 + C‖DtU

n+1‖2H2h4.

By applying Gronwall’s inequality, we get

max
1≤n≤N

‖enh‖
2
L2 ≤ Ch4.(3.40)

The L2 error estimate of ηnh follows from (3.26) and (3.40). The proof of Theorem
3.2 is complete.

Theorem 2.1 follows immediately from Theorem 3.1 and Theorem 3.2.
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4. Conclusions

We have presented an approach to obtain optimal error estimates and uncondi-
tional stability of linearized (semi) implicit schemes with a Galerkin finite element
method for the three-dimensional nonlinear Joule heating equations. The analysis
is based on a new splitting of the error into the time direction and the spatial direc-
tion, by which the numerical solution (or its error) in a strong norm can be bounded
by induction assumption and the inverse inequalities without any restrictions on
the time-step size. In most existing approaches, a time-step condition has to be
enforced to bound the numerical solution in a stronger norm.

Clearly, our analysis can be extended to many other nonlinear parabolic systems,
while we only focus on the electric heating model in the present paper. A simple
example is the Joule heating equation with a stronger nonlinear electric conductivity

σ = σ(u,∇u) .

With stronger regularity assumption, optimal L2 and H1 error estimates in Theo-
rem 2.1 may be proved without any restrictions on the time-step size τ .

In this paper, we only considered a linear Galerkin finite element approximation.
The extension to high-order Galerkin finite element methods can be done similarly.
For simplicity, we have assumed that the function g is defined in the domain Ω
instead of on the boundary ∂Ω. If the function g is defined only on the boundary
∂Ω, a similar analysis can be given by taking the boundary terms into consideration,
see [11] for reference. Optimal error estimates still can be proved without any
condition on the time-step size.

References

[1] Y. Achdou and J.L. Guermond, Convergence analysis of a finite element projection/Lagrange-
Galerkin method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 37
(2000), 799–826.

[2] G. Akrivis and S. Larsson, Linearly implicit finite element methods for the time dependent
Joule heating problem, BIT, 45 (2005), 429–442.

[3] W. Allegretto and H. Xie, Existence of solutions for the time dependent thermistor equation,
IMA. J. Appl. Math., 48 (1992), 271–281.

[4] W. Allegretto and N. Yan, A posteriori error analysis for FEM of thermistor problems, Int.
J. Numer. Anal. Model., 3 (2006), 413–436.

[5] W. Allegretto, Y. Lin and S. Ma, Existence and long time behaviour of solutions to obstacle
thermistor equations, Discrete and Continuous Dynamical Syst., Series A, 8 (2002), 757–780.

[6] S.S. Byun and L. Wang, Elliptic equations with measurable coefficients in Reifenberg domains,
Advances in Mathematics, 225 (2010), 2648–2673.

[7] J.R. Cannon and Y. Lin, Nonclassical H1 projection and Galerkin methods for nonlinear
parabolic integro-differential equations, Calcolo, 25 (1988), 187–201.

[8] G. Cimatti, Existence of weak solutions for the nonstationary problem of the joule heating
of a conductor, Ann. Mat. Pura Appl., 162 (1992), 33–42.

[9] Ya-Zhe Chen and Lan-Cheng Wu, Second Order Elliptic Equations and Elliptic Systems,
Translations of Mathematical Monographs 174, AMS 1998, USA.

[10] Z. Deng and H. Ma, Optimal error estimates of the Fourier spectral method for a class of
nonlocal, nonlinear dispersive wave equations, Appl. Numer. Math., 59 (2009), 988–1010.

[11] C.M. Elliott, and S. Larsson, A finite element model for the time-dependent joule heating
problem, Math. Comp., 64 (1995), 1433–1453.

[12] V.J. Ervin and N. Heuer, Approximation of time-dependent, viscoelastic fluid flow: Crank-
Nicolson, finite element approximation, Numer. Methods Partial Differential Equations, 20
(2004), 248–283.

[13] V.J. Ervin, W.W. Miles, Approximation of time-dependent viscoelastic fluid flow: SUPG
approximation, SIAM J. Numer. Anal., 41 (2003), 457–486.



ERROR ANALYSIS OF FEM FOR NONLINEAR PARABOLIC EQUATIONS 633

[14] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American
Mathematical Society, USA.

[15] R.E. Ewing and M.F. Wheeler, Galerkin methods for miscible displacement problems in
porous media, SIAM J. Numer. Anal., 17 (1980), 351–365.

[16] Yinnian He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes
equations with smooth or non-smooth initial data, Math. Comp., 77 (2008), 2097–2124.

[17] C. Johnson, S. Larsson, V. Thomée, and L.B. Wahlbin, Error estiamtes for spatially discrete
approximations of semilinear parabolic equations with nonsmooth initial data, Math. Comp.,
49 (1987), 331–357.

[18] B. Kellogg and B. Liu, The analysis of a finite element method for the Navier–Stokes equations

with compressibility, Numer. Math., 87 (2000), 153–170.
[19] O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Uralceva, Linear and quasilinear equations

of parabolic type, Translations of Mathematical Monographs 23, Providence, 1968.
[20] B. Liu, The analysis of a finite element method with streamline diffusion for the compressible

Navier–Stokes equations, SIAM J. Numer. Anal., 38 (2000), 1–16.
[21] B. Liu, An error analysis of a finite element method for a system of nonlinear advection-

diffusion-reaction equations, Applied Numer. Math., 59 (2009), 1947–1959.
[22] H. Ma and W. Sun, Optimal error estimates of the Legendre-Petrov-Galerkin method for the

Korteweg-de Vries equation, SIAM J. Numer. Anal., 39 (2001), 1380–1394.
[23] R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element

approximations, Math. Comp., 38 (1982), 437–445.
[24] C.G. Simader, On Dirichlet Boundary Value Problem. An Lp Theory Based on a General-

ization of Garding’s Inequality, Springer, Berlin, 1972.
[25] W. Sun and Z. Sun, Finite difference methods for a nonlinear and strongly coupled heat and

moisture transport system in textile materials, Numer Math., 120 (2012), 153–187.
[26] V. Thomée, Galerkin finite element methods for parabolic problems, Springer-Verkag Berkub

Geudekberg, 1997.
[27] H. Wang, An optimal-order error estimate for a family of ELLAM-MFEM approximations to

porous medium flow, SIAM J. Numer. Anal., 46 (2008), 2133–2152.
[28] K. Wang, Y. He and Y. Shang, Fully discrete finite element method for the viscoelastic fluid

motion equations, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 665–684.
[29] H. Wu, Hua, H. Ma and H. Li, Optimal error estimates of the Chebyshev-Legendre spectral

method for solving the generalized Burgers equation, SIAM J. Numer. Anal., 41 (2003),
659–672.

[30] X.Y. Yue, Numerical analysis of nonstationary thermistor problem, J. Comput. Math., 12
(1994), 213–223.

[31] G. Yuan, Local existence of bounded solutions to the degenerate Stefan problem with Joule’s
heating, J. Partial Differential Equations, 9 (1996), 42–54.

[32] G. Yuan, Regularity of solutions of the thermistor problem, Appl. Anal., 53 (1994), 149–155.
[33] G. Yuan and Z. Liu, Existence and uniqueness of the Cα solution for the thermistor problem

with mixed boundary value, SIAM J. Math. Anal., 25 (1994), 1157–1166.
[34] H. Xie, Mathematical Aspects of the Thermistor Equations, PhD Thesis, University of Al-

berta, 1992.
[35] Z.Q. Zhang and H. Ma, A rational spectral method for the KdV equation on the half line, J.

Comput. Appl. Math., 230 (2009), 614–625.
[36] W. Zhao, Convergence analysis of finite element method for the nonstationary thermistor

problem, Shandong Daxue Xuebao, 29 (1994), 361–367.
[37] S. Zhou, Existence, uniqueness and numerical realization of solutions for the thermistor

equation, PhD Thesis, University of Calgary, 1993.
[38] S. Zhou and D.R. Westbrook, Numerical solutions of the thermistor equations, J. Comput.

Appl. Math., 79 (1997), 101–118.

Department of Mathematics, Nanjing University, Nanjing, P.R. China
Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
E-mail : buyangli@nju.edu.cn

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
E-mail : maweiw@cityu.edu.hk


