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AN ALMOST FOURTH ORDER PARAMETER-ROBUST

NUMERICAL METHOD FOR A LINEAR SYSTEM OF (M ≥ 2)

COUPLED SINGULARLY PERTURBED REACTION-DIFFUSION

PROBLEMS

S. CHANDRA SEKHARA RAO AND MUKESH KUMAR

Abstract. We present a high order parameter-robust finite difference method for a linear system
of (M ≥ 2) coupled singularly perturbed reaction-diffusion two point boundary value problems.
The problem is discretized using a suitable combination of the fourth order compact difference
scheme and the central difference scheme on a generalized Shishkin mesh. A high order decompo-
sition of the exact solution into its regular and singular parts is constructed. The error analysis is
given and the method is proved to have almost fourth order parameter robust convergence, in the
maximum norm. Numerical experiments are conducted to demonstrate the theoretical results.

Key words. Parameter-robust convergence, System of coupled reaction-diffusion problem, Generalized-
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1. Introduction

Consider the following system of (M ≥ 2) coupled singularly perturbed linear
reaction-diffusion equations

(1a) Tu := −Eu ′′ +Au = f , x ∈ Ω = (0, 1)

subject to the boundary conditions

(1b) u(0) = p, u(1) = q,

where E = diag(ε, . . . , ε), with small parameter 0 < ε ≪ 1. Suppose that the
matrix A : Ω → R

M,M and the vector valued function f : Ω → R
M are four

times continuously differentiable on Ω. We assume that the coupling matrix A =
( aij(x) )M×M satisfy the following positivity conditions at each x ∈ Ω

(2) aij(x) ≤ 0, i 6= j,

(3a) aii(x) > 0, i = 1, . . . ,M,

(3b)

M∑

j=1,j 6=i

∥∥∥∥
aij
aii

∥∥∥∥
Ω

< 1, i = 1, . . . ,M,

where ‖.‖Ω denotes the continuous maximum norm on Ω. It is well known that

under these assumptions the problem (1) possesses unique solution u ∈ C6(Ω)M

and exhibits two layers of width O(
√
ε ln(1/

√
ε)) at both ends of the domain. These

types of system of equations appear in the modeling of various physical phenom-
enon, such as the turbulent interaction of waves and currents [30], predator-prey
population dynamics [8] and investigation of diffusion processes complicated by
chemical reactions in electro analytic chemistry [29].
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The use of classical numerical methods on uniform mesh for solving these prob-
lems may give rise to difficulties when the singular perturbation parameter ε is
sufficiently small. This leads to the development of the numerical methods that are
parameter-uniform/parameter-robust/uniformly convergent with respect to small
parameter ε. There are two classes of parameter-robust numerical methods: fitted
operator methods and fitted mesh methods. Such methods require the physical and
the mathematical knowledge about the problem. In case of a fitted mesh method
the accuracy is guaranteed for a fixed number of mesh points, irrespective of the
magnitude of the perturbation parameter. To achieve this a class of non-equidistant
meshes, dense in layers, are available in the literature, see [1],[26],[28],[31]. The con-
struction of these meshes depends strongly on priori information of the solution and
its derivatives. A wide class of parameter-robust numerical methods based on this
approach are discussed in [5],[6],[13],[23], and the references therein.

The methods based on fitted meshes, particularly the Shishkin meshes [28] gained
popularity because of their simplicity and applicability to more complicated prob-
lems in higher dimensions; see [5],[6],[13],[23]. Further, we refer readers to the
review article [9] for the progress on the Shishkin meshes in the area of singular
perturbation. The Shishkin mesh is preceded by the Bakhvalov mesh [1], which
is somewhat more complicated. Shishkin meshes are piecewise equidistant and
typically consist of two(three) equidistant parts on the basis of one(two) transi-
tion points: one(two) dense part(s) in the layer(s) and one coarse part outside the
layer(s). Bakhvalov meshes are generated by a suitable mesh generating function
which appropriately redistributes equidistantly spaced points, so that the mesh is
dense in the layer(s) region(s). Combinations of these two meshes are developed
in [13] and [27]. Bakhvalov meshes are generalized and simplified in [31] and some
improvements of Shishkin meshes are considered in [32],[33]. One of the important
modifications of Shishkin mesh called generalized Shishkin mesh is developed by
Vulanović and used in establishing the high order parameter-robust convergence of
numerical methods, see [32].

Although an extensive amount of literature is available for the numerical so-
lution of (uncoupled) singularly perturbed reaction-diffusion problems, while only
few papers deal with the numerical analysis of coupled system of singularly per-
turbed reaction-diffusion problems. Systems of singularly perturbed problems have
been studied as back as Bakhvalov [1]. Shishkin [29] examined a system of two
parabolic partial differential equations analogous to (1), posed on an infinite strip.
For the system of two coupled reaction-diffusion equations, some parameter-robust
numerical methods are designed and analyzed in [3],[4],[14],[15],[19],[22],[23].

It is natural to think about the parameter-robust numerical methods for systems
of more than two singularly perturbed reaction-diffusion equations. Kellogg et al.
[10] considered a system of singularly perturbed reaction-diffusion problems in t-
wo dimensions with the same perturbation parameter for all equations and proved
that the standard finite difference method on piecewise-uniform Shishkin mesh is
second-order accurate (up to logarithmic factor). Some parameter-robust numer-
ical methods for solving problem (1) are analyzed in [7],[16], and the references
therein. But in all the cases the order of convergence is atmost two. Nevertheless,
first time in [3] a HODIE technique is used to derive a third order uniformly conver-
gent numerical method for system of two reaction-diffusion equations. High order
numerical methods are very convenient from numerical point of view; the reason is
that these methods produce small errors with a low computational cost. The objec-
tive of the present paper is to construct an almost fourth order parameter-robust
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numerical method for a linear system of (M ≥ 2) coupled singularly perturbed
reaction-diffusion equations (1).

The paper is arranged as follows. In Section 2, a priori bounds on the solution
of (1) and its derivatives are given; and a high order decomposition of the exact
solution into its regular and layer parts is constructed. The generalized Shishkin
mesh is used to disccretize the domain Ω in Section 3. In Section 4, a high order
finite difference scheme which is a suitable combination of the fourth order compact
difference scheme and the standard central difference scheme is described on a
generalized Shishkin mesh. The error analysis is given and the method is proved
to have almost fourth order parameter-robust convergence, in the maximum norm
in Section 5. In Section 6, numerical experiments are presented to validate the
theoretical results. Finally the conclusions are included in Section 7.
Notations: In the remaining parts of the paper, C is a generic positive constant
independent of the perturbation parameter ε and the discretization parameter N .
Similarly, C = (C,C, ..., C)T is a vector of identical constants with the same inde-
pendencies. Define v ≤ w if vi ≤ wi, 1 ≤ i ≤ M and |v | = (|v1|, . . . , |vM |)T . We
consider the maximum norm and it is denoted by ||.||D, where D is a closed and
bounded set. For a real valued function v ∈ C(D) and for a vector valued function
v = (v1, . . . , vM )T ∈ C(D)M , we define

||v||D = max
x∈D

|v(x)| and ||v ||D = max{||v1||D, . . . , ||vM ||D}.

If D = Ω, we drop D from the notation. The analogous discrete maximum norm
on the mesh ΩN is denoted by ||.||ΩN

. For any function g ∈ C(Ω), gi is used for

g(xi); if g ∈ C(Ω)M then gi = g(xi) = (g1,i, . . . , gM,i)
T . L(N) denotes the value

of L with N intervals that solves (18) in Section 3. For simplicity, we use LN0
to

denote L(N0), where N0 is a positive integer. If N0 = N , we drop N as subscript
from the notation and write L for L(N).

2. Properties of the exact solution

2.1. Stability. Suppose the coupling matrix A satisfies (2). Under this assump-
tion it has been proved that the vector valued differential operator T is maximum
norm stable, see Linss [17]. The analysis is based on the following stability property
for the scalar differential equations.

Lemma 2.1. Consider the following scalar differential operator

Lv := −εv′′ + bv′ + av

with ε > 0, a, b ∈ C[0, 1] and a > 0 on [0, 1]. Then,

||v|| ≤ max

{∥∥∥∥
Lv

a

∥∥∥∥ , |v(0)|, |v(1)|
}
, for all v ∈ C2(0, 1) ∩ C[0, 1].

If the matrix

(4) Υ :=




1 −‖a12/a11‖ . . . −‖a1M/a11‖
−‖a21/a22‖ 1 . . . −‖a2M/a22‖

...
...

. . .
...

−‖aM1/aMM‖ −‖aM2/aMM‖ . . . 1




is inverse monotone, that is, all entries of Υ−1 are non-negative, then the following
stability result holds.
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Lemma 2.2. (cf. Linss [17]) Let u be the solution of (1) and that the matrix A

has strictly positive diagonal entries. Let Υ be inverse monotone. Then,

(5) ‖ui‖ ≤
M∑

k=1

(Υ−1)i k max

{∥∥∥∥
fk
akk

∥∥∥∥ , |pk|, |qk|
}
, for i = 1, . . . ,M.

Lemma 2.2 conveys that the vector valued differential operator T is maximum
norm stable although it does not in general satisfy the maximum principle. If
the coupling matrix A satisfies (3) then Υ is a strictly diagonally dominant matrix
with non-positive off-diagonal entries and the M-matrix criterion implies the inverse
monotonicity of Υ. Moreover, if f ∈ C4(Ω)M and A ∈ C4(Ω)M×M , the stability
of T along with the standard arguments from [11], ensures the existence of unique
solution u ∈ C6(Ω)M .

The assumption (3) ensures the stability of T. In addition, if (2) is also assumed,
then T satisfies the following maximum principle.

Lemma 2.3. (Maximum Principle) Assume that the coupling matrix A satisfies
the positivity conditions (2)-(3). If u(0) ≥ 0, u(1) ≥ 0 with Tu ≥ 0 on Ω, then
u ≥ 0 on Ω.

Proof. The proof follows in the same way as that of Theorem 1 given in [21]. �

An immediate consequence of this lemma is the following comparison principle.

Lemma 2.4. (Comparison Principle) Assume that the coupling matrix A satisfies
the positivity conditions (2)-(3). If v(0) ≥ |u(0)|, v(1) ≥ |u(1)| and Tv ≥ |Tu| on
Ω, then v ≥ |u| for all x ∈ Ω.

2.2. A priori bounds on the solution. The analysis in this subsection involves
the frequent use of the following auxiliary result, see [1].

Lemma 2.5. Let I := [a, a+µ] be an arbitrary interval with µ > 0. Let g ∈ C2(I).
Then

||g′||I ≤ 2

µ
||g||I +

µ

2
||g′′||I .

Lemma 2.6. The solution u of (1) satisfies the bounds

(6) ||u(m)|| ≤ Cε−m/2, for m = 0, . . . , 6.

Proof. The bound on u , follows from the stability result (Lemma 2.2). The bound
on the second derivative of u follows from (1) and the bound on u . Applying
Lemma 2.5 with µ = ε1/2 and g = u , we obtain (6), for m = 1. The bounds on the
higher derivatives of u can be obtained by differentiating Tu = f . �

We now derive sharper bounds on the derivatives of u . Let ξ be an arbitrary
number satisfying

M∑

j=1,j 6=i

∥∥∥∥
aij
aii

∥∥∥∥ < ξ < 1, for i = 1, . . . ,M.

Because of (3b) such a number exists. Define α = α(ξ) > 0 by

(7) α := (1− ξ) min
i=1,...,M

min
x∈[0,1]

aii(x).
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Theorem 2.7. Let u be the solution of (1). Let α∗ ∈ (0, α) be arbitrary but fixed.
Then there exists a constant C, independent of ε, such that

(8) |u(m)(x)| ≤ C(1 + ε−m/2(e−x
√

α∗/ε + e−(1−x)
√

α∗/ε))

for all x ∈ Ω and m = 0, . . . , 4.

Proof. The proof is by induction. Fix α∗ ∈ (0, α) and set B̃m(x) = 1+ε−m/2(e−x
√

α∗/ε+

e−(1−x)
√

α∗/ε). The bound for m = 0 follows from Lemma 2.6. For m = 1, . . . , 4,
differentiating (1) by m-times we get

−Eu(m+2) +Au (m) = f (m) −
m−1∑

l=0

(
m
l

)
A(m−l)u(l) := Ψm

where Ψm = (Ψm,1, . . . ,Ψm,M )T . Assume that (8) holds for all 0 ≤ j ≤ m − 1,
that is,

|u(j)(x)| ≤ C(1 + ε−j/2(e−x
√

α∗/ε + e−(1−x)
√

α∗/ε)), 0 ≤ j ≤ m− 1.

From this assumption it is clear that |Ψm,k(x)| ≤ CB̃m−1(x), 1 ≤ k ≤ M . Define

ũ by u(m)(x) = B̃m(x)ũ(x). The kth-component of ũ satisfies

Pk,ε :=





−εũ′′
k − 2ε

B̃′

m

B̃m
ũ′
k + (akk − ε

B̃′′

m

B̃m
)ũk = −

M∑

i=1,i6=k

akiũi +
Ψm,k

B̃m

,

ũk(0) = u
(m)
k (0)/B̃m(0), ũk(1) = u

(m)
k (1)/B̃m(1),

where |Ψm,k/B̃m| ≤ C.

Since |u(m)
k (0)| ≤ Cε−m/2 and |u(m)

k (1)| ≤ Cε−m/2, we have

|ũk(0)| ≤ C, |ũk(1)| ≤ C.

By the definition of α and from the inequality B̃′′
m(x) ≤ ε−1α∗B̃m(x), we have

akk − ε
B̃′′

m

B̃m

≥ akk − α∗ > 0 on Ω.

On applying Lemma 2.1 to Pk,ε, we obtain

(9) ‖ũk‖ −
M∑

i=1,i6=k

∥∥∥∥
aki

akk − α∗

∥∥∥∥ ‖ũi‖ ≤ C for k = 1, . . . ,M.

The choice of ξ and α∗ ∈ (0, α) implies

akk(x)− α∗ ≥ ξakk(x) for all x ∈ [0, 1], k = 1, . . . ,M.

Let x∗ ∈ Ω be such that

(10)

∥∥∥∥
aki

akk − α∗

∥∥∥∥ =
|aki(x∗)|

akk(x∗)− α∗
≤ |aki(x∗)|

ξakk(x∗)
≤ 1

ξ

∥∥∥∥
aki
akk

∥∥∥∥ .

Summing (10) for i = 1, . . . ,M, i 6= k, we get

(11)

M∑

i=1,i6=k

∥∥∥∥
aki

akk − α∗

∥∥∥∥ ≤
M∑

i=1,i6=k

1

ξ

∥∥∥∥
aki
akk

∥∥∥∥ < 1 for k = 1, . . . ,M.

Thus, the M-matrix criterion and (9),(11) give

‖ũ‖ ≤ C.
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Then, recall the definition of ũ , we obtain

|u(m)(x)| ≤ C(1 + ε−m/2(e−x
√

α∗/ε + e−(1−x)
√

α∗/ε)), for all x ∈ Ω.

This proves the lemma. �

Remarks: (i) If f ∈ C6(Ω)M and A ∈ C6(Ω)M×M , then the above result (8) can
be extend for m = 5, 6. Thus we obtain

(12) |u (m)(x)| ≤ C(1 + ε−m/2(e−x
√

α∗/ε + e−(1−x)
√

α∗/ε))

for all x ∈ Ω and m = 0, 1, . . . , 6.
(ii) Note that the bounds on the solution of (1) and its derivatives given in (8)

or (12) are obtained without constructing any decomposition of u .

2.3. Solution decomposition. For the analysis of the numerical method, it is
necessary to have precise knowledge about the behavior of the exact solution u

of (1) and its derivatives. Moreover, we require a special decomposition of the
exact solution into its regular and layer parts. Suppose, u = v + w , where v is a
regular part and w is a layer part. This splitting is often called a Shishkin type
decomposition; see [23]. We use the minimum regularity on the data A and f in
deriving this decomposition. This is motivated from Linss [18], where the minimum
regularity on the data is used to construct a high order decomposition of a solution
in the case of a scalar singularly perturbed reaction-diffusion problem.

Theorem 2.8. Let f ∈ C4(Ω)M , and let A ∈ C4(Ω)M×M satisfying assumptions
(2)-(3). Then (1) possesses unique solution u ∈ C6(Ω)M that can be decomposed
as

(13) u = v+w,

where the regular part v satisfies

(14) ||v(m)|| ≤ C(1 + ε2−m/2),

and the layer part w satisfies

(15) |w(m)
k (x)| ≤ Cε−m/2Bε(x),

for k=1,. . . ,M and m=0,. . . ,6, where Bε(x) = e−x
√

α/ε + e−(1−x)
√

α/ε.

Proof. Let Ω∗ := [−1, 2] be the extension of the domain Ω. The functions A and
f can be smoothly extended to functions A∗ ∈ C4(Ω∗)M×M and f ∗ ∈ C4(Ω∗)M

with A∗|[0,1] = A and f ∗|[0,1] = f , in such a way that (3) remain valid for the
extended functions (perhaps α be replaced by a smaller positive constant α∗ and
ξ be replaced by a slightly larger positive constant ξ∗ that is still smaller than 1).
Let T ∗ be the extended differential operator of T . Let v∗ be the solution of

T∗v∗ = f ∗, in (−1, 2), v∗(−1) = v∗(2) = 0 and set v∗|[0,1] = v .

The function v represents the regular part of the solution exhibiting no layers. An
affine transformation and (8) gives ||v (m)|| ≤ C for m = 0, . . . , 4. Using Tv = f ,

we immediately get ||v(6)k || ≤ Cε−1, k = 1, . . . ,M . Finally, on applying Lemma 2.5

for g = v
(4)
k with an interval I ⊆ [0, 1] of length µ = ε1/2, we get

||v(5)k || ≤ Cε−1/2, k = 1, . . . ,M.

This proves the bounds for the regular part v .



SINGULARLY PERTURBED REACTION-DIFFUSION SYSTEMS 609

To obtain the bounds on the derivative of the layer part w , we use the following
property of the boundary layer function Bε(x)

(16) max
x∈I

Bε(x) ≤ 2eδ
√

α/ε min
x∈I

Bε(x) for any interval I = [a, a+ δ] ⊆ [0, 1].

The layer part w = u − v is the solution of

Tw = 0, in (0, 1), w(0) = u(0)− v(0), w(1) = u(1)− v(1).

Under the assumptions (2) and (3) the operatorT satisfies the comparison principle
and its application to w yields (15) for m = 0. The bounds on the second derivative
of w follows from Tw = 0 and |wk(x)| ≤ CBε(x). In order to get the bound on
w ′, we apply Lemma 2.5 for g = wk with an interval I ⊆ [0, 1] of length µ = ε1/2

and use (16) with δ = ε. This gives

|w′
k(x)| ≤ Cε−1/2Bε(x), for x ∈ Ω, k = 1, . . . ,M.

Further, the bounds on the higher-order derivatives on w can be obtained by dif-
ferentiating Tw = 0. �

Remarks: (iii) The decomposition u = v + w described in Theorem 2.8 satisfies
Tu = f and Tw = 0; this decomposition is known as Shishkin decomposition.
These additional properties played a key role in the analysis of a number of finite
difference and finite element methods on Shishkin meshes and other layer adapted
meshes, see [5],[6],[23],[25].

(iv) Suppose x∗ = 4
√
ε/α∗ ln(1/

√
ε). For each k ∈ {1, . . . ,M} and x ∈ Ω, we set

vk(x) = uk(x) for x ∈ [x∗, 1 − x∗] and v extends to a smooth function defined on
[0, 1]. Further, for each k ∈ {1, . . . ,M} and x ∈ Ω, we define wk(x) = uk(x)−vk(x).
Then the result (12) and the choice of x∗ implies that (see [12])

||v (m)|| ≤ C(1 + ε2−m/2),

|w(m)
k (x)| ≤ Cε−m/2(e−x

√
α∗/ε + e−(1−x)

√
α∗/ε),

for k = 1, . . . ,M and m = 0, . . . , 6. Here u is decomposed into a sum of the regular
part v = (v1, . . . , vm)T and the layer part w = (w1, . . . , wm)T . This Shishkin type
decompisition u = v + w does not in general satisfy Tu = f and Tw = 0, see
[12].

3. The Mesh

In this section, we construct a generalized Shishkin mesh using a suitable mesh
generating function K as given in [32]. Let Ω = [0, 1] be the given interval. Let ΩN

be a partitioning of Ω defined by

ΩN := 0 = x0 < x1 < x2 < . . . < xN−1 < xN = 1,

with mesh spacing hi = xi − xi−1, i = 1, 2, . . . , N . For simplicity, we assume that
N ≥ 4 is an even integer and that xN−i = 1 − xi, i = 0, 1, 2, ..., N. It then suffices
to describe the mesh on the interval [0, 1/2].

Define the transition point

τ = min{ q, m
√
εL },

where L = L(N) is the value of L with N intervals that solves (18), m ≥ a/
√
α

with a is a positive constant and α is defined by (7). Assume that qN is an
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integer. Divide the interval [0, τ ] into qN subintervals and [τ, 1/2] into N/2 − qN
subintervals. The Shishkin type mesh S(L) is defined by

(17) hi =





h =
τ

Nq
, for i = 1, . . . , qN ;

H =
1− 2τ

(1− 2q)N
, for i = (qN + 1), (qN + 2), . . . , N/2,

where h and H are respectively the fine and the coarse mesh widths, q ∈ (0, 1/2).
The standard Shishkin mesh uses L = lnN in defining τ and it is denoted by
S(lnN). Now S(lnN) is used to discretize the domain Ω and the Shishkin discter-

ized domain Ω
S

N is given by

Ω
S

N := 0 = x0 < x1 < x2 < . . . < xN−1 < xN = 1,

where hi = xi − xi−1, i = 1, 2, . . . , N using (17).
The use of L < lnN enables meshes with a greater density in the layers, which

improves accuracy of the numerical results. This is of practical importance only
since theoretically any L behaves like lnN as N → ∞, see [32].

Now we define the generalized Shishkin mesh, denoted by S̃(L), that changes
smoothly in the transition points x = τ from the fine part to the coarse part, where
L = L(N) satisfying ln(lnN) < L ≤ lnN and

(18) e−L ≤ L

N
.

Such a generalized Shishkin mesh S̃(L) can be defined by xi = K(i/N), i =
0, 1, . . . , N/2, where K ∈ C2[0, 1/2] is a mesh generating function

(19) K(t) =





τ

q
t, for t ∈ [0, q];

p(t− q)3 +
τ

q
(t− q) + τ, for t ∈ [q, 1/2].

The coefficient p is determined from K(1/2) = 1/2.

The above defined generalized Shishkin mesh S̃(L) is used to discretize the do-

main Ω and the generalized Shishkin discterized domain Ω
S̃

N is given by

Ω
S̃

N := 0 = x0 < . . . < xN/4 = τ < . . . < xN/2 = 1/2 < . . . < x3N/4 = 1−τ < . . . < xN = 1,

where we choose q = 1/4, and a ≥ 4 (as taken in Section 5). Assuming hmax =
max∀i hi, where hi = xi − xi−1, i = 1, 2, . . . , N ; it can be easily verified that
hmax = hN/2 = hN/2+1.

Observe that the fine parts of S(L) and S̃(L) are identical, but the coarse part of

S̃(L) is a smooth continuation of the fine mesh and is no longer equidistant. In the

case of generalized Shishkin mesh S̃(L), the mesh width hi, for i = {N/4, N/4 +
1, . . . , 3N/4}, satisfies the following.

(A) For some ηi ∈ (i/N, (i+ 1)/N),

(20a) hi+1 = K((i + 1)/N)−K(i/N) = N−1
K

′(ηi) ≤ CN−1.

(B) For some φi ∈ ((i − 1)/N, (i+ 1)/N),

|hi+1 − hi| = |K((i + 1)/N)− 2K(i/N) +K((i − 1)/N)|
(20b) = N−2|K′′(φi)| ≤ CN−2.
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4. The Discretization

In this section, we introduce a hybrid scheme to discretize a linear system of
(M ≥ 2) coupled singulary perturbed reaction-diffusion equations (1) on the gen-

eralized Shishkin discretized domain Ω
S̃

N . The hybrid scheme is a combination of
the fourth order compact difference scheme (where the coefficients q′is and r′is of
the scheme are determined so that the scheme is exact for polynomials up to degree

four and satisfy the normalization condition qk,−i +qk,ci +qk,+i = 1, i = 1, . . . , N−1,
k = 1, . . . ,M ) and the central difference scheme, is given by

(21a) [TNU ]i = f i

with

(21b) U 0 = u(0), UN = u(1),

where

[TN
U ]i :=













[TN

1 U ]i
[TN

2 U ]i
.

.

[TN

MU ]i













=













[R(U1)]i + [Q(a12U2)]i + · · ·+ [Q(a1MUM )]i
[R(U2)]i + [Q(a21U1)]i + · · ·+ [Q(a2MUM )]i

.

.

[R(UM )]i + [Q(aM1U1)]i + · · ·+ [Q(aMM−1UM−1)]i













,

f i :=




[f1]i
[f2]i
.
.

[fM ]i




=




[Q(f1)]i
[Q(f2)]i

.

.
[Q(fM )]i




,

and

[R(Vk)]i = rk,−i Vk,i−1+rk,ci Vk,i+rk,+i Vk,i+1, [Q(Vk)]i = qk,−i Vk,i−1+qk,ci Vk,i+qk,+i Vk,i+1.

The coefficients rk,∗i , i = 1, . . .N − 1, k = 1, . . . ,M, ∗ = −, c,+ are given by

(22a)





rk,−i = −2ε
hi(hi+hi+1)

+ qk,−i akk,i−1;

rk,ci = 2ε
hihi+1

+ qk,ci akk,i;

rk,+i = −2ε
hi+1(hi+hi+1)

+ qk,+i akk,i+1.

The coefficients qk,∗i , i = 1, . . . , N − 1, k = 1, . . . ,M, ∗ = −, c,+ are defined in two
different ways.

(i) For the mesh points located in (0, τ) ∪ (1 − τ, 1); the coefficients qk,∗i , i =
{1, . . . , N/4− 1} ∪ {3N/4 + 1, . . . , N − 1}, ∗ = −, c,+, are given by

(22b)





qk,−i = 1
6 − h2

i+1

6hi(hi+hi+1)
;

qk,ci =
h2
i+h2

i+1+3hihi+1

6hihi+1
;

qk,+i = 1
6 − h2

i

6hi+1(hi+hi+1)
.

(ii) For the mesh points located in [τ, 1 − τ ], depending on the relation between

hmax and ε, the coefficients qk,∗i , where ∗ = −, c,+, are defined in two different cases.
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In the first case, when γh2
max||akk||∞ ≤ ε, k = 1, . . . ,M , where γ is a positive

constant independent of N and ε, the coefficients qk,∗i , i = N/4, . . . , 3N/4, k =
1, . . . ,M, ∗ = −, c,+, are defined again by (22b).

While in the second case, when γh2
max||akk||∞ > ε, k = 1, . . . ,M , where γ is a

positive constant independent ofN and ε, the coefficients qk,∗i , i = N/4, . . . , 3N/4, k =
1, . . . ,M, ∗ = −, c,+, are given by

(22c) qk,−i = 0, qk,ci = 1, qk,+i = 0.

The above definition of the coefficients qki ’s and rki ’s shows that the present
scheme (21) is defined by the fourth order compact difference scheme (or new
HODIE scheme as derived in [2] for scalar singularly perturbed reaction diffusion
equations) within the boundary layer region (0, τ)∪ (1− τ, 1). While in the regular
region [τ, 1 − τ ], the present scheme (21) is defined by the fourth order compact
difference scheme when γh2

max||akk||∞ ≤ ε and is defined by the central difference
scheme when γh2

max||akk||∞ > ε. This means high-order approximation is used
only when the local mesh width is small enough to give non-positive off-diagonal
entries while at all other mesh points the central difference scheme is used. This
combination leads to the following lemma.

Lemma 4.1. Let γ = 1/6 and N0 be the smallest positive integer such that

4m2||akk||∞/3 < N2
0 /L

2
N0

,

where LN0
= L(N0) as defined in Section 2. Then, for any N ≥ N0, the discrete

operator TN defined in (21) is of positive type.
Proof. First, for xi ∈ (0, τ)∪(1−τ, 1), the fourth order compact differnce scheme is
considered. The condition 4m2||akk||∞/3 < N2

0 /L
2
N0

for any N ≥ N0, with the the

coefficients qk,∗i , ∗ = −, c,+, k = 1, . . . ,M , defined by (22b), and the assumptions
(2)-(3) concludes the lemma.

Secondly, for xi ∈ [τ, 1−τ ] when γh2
max||akk||∞ > ε, the central difference scheme

is considered. Hence the proof is trivial.
While in the opposite case, when γh2

max||akk||∞ ≤ ε, the fourth order compact

difference scheme is considered in [τ, 1 − τ ]. On Ω
S̃

N , (h2
i − h2

i+1 + hihi+1) ≥ 0, for
N/4 ≤ i ≤ N/2. The assertion is trivially true for i = N/2. For N/4 ≤ i ≤ N/2−1,

(h2
i + hihi+1) > h2

i+1

follows if

hi+1 6
√
2hi,

if

K
′((i + 1)/N) 6

√
2K′((i− 1)/N),

that is, if
w̃(z) = 3pz2 − 28.971pz − 28.971p+ 4τN2 > 0,

where z = i − 1 −N/4 > −1 and p is determined by K(1/2) = 1/2, see Section 3.
It is easy to verify that w̃ is non-negative if τN2 > 24.728p. Since γh2

max||akk|| 6 ε
implies τN2 > 24.728p, it follows that w̃(z) > 0 for all z.

Similarly (h2
i+1 − h2

i + hihi+1) ≥ 0 for N/2 ≤ i ≤ 3N/4. Thus the condition

γh2
max||akk||∞ ≤ ε with the the coefficients qk,∗i , ∗ = −, c,+, k = 1, . . . ,M , defined

by (22b), and the assumptions (2)-(3) concludes the lemma. �

Under the assumptions of the above lemma, the discretized operator TN is of
positive type and it satisfies the following discrete comparison principle
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Lemma 4.2. (Discrete Comparison Principle) Let V and W be two mesh functions

and satisfy V0 ≥ W0, VN ≥ WN and [TNV]i ≥ [TNW]i, for i = 1, . . . , N − 1,
then Vi ≥ Wi for i = 0, . . . , N .

An immediate consequence of the discrete comparison principle is the following
stability estimate.

Lemma 4.3. (Stability Estimate) Let V be any mesh function such that V0 = 0

and VN = 0, then

||V||
Ω

S̃
N

≤ C||TNV||
Ω

S̃
N

,

where C is independent of N and ε.

5. Error Analysis

In this section, high order parameter-robust convergence of the proposed scheme

(21) on the generalized Shishkin discretized domain Ω
S̃

N is established. First, we
investigate the truncation error estimate. Let U = (U1, . . . , UM )T , a vector mesh

function on Ω
S̃

N , be the solution to the discrete problem (21). Recall the decom-
position (13) of the continuous problem (1). We begin the analysis by defining an
analogous decomposition of the discrete solution as U = V +W , where V is the
solution of

[TNV ]i = f i, i = 1, . . . , N − 1, V 0 = v(0), VN = v(1),

and W is the solution of

[TNW ]i = 0, i = 1, . . . , N − 1, W 0 = w(0), WN = w(1).

The error u −U satisfies

||u −U ||
Ω

S̃
N

≤ ||v −V ||
Ω

S̃
N

+ ||w −W ||
Ω

S̃
N

.

To obtain the bound on ||u −U ||
Ω

S̃
N

, the regular and the layer parts of the error

can be estimated separately.

Note that if τ = 1/4, then Ω
S̃

N is uniform, N−1 is very small respect to ε and
therefore a classical analysis could be made to prove the convergence of the present
scheme. So, in the analysis we only consider the case τ = m

√
εL.

Let [TN (u −U )]i be the truncation error denoted by [Γ(u)]i. The truncation

error estimate on Ω
S̃

N is discussed in the following cases.
Case I: When xi ∈ (0, τ)∪(1−τ, 1), we have hi = hi+1 = 4m

√
εN−1L. By Taylor’s

expansion we obtain

| [Γk(u)]i | ≤ Cεh4
i ||u

(6)
k ||[xi−1,xi+1], k = 1, . . . ,M.

Using hi = 4m
√
εN−1L and (6), it follows that

(23) |[Γk(u)]i| ≤ C(L/N)4, k = 1, . . . ,M.

Case II: When xi ∈ [τ, 1− τ ], according to the decomposition of u = v + w , we
split the truncation error into two parts as

(24) | [Γk(u)]i | ≤ | [Γk(v)]i |+ | [Γk(w )]i|, k = 1, . . . ,M.

Here the present scheme (21) is defined by the fourth order compact difference
scheme when γh2

max||akk||∞ ≤ ε, k = 1, . . . ,M, and is defined by the central
scheme when γh2

max||akk||∞ > ε, k = 1, . . . ,M . The error analysis for both the
cases is given as follows.
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(i) For the case γh2
max||akk||∞ ≤ ε, k = 1, . . . ,M , suppose g ∈ C6[0, 1]M , then

by Taylor’s expansion we obtain

(25) |[Γk(g)]i| ≤ Cε(Qk,i +Rk,i), k = 1, . . . ,M,

where
Qk,i = |hi+1 − hi|(hi+1 + hi)

2‖g(5)k ‖[xi−1,xi+1],

Rk,i = (h4
i + h4

i+1)‖g
(6)
k ‖[xi−1,xi+1].

Using (14),(20) in (25), we obtain the bound on the truncation error with respect
to the regular part v

(26) | [Γk(v)]i | ≤ CN−4, k = 1, . . . ,M.

Again, using (15),(20) in (25), we obtain the bound on the truncation error with
respect to the boundary layer part w

(27) | [Γk(w)]i | ≤ Cε−2N−4||Bε||[xi−1,xi+1], k = 1, . . . ,M.

For xi ∈ [τ, 1− τ ], we have

||Bε||[xi−1,xi+1] ≤ e(−xN/4−1

√
α/ε) + e(−(1−x3N/4+1)

√
α/ε).

To obtain the bound on the term ||Bε||[xi−1,xi+1], we split the interval [τ, 1 − τ ]

into two subintervals [τ, 1
2 ] and [ 12 , 1− τ ], and then we look at each case separately.

When xi ∈ [τ, 1
2 ]

||Bε||[xi−1,xi+1] ≤ 2e(−xN/4−1

√
β/ε) = 2e(−τ

√
β/ε)e(hN/4

√
β/ε) ≤ Ce−aL,

using τ = m
√
εL and m ≥ a/

√
β.

Similarly, when xi ∈ [ 12 , 1− τ ]

||Bε||[xi−1,xi+1] ≤ 2e(−(1−x3N/4+1)
√

β/ε) ≤ Ce−aL, using τ = m
√
εL, m ≥ a/

√
β.

With e−L ≤ L/N , choose a ≥ 4; this leads to

(28) ||Bε||[xi−1,xi+1] ≤ C(L/N)4.

Using (28) in (27), we obtain

(29) | [Γk(w)]i | ≤ C(L/N)4, k = 1, . . . ,M.

On combining (26),(29) with (24), we obtain

(30) | [Γk(u)]i | ≤ C(L/N)4, for γh2
max||akk||∞ ≤ ε, k = 1, . . . ,M.

(ii) When γh2
max||akk||∞ > ε, k = 1, . . . ,M, the discrete scheme (21) is defined

by central scheme (see (22c)). In that case suppose g ∈ C4[0, 1]M then by Taylor’s
expansion we obtain

(31) |[Γk(g)]i| ≤ Cε(Yk,i + Zk,i), k = 1, . . . ,M.

where
Yk,i = |hi+1 − hi|||g(3)k ||[xi,1−xi], Zk,i = h2

i+1||g
(4)
k ||[xi,1−xi].

Using (14),(20) in (31), we obtain the bound on the truncation error with respect
to the regular part v

| [Γk(v)]i | ≤ CεN−2.

Under the condition γh2
max||akk||∞ > ε, we obtain

(32) | [Γk(v)]i | ≤ CN−4, k = 1, . . . ,M.
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To estimate the error with respect to the layer part w. Suppose g ∈ C2[0, 1]M , and

| [Γk(g)]i | ≤ Cε‖g′′k‖[xi−1,xi+1].

Using (15) and (28), we obtain

(33) | [Γk(w)]i | ≤ C(L/N)4.

On combining (32),(33) with (24), we get

(34) | [Γk(u)]i | ≤ C(L/N)4, for γh2
max||akk||∞ > ε.

Combining Cases I and II, we obtain the truncation error estimate for the dis-

crete scheme (21) on Ω
S̃

N and it is given by

(35) | [Γ(u)]i | ≤ C(L/N)4.

The truncation error estimate (35) and the uniform stability result given in
Lemma 4.3 conclude the main result of this section.

Theorem 5.1. (Parameter-Robust Convergence) Let u ∈ C6(Ω)M be the exact
solution of (1). Let U be the approximate solution to discrete problem (21) on the

generalized Shishkin discretized domain Ω
S̃

N . Under the assumptions of Lemma 4.1,
there exist a positive constant C such that

||u −U||
Ω

S̃
N

≤ C(L/N)4,

where C is independent of N and ε.

For the proof of Theorem 5.1, the choice of a(≥ 4) in the definition of the transi-
tion parameter of generalized Shishkin mesh is crucial. In practice we observe that
if we take a > 4, the uniform errors are larger but the orders of uniform convergence
is preserved. In mesh construction the small value of a shows more number of nodal
points within the boundary layer region(s). Nevertheless, if we take a < 4, then we
cannot achieve the same order of uniform convergence. So in the present scheme
we choose a = 4.

6. Numerical Results

In this section numerical results are presented which confirm the theoretical error
estimates established in the previous section. We first construct the generalized

Shishkin discretized domain Ω
S̃

N by considering the optimal value of L instead of

lnN in S̃(L) from (18) based on the fact that L < lnN . This provides higher
density of the mesh points in the layers. Such an optimal value of L is chosen to
be L∗ = L∗(N) which satisfies

e−L∗

= L∗/N.

The discrete scheme (21) is then implemented on Ω
S̃

N to solve three test problem-
s. The numerical results of the present scheme are compared with hybrid finite
difference scheme of HODIE type [3] and central difference (CD) scheme [15].
Example 1. Consider the following system of (two) coupled reaction-diffusion
problem (see [3]) { −εu′′

1 + u1 − 0.5u2 = f1,

−εu′′
2 − 2u1 + 4u2 = f2,
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the right hand side and the boundary conditions are such that the exact solution
of the problem u = (u1, u2)

T is given by

u1 = g1(x)/k1+ g2(x)/k2 −x+x2+cos2(πx), u2 = g1(x)/k1 − g2(x)/k2+sin(πx),

where

g1(x) = exp
(
− x/

√
ε
)
+ exp

(
− (1 − x)/

√
ε
)
,

g2(x) = exp
(
− 2x/

√
ε
)
+ exp

(
− 2(1− x)/

√
ε
)
,

with

k1 = 1 + exp
(
− 1/

√
ε
)
, k2 = 1 + exp

(
− 2/

√
ε
)
.

Example 2. Consider the following system of (two) coupled reaction-diffusion
problem (see [22])
{ −εu′′

1 + 2(x+ 1)2u1 − (1 + x3)u2 = 2 exp(x), u1(0) = u1(1) = 0;

−εu′′
2 − 2 cos(πx/4)u1 + (1 +

√
2) exp(1− x)u2 = 10x+ 1, u2(0) = u2(1) = 0.

Example 3. Consider the following system of (three) coupled reaction-diffusion
problem





−εu′′
1 + 3u1 − (1− x)u2 − (1− x)u3 = exp(x), u1(0) = u1(1) = 0;

−εu′′
2 − 2u1 + (4 + x)u2 − u3 = cos(x), u2(0) = u2(1) = 0;

−εu′′
3 − 2u1 − 3u2 + (6 + x)u3 = 1 + x2, u3(0) = u3(1) = 0.

Examples 1, 2, and 3 satisfy all the assumptions (2)-(3) as given in Section 1, for

any α ∈ (0, 1). Therefore we assume α = 0.99 < 1 in the construction of S̃(L).

Let UN be the approximate solution to (21) on Ω
S̃

N = {xi}Ni=0 with N intervals.
As the exact solution u is known for Example 1, for fixed value of N and ε, the
maximum pointwise errors are calculated by

EN
ε = max

0≤i≤N
|UN (xi)− u(xi)|, EN

ε = max
k=1,...,M

EN
ε,k.

The parameter-robust error is computed by

EN = max
ε

EN
ε .

When the exact solution u is not known as in the case of Examples 2 and 3, we
use a variant of the double mesh principle (see [5] for a justification of the method)

to estimate the error. For this, we compute not only the solution UN , but also

another approximate solution Ũ
2N

to the problems on the domain Ω̃
S̃

N = {x̂i}2Ni=0

with 2N intervals that contain the mesh points of the original domain Ω
S̃

N and their
midpoints, i.e., the mesh points are defined by

x̂2i = xi, i = 0, . . . , N, x̂2i+1 = (xi + xi+1)/2, i = 0, . . . , N − 1.

Then, for fixed values of N and ε, the maximum pointwise errors are calculated by

EN
ε = max

0≤i≤N
|UN (xi)− Ũ

2N
(x̂2i)|, EN

ε = max
k=1,...,M

EN
ε,k.

The parameter-robust error is computed by

EN = max
ε

EN
ε .
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From these estimates for the maximum errors we obtain the corresponding classical
convergence rate in standard way, for each fixed ε, by

ρNε =
ln(EN

ε /E2N
ε )

ln(2)
,

and the parameter-robust convergence rate ρN by

ρN =
ln(EN/E2N )

ln(2)
.

Table 1. Maximum errors and numerical rate of convergence of the
present scheme to solve the Example 1.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−4 EN
ε 5.43e-07 3.41e-08 2.15e-09 1.34e-10 8.37e-12

ρNε 3.99 3.99 4.00 4.00

2−8 EN
ε 8.82e-05 5.55e-06 3.47e-07 2.16e-08 1.47e-09

ρNε 3.99 4.00 4.00 3.88

2−12 EN
ε 7.20e-03 8.81e-04 8.82e-05 5.55e-06 3.47e-07

ρNε 3.03 3.32 3.99 4.00

2−16 EN
ε 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06

ρNε 3.03 3.12 3.24 3.34

2−20 EN
ε 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06

ρNε 3.03 3.12 3.24 3.34

2−24 EN
ε 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06

ρNε 3.03 3.12 3.24 3.34

2−28 EN
ε 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06

ρNε 3.03 3.12 3.24 3.34

2−32 EN
ε 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06

ρNε 3.03 3.12 3.24 3.34
EN 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06
ρN 3.03 3.12 3.24 3.34

Table 2. Comparison of the maximum errors of the present scheme
with the hybrid HODIE scheme [3] and central difference(CD) scheme
[15] to solve the Example 1 for ε = 2−24.

N = 64 N = 128 N = 256 N = 512 N = 1024

Present scheme 7.20e-03 8.81e-04 1.01e-04 1.07e-05 1.06e-06
HODIE scheme [3] 2.20e-02 2.95e-03 3.29e-04 3.33e-05 3.19e-06
CD scheme [15] 3.10e-02 1.14e-02 3.83e-03 1.22e-03 3.77e-04

The present scheme (21) on the standard Shishkin mesh S(lnN) can be viewed
as an extension of the new HODIE scheme given in [2] to the system of (M ≥ 2)
coupled reaction-diffusion problem (1). The authors in [2] proved that the scheme is
third order uniformly convergent for scalar singularly perturbed reaction-diffusion
problems. But in general this extension of new HODIE scheme on standard Shishkin
mesh is not possible in the case of system of coupled reaction diffusion problem (1).
It can be seen that the coefficients (q’s) given by (22b) are not always positive
at the transition points, due to the fact that the standard Shishkin mesh is very
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Table 3. Maximum errors and numerical rate of convergence of the
present scheme to solve the Example 2.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−4 EN
ε 1.57e-08 9.81e-10 6.07e-11 3.92e-12 2.45e-13

ρNε 4.00 4.00 3.95 4.00

2−8 EN
ε 5.62e-05 3.64e-06 2.29e-07 1.43e-08 8.95e-10

ρNε 3.95 3.99 4.00 4.00

2−12 EN
ε 4.55e-03 5.73e-04 5.55e-05 3.57e-06 2.24e-07

ρNε 2.98 3.37 3.96 3.99

2−16 EN
ε 4.70e-03 5.72e-04 6.39e-05 6.86e-06 6.86e-07

ρNε 3.04 3.16 3.22 3.32

2−20 EN
ε 4.74e-03 5.74e-04 6.45e-05 6.85e-06 6.85e-07

ρNε 3.05 3.16 3.24 3.32

2−24 EN
ε 4.75e-03 5.75e-04 6.46e-05 6.85e-06 6.85e-07

ρNε 3.05 3.16 3.24 3.32

2−28 EN
ε 4.75e-03 5.75e-04 6.46e-05 6.85e-06 6.85e-07

ρNε 3.05 3.16 3.24 3.32

2−32 EN
ε 4.75e-03 5.75e-04 6.46e-05 6.85e-06 6.85e-07

ρNε 3.05 3.16 3.24 3.32
EN 4.75e-03 5.75e-04 6.46e-05 6.85e-06 6.85e-07
ρN 3.05 3.15 3.24 3.32

Table 4. Comparison of the maximum errors of the present scheme
with the hybrid HODIE scheme [3] and central difference(CD) scheme
[15] to solve the Example 2 for ε = 2−24.

N = 64 N = 128 N = 256 N = 512 N = 1024

Present scheme 4.75e-03 5.75e-04 6.46e-05 6.85e-06 6.85e-07
HODIE scheme [3] 1.54e-02 1.86e-03 2.07e-04 2.13e-05 2.05e-06
CD scheme [15] 3.12e-02 1.14e-02 3.84e-03 1.22e-03 3.78e-04

anisotropic in nature. This shows that the operator in (21) is not a positive type on
a standard Shishkin mesh. At the moment, when N−1 <

√
ε it is hard to find a high

order difference scheme of positive type on the standard Shishkin mesh for system
of coupled reaction-diffusion problems. While in [3] the authors extended the idea
of HODIE technique to system of coupled reaction-diffusion problems by choosing
a particular value of coefficients (q’s) in the scheme at the transition points of
Shishkin mesh. But this results in a combination of three schemes and gives third
order uniformly convergent result. In order to increase the order of convergence
more than three and to maintain the positivity of the present discrete operator in

(21), we consider the scheme (21) on the generalized Shishkin mesh S̃(L). Lemma
4.1 shows that the discrete operator in (21) on the generalized Shishkin mesh is of
positive type and the analysis in Section 5 shows that the scheme (21) is almost
fourth order uniformly convergent with respect to perturbation parameters on a
generalized Shishkin mesh.

For different values of N and ε, Tables 1, 3, and 5 represent the maximum errors

EN
ε and the classical rate of convergence ρNε of the present scheme (21) on Ω

S̃

N

to solve the Examples 1, 2 and 3, respectively. The last two rows in each of the
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Table 5. Maximum errors and numerical rate of convergence of the
present scheme to solve the Example 3.

ε N = 64 N = 128 N = 256 N = 512 N = 1024

2−4 EN
ε 1.11e-07 6.96e-09 4.35e-10 2.62e-11 1.57e-12

ρNε 4.00 4.00 4.05 4.06

2−8 EN
ε 2.37e-05 1.50e-06 9.42e-08 5.89e-09 3.69e-10

ρNε 3.98 3.99 4.00 4.00

2−12 EN
ε 1.85e-03 2.30e-04 2.28e-05 1.44e-06 9.05e-08

ρNε 3.01 3.33 3.98 3.99

2−16 EN
ε 1.83e-03 2.28e-04 2.62e-05 2.77e-06 2.75e-07

ρNε 3.00 3.12 3.24 3.33

2−20 EN
ε 1.82e-03 2.27e-04 2.61e-05 2.76e-06 2.75e-07

ρNε 3.00 3.12 3.24 3.33

2−24 EN
ε 1.82e-03 2.27e-04 2.61e-05 2.76e-06 2.75e-07

ρNε 3.00 3.12 3.24 3.33

2−28 EN
ε 1.82e-03 2.27e-04 2.61e-05 2.76e-06 2.75e-07

ρNε 3.00 3.12 3.24 3.33

2−32 EN
ε 1.82e-03 2.27e-04 2.61e-05 2.76e-06 2.75e-07

ρNε 3.00 3.12 3.24 3.33
EN 1.82e-03 2.27e-04 2.61e-05 2.76e-06 2.75e-07
ρN 3.00 3.12 3.24 3.33

Table 6. Comparison of the maximum errors of the present scheme
with the hybrid HODIE scheme [3] and central difference(CD) scheme
[15] to solve the Example 3 for ε = 2−24.

N = 64 N = 128 N = 256 N = 512 N = 1024

Present scheme 1.82E-03 2.27E-04 2.61E-05 2.76E-06 2.75E-07
HODIE scheme [3] 5.20E-03 7.78E-04 8.35E-05 8.59E-06 8.20E-07
CD scheme [15] 7.76e-03 2.81e-03 9.34e-04 2.99e-04 9.29e-05

tables represent the parameter-robust errors EN and parameter-robust convergence
rate ρN . Numerical results reported in Tables 1, 3 and 5 clearly indicate that
the present scheme is almost fourth order uniformly convergent on the generalized
Shishkin mesh, and this supports the theoretical result proved in Section 5. The
small reduction in parameter-robust convergence rate, that is, slightly less than
4, is because of the fact that L presents in the error estimate. We also compare
the maximum errors of the present scheme (21) on the generalized Shishkin mesh
with two earlier reference methods of hybrid HODIE scheme on Shishkin mesh [3]
and central difference (CD) scheme on Shishkin mesh [15]. Numerical results are
reported in Tables 2, 4, and 6 for the test Examples 1,2, and 3, respectively. It can
be seen from these tables that the present scheme is more accurate than earlier
reference methods of hybrid HODIE scheme [3] and CD scheme [15]. It can be
noted that the numerical results of the hybrid HODIE scheme [3] are comparable
with the present scheme. A reason for this is that both the schemes are the same
in the layer regions, but considered on different types of meshes. This gives us a
theoretical benefit to prove an almost fourth order parameter-robust convergence
of present scheme (21) on a generalized Shishkin mesh while in [3] a hybrid HODIE
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scheme is considered on a general Shishkin mesh and a third order parameter-robust
convergence is proved.

7. Conclusions

We presented a high order parameter-robust finite difference method for a linear
system of (M ≥ 2) coupled singularly perturbed reaction-diffusion problems with
the same singular perturbation parameter in all the equations. A high order decom-
position of the exact solution into its regular and layer parts is constructed. The
problem is discretized using a suitable combination of the fourth order compact dif-
ference scheme and the central difference scheme on the generalized Shishkin mesh

S̃(L). The essential idea in this method is to use the generalized Shishkin mesh

S̃(L) in order to obtain a high order parameter-robust convergence. Observe that
the fine parts of the standard Shishkin mesh S(L) and the generalized Shishkin

mesh S̃(L) are identical, but the coarse part of S̃(L) is a smooth continuation of
the fine mesh and is no longer equidistant. Using this fact the present scheme is
proved to be almost fourth-order uniformly convergent with respect to perturbation
parameter. The numerical results validate the theoretical results.
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