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ON LINEAR FINITE ELEMENTS FOR SIMULTANEOUSLY

RECOVERING SOURCE LOCATION AND INTENSITY

XIAOMAO DENG, YUBO ZHAO AND JUN ZOU

Abstract. Linear elements are least expensive finite elements for simultaneously recovering the
source location and intensity in a general convection-diffusion process. However, the derivatives
of the least-squares objective functional with Tikhonov regularizations are not well-defined when
linear finite elements are used. In this work we provide a systematic formulation of the numerical
inversion using linear finite elements and propose some effective techniques to overcome the un-
definedness that may occur in inversion process. We show that linear finite elements can be made
very robust and efficient in simultaneously recovering the source location and intensity. Numerical
results are presented to validate the robustness and effectiveness of the proposed algorithm.
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1. Introduction

Source isolation is an effective measure taken in practical applications for pol-
lution prevention in groundwater, lakes and rivers, and for quick response to fire
accidents or some attacks caused by airborne/aerosolized chemical or biological
agent. The knowledge of the contaminant sources and their intensities plays an
essential role in taking the measures. When the source location and intensity are
available, one may simulate the distribution of the pollutant concentration and
its transport process in the concerned environmental systems by a transport or
convection-diffusion model [1, 11, 10, 15]. This is the so-called forward problem.
But in many applications such as those aforementioned ones, the source location
and intensity are the essential information one needs to make further actions. This
can be achieved usually by solving an inverse transport or convection-diffusion prob-
lem, using some extra data of concentration or its fluxes measured by appropriately
located sensors within a certain period of time. This inversion process may help
recover the location, intensity or time release history of the pollutant sources. As
a typical inverse problem the identification of the source location and intensity is
severely ill-posed in the sense of Hadamard [5, 18, 19], that is, one of the three
fundamental properties such as the existence, uniqueness and stability of solution-
s to the considered problem is not satisfied. For numerical processes, the most
important property is the stability. The inverse problem of recovering the source
location and intensity is typically unstable, i.e., small noise in the observation data
may cause tremendous change of the source location and intensity.

Various approaches have been applied to the inverse problem of recovering the
source intensity distribution [16, 17, 20] when the source location is known, or of re-
covering both the source intensity and location [1, 6, 7, 8, 11]. Quasi-explicit recon-
struction formulae may exist for point source location recovery in one-dimensional
cases under some careful design of the observation locations [7, 8], and the point
source locations may be found by solving some integral equation involving the
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fundamental solutions in two dimensions for a heat conduction problem [9]. Re-
garding to the source intensity recovery, explicit formula is available for inversion
in one-dimensional cases with constant coefficients and steady sources [11]. The
method of quasi-reversibility was studied in [17] to retrace the plume history for
one-dimensional cases, and a fourth-order term was added to the model to stabilize
the numerical dispersion and counteract the data noise.

Optimization approaches are popular in solving various inverse problems [3, 13,
14, 21]. Linear programming and multiple regression method were applied in [6]
for finding the pollutant source location and their magnitude in a simple one-
dimensional model. When the source location is known, some numerical efforts
were made to recover the time intensity of the source, e.g., in [16] for one dimension
and in [20] for two dimensions. The Tikhonov regularization approach was used in
[16], while an iterative method was applied in [20] without any regularization, so it
works only for noise-free observation data, and performs poorly whenever there is
noise present in the data.

In this work we will apply the popular output least-squares formulation with
appropriate regularizations for simultaneously recovering the point source location
and the corresponding time-dependent intensity profile. Our major investigation
will be on the space discretization of the resulting nonlinear optimization system
by the least expensive finite element method, namely the piecewise linear finite
elements. There are two major reasons why we are interested in the use of linear
elements. First, higher order finite elements are much more expensive than linear
elements, especially in three-dimensions. Second, unlike for direct problems, higher
order continuous finite elements do not bear any advantages over the linear ele-
ments for solving inverse problems. This is due to the fact that the solution of an
inverse problem usually requires solving an adjoint problem corresponding to the
forward model equation, but the regularity of the solution to the adjoint problem is
usually low, often lower than H2, no matter whether the domains or the coefficients
involved in the concerned equations are smooth or not since the measurement data
always serve as a source term of the adjoint problem and the data always con-
tain noise in applications. Therefore high-order elements can not generate better
accuracy than linear elements for inverse problems. The above two reasons show
that linear elements are more practical and reasonable in terms of both accuracy
and computational efficiency. This motivates our current investigation of linear ele-
ments for the inverse problem of simultaneously recovering the source location and
its corresponding intensity. To the best of our knowledge, this practically impor-
tant topic has not been studied in the literature. A major difficulty arises from the
space singular delta function in the source term of the convection-diffusion model
and the time singular delta function in the adjoint system. As we shall see, for the
reconstruction of the source location we need to evaluate the derivatives of func-
tions from the finite element space used, but that are unfortunately not well-defined
along element edges (2D) or faces (3D) for piecewise linear finite elements. This
difficulty can be naturally avoided by using higher order C1 finite elements [4], but
with much higher computational efforts, since many more degrees of freedom will
be involved than the ones for linear elements. We shall propose two techniques
to overcome such difficulty and show that linear finite elements can be made very
robust and effective in simultaneously recovering the source location and intensity.
So this work provides a complete formulation of the numerical inversion process
using the linear finite elements.
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The rest of the paper is arranged as follows. Section 2 introduces the model
formulation; sections 3 and 4 discuss the mathematical formulation of the inverse
problem and many technical issues involved in inversion using linear finite elements.
Numerical experiments for the recovery of different source locations, smooth and
discontinuous source intensity functions are given in section 5, and some concluding
remarks are mentioned in section 6.

2. Model formulation

We consider a physical domain Ω where a heat or pollution source is present
but its location x∗ is unknown, and write the distribution of the temperature or
pollutant concentration as C(x, t) at location x and time t. The distribution process
C(x, t) can be modeled often by the following typical convection-diffusion system [1,
11, 15, 10], with a singular point source at location x∗:

(1)
∂C

∂t
= ∇ · (a(x)∇C) −∇ · (v(x)C) + δ(x− x∗)f(t), 0 ≤ t ≤ T , x ∈ Ω

where f(t) is the temporal intensity of the source at location x∗, a(x) and v(x) are
the diffusivity and convection coefficient. We will complement the model by the
following mixed boundary conditions

(2) C(x, t) = p(x, t), x ∈ Γ1 ; a(x)
∂C

∂n
= q(x, t), x ∈ Γ2

and the initial condition

(3) C(x, 0) = C0(x), x ∈ Ω ,

where Γ1 and Γ2 are two separated parts forming the entire physical boundary ∂Ω.
The main concern of this work is to study the inverse problem: Given the mea-

surement data Cε(x) of the concentration C(x, t) at the terminal time T in Ω or
at a set of specified locations x1, x2, · · · , xNs

inside Ω, recover the location x∗ and
time-dependent intensity f(t) of the source in equation (1).

3. Mathematical formulation of the inverse problem

The inverse source problem of our interest is severely ill-posed. In order to
handle the ill-posedness, we will take the Tikhonov regularization approach for
the numerical reconstruction of the location x∗ and intensity f(t) of the source in
equation (1). This converts our reconstruction process into a nonlinear optimization
of the form

(4) J(f,x∗) =
1

2

∫

Ω

(C(x, T )− Cε(x))2 dx+
β

2
N(f),

when the measurement data Cε(x) is available over the whole domain Ω (possibly
after interpolating some scattered data), or

(5) J(f,x∗) =
1

2

Ns
∑

i=1

(C(xi, T )− Cε(xi))
2 +

β

2
N(f),

when the measurement data is available only partially, namely, at a set of specified
locations x1, x2, · · · , xNs

in Ω. Concentration C(x, t) in (4) or (5) is the solution to
the convection-diffusion system (1)-(3) associated with the location x∗ and source
intensity f(t). The second term in (4) is the regularization term, where β is the
regularization parameter and N(f) is the regularization which may take different
forms depending on our a priori information on the smoothness of the physical
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source intensity f(t). We shall consider the following three different forms, namely
the L2-, H1- and BV -regularization:

(6) N(f) =

∫ T

0

f(t)2dt , N(f) =

∫ T

0

|ft(t)|2dt , N(f) =

∫ T

0

|Df | .

For the sake of convenience, we shall write (4) and (5) into a unified form

(7) J(f,x∗) =
1

2

∫

Ω

A(x)(C(x, T ) − Cε(x))2 dx+
β

2
N(f),

where A(x) is the data range indicator function, namely A(x) = 1 corresponds

to (4), and A(x) =
∑Ns

i=1 δ(x − xi) corresponds to (5). In some applications one
individual form from (6) may not work well, then we may use the mixed regulariza-
tions. For instance, we may mix the first and third regularizations from (6), then
we should replace the last term in (7) by

(8)
β1

2

∫ T

0

f(t)2dt+ β2

∫ T

0

|Df | .

4. Technical issues in optimization using linear finite elements

In this section we discuss some technical issues involved in minimizing the non-
linear objective functional (7) using linear finite elements, including discretization,
gradient computing, adjoint systems, numerical challenges and their remedies.

Let T h be a regular triangulation of Ω with triangular elements [4]. We define
V h to be the finite element space consisting of continuous piecewise linear functions
on T h, and V̊ h to be the subspace of V h with functions vanishing on the Dirichlet
boundary Γ1. To fully discretize the system (7), we partition the time interval [0, T ]
as 0 = t0 < t1 < · · · < tM = T, with tn = nτ, τ = T/M . For a given sequence
{Cn} and a function C(x, t), we define the difference quotient and the averaging
function:

∂τC
n =

Cn − Cn−1

τ
, C̄n(x) =

1

τ

∫ tn

tn−1

C(x, t)dt .

Let πh be the finite element interpolation associated with the space V h, and Cn
h

be the finite element approximation of C(x, t) at time tn, then we can discretize
the system (1)-(3) by the Crank-Nicolson scheme in time and piecewise linear finite
elements in space as follows:

Find the sequence of approximations C0
h, C

1
h, · · · , CM

h such that C0
h = πhC0,

and Cn
h ∈ V h satisfying Cn

h (x) = πhp(x, t
n) for x ∈ Γ1 and

(∂τC
n
h , wh) + (a∇C̄n

h ,∇wh) + (∇ · (vC̄n
h ), wh) =

wh(x
∗)f̄n + 〈q̄n, wh〉Γ2 ∀wh ∈ V̊ h

(9)

where (u, v) and 〈u, v〉Γ2 are used for the integral of the product of any two functions
u and v over Ω and Γ2 respectively. Recall that we look for the source location x∗

and intensity f(t) in our inverse problem, so we will often write the finite element
solution Cn

h in (9) as Cn
h (f

τ ,x∗) to emphasize its dependence on f and x∗, where
f τ (t) denotes the continuous piecewise linear function which takes the value fn =
f(tn) at the time tn for n = 0, 1, · · · ,M .

Now using the sequence of finite element solutions Cn
h from (9), we propose to

approximate the functional (7) by

(10) Jτ
h (f

τ ,x∗) =
1

2

∫

Ω

A(x)(CM
h (f τ ,x∗)− Cε)2(x) dx +

β

2
N(f τ ) .
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4.1. Gradients of the objective functional. One can apply any existing iter-
ative optimization algorithm to minimize the nonlinear functional (10), e.g., the
steepest descent and nonlinear conjugate gradient method. A key ingredient in
realizing these methods is to determine the search direction in each iteration, for
which we need to evaluate the gradient of functional Jτ

h in (10) with respect to the
unknown source location x∗ and intensity f τ .

Next we take the L2 regularization, i.e., the first form in (6), as an example to
illustrate the evaluation of the gradient of Jτ

h . Using the definition (10), we can
easily write the derivative of Jτ

h with respect to intensity f τ in direction gτ , the
derivatives of Jτ

h with respect to the coordinates of x∗ as follows:

(Jτ
h )

′(f τ ,x∗)gτ =

∫

Ω

A(x)(CM
h (f τ ,x∗)− Cε)(x)DM

h (x) dx + β(f τ , gτ ) ,(11)

(Jτ
h )x1(f

τ ,x∗) =

∫

Ω

A(x)(CM
h (f τ ,x∗)− Cε)(x)EM

h (x) dx ,(12)

(Jτ
h )x2(f

τ ,x∗) =

∫

Ω

A(x)(CM
h (f τ ,x∗)− Cε)(x)FM

h (x) dx(13)

where Dn
h = Cn

h (f
τ ,x∗)′gτ is the derivative of Cn

h at f τ in direction gτ , En
h =

(Cn
h )x1 and Fn

h = (Cn
h )x2 are the derivatives of Cn

h with respect to the coordinates

of x∗. And we know from (9) that D0
h = 0, and Dn

h ∈ V̊ h for n = 1, 2, · · · ,M solves

the finite element equation ∀wh ∈ V̊ h

(∂τD
n
h , wh) + (a∇D̄n

h ,∇wh) + (∇ · (vD̄n
h), wh) = wh(x

∗)ḡn(14)

while E0
h = F 0

h = 0 and En
h , F

n
h ∈ V̊ h for n = 1, 2, · · · ,M solve the equations

∀wh ∈ V̊ h

(∂τE
n
h , wh) + (a∇Ēn

h ,∇wh) + (∇ · (vĒn
h ), wh) = (wh)x1(x

∗)f̄n(15)

(∂τF
n
h , wh) + (a∇F̄n

h ,∇wh) + (∇ · (vF̄n
h ), wh) = (wh)x2(x

∗)f̄n(16)

4.2. Adjoint systems. One can easily see that it is very expensive to evaluate
the derivative of Jτ

h with respect to the intensity f τ using the formula (11) since
it requires solving one finite element system (14) for every basis direction gτ . To
reduce the computational costs, we apply an adjoint technique. To do so, we first
derive an appropriate adjoint system for the continuous functional J(f,x∗) in (7)
associated with the system (1)-(3).

Let W 1,p(Ω) andW 1,q(Ω) be the standard Sobolev spaces with p, q > 0 satisfying
1/p + 1/q = 1. We can formally write (1) as an operator equation L(C, f) = 0,
then introduce a corresponding Lagrange multiplier G ∈ W 1,p(Ω) and the Lagrange
functional:

(17) J (C, f, G) =
1

2

∫
Ω

A(x)(C(x, T )−C
ε(x))2dx+

β

2

∫
T

0

f(t)2dt+

∫
T

0

(G,L(C, f))dt .

By taking the derivative of J in (17) with respect to C at an arbitrary direction

Ĉ, and using the integration by parts and the arbitrariness of Ĉ, we can deduce
the adjoint system for the Lagrange multiplier G, namely G(x, T ) = 0 for x ∈ Ω,
G(x, t) = 0 on Γ1 and G(x, t) ∈ W 1,p(Ω) satisfies

−(Gt, w) + (a∇G,∇w) − (v · ∇G,w) + 〈v · nG,w〉Γ2

= −(δ(t− T )A (C(·, t)− Cε), w) .(18)
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for all w ∈ W 1,q(Ω) such that w = 0 on Γ1. Then using the adjoint system (18),
we can write the derivative of J(f,x∗) in (7) as

J ′(f,x∗)g =

∫ T

0

(−G(x∗, t) + βf(t))g(t)dt .(19)

Now using the Crank-Nicolson scheme for time marching and piecewise linear finite
element space V̊ h for space discretization we can write the finite element approx-
imation of (18) as follows: Find Gn

h ∈ V̊ h (0 ≤ n ≤ M) such that GM
h = 0 and

satisfies

− (∂τG
n
h , wh) + (a∇Ḡn

h,∇wh)− (v · ∇Ḡn
h, wh) + 〈v · nḠn

h , wh〉Γ2

= −δnM (A (Cn
h − Cε), wh) ∀wh ∈ V̊ h

(20)

where δnM = 0 for n 6= M , and δMM = 1
2
. Using this discrete adjoint system (20),

we can get the discrete counterpart of the derivative of J(f,x∗) in (19), that greatly
simplifies the derivative in (11):

(Jτ
h )

′(f τ ,x∗)gτ =

∫ T

0

(−Gτ
h(x

∗, t) + βf τ )gτdt .(21)

Remark 4.1. Considering the fact that the source is specified at the terminal t = T
in the adjoint system (20), we can not apply the backward Euler scheme for time-
marching as it can not access the data at the terminal T . This is why we have used
the Crank-Nicholson scheme for time marching in (20).

4.3. Optimization algorithm. With the gradient information of functional Jτ
h

in (10), we may apply any existing iterative optimization algorithm to minimize
the nonlinear functional Jτ

h . As an example, we now formulate an algorithm using
the nonlinear conjugate gradient method to update the source intensity f(t) and
the steepest descent method to update the source location x∗.

Reconstruction Algorithm I. Select the initial guesses x0, f0, and set k := 0.

(1) Solve the adjoint system (20) for {Gn
h(x

k, fk)};
Solve the equations (15) and (16) respectively for {En

h (x
k, fk)} and

{Fn
h (x

k, fk)}.
(2) Apply the nonlinear CG method to update fk: fk+1 = fk + αk

1d
k .

(3) Update xk = (xk
1 , x

k
2):

xk+1
1 = xk

1 − αk
2(J

τ
h )x1(f

k+1,xk), xk+1
2 = xk

2 − αk
3(J

τ
h )x2(f

k+1,xk).

(4) Stop the iteration if the stopping criteria are satisfied; otherwise set k :=
k + 1 and go to step 1.

Remark 4.2. In this remark we explain how to update in our numerical exper-
iments the search direction dk and stepsizes αk

1 , αk
2 and αk

3 in Reconstruction
Algorithm I. We use the Fletcher-Reeves (FR) formula to update the nonlinear
CG direction dk: dk = J ′

k + γkd
k−1, with d0 = J ′

0 and γk = ‖J ′
k‖2/‖J ′

k−1‖2 and

J ′
k = −(Jτ

h )
′(fk,xk) being the negative gradient direction which is obtained from

formula (21). We select the stepsize αk
1 such that αk

1 = argminγ>0J
τ
h (f

k + γdk).

For the L2 and H1 regularizations in (6), we can work out the exact formulae:

αk
1 = − (CM

h (fk,xk)− Cε, AM
h ) + β(fk, dk)

(AM
h , AM

h ) + β(dk, dk)
(L2 regularization),

αk
1 = − (CM

h (fk,xk)− Cε, AM
h ) + β(∇fk,∇dk)

(AM
h , AM

h ) + β(∇dk,∇dk)
(H1 regularization)
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where AM
h = CM

h (fk,xk)′dk. For the BV regularization, we solve the one-dimensional
optimization approximately for the optimal stepsize αk

1 by applying the back-tracking
rule, namely we start with αk

1 of the same order as ‖fk‖/‖dk‖, then reduce αk
1 by

half until the functional Jτ
h reduces, i.e. Jτ

h (f
k+1,xk) < Jτ

h (f
k,xk). The stepsize

αk
2 and αk

3 are also determined by applying the back-tracking rule, namely they s-
tart from some values of the same order as |xk

1 |/‖(Jτ
h )x(x

k)‖ and |xk
2 |/‖(Jτ

h )x(x
k)‖

respectively, then reduce both αk
2 and αk

3 by half until the functional Jτ
h satisfies

Jτ
h (f

k+1,xk+1) < Jτ
h (f

k+1,xk).

4.4. Difficulties and remedies in evaluating derivatives of finite element

functions. As it is directly observed from the right-hand sides of the equations (15)

and (16), we need to evaluate the derivatives of piecewise linear functions from V̊ h in
order to compute the derivatives of the objective functional Jτ

h in (10) with respect
to the coordinates of the unknown source location x∗. Noting that these finite
element functions from V̊ h are continuous everywhere, but their derivatives are
piecewise constant and defined only within each finite element, so have no meanings
at element vertices as well as along all common edges shared by two neighboring
elements. Therefore the derivatives of Jτ

h with respect to the coordinates of the
source location x∗ (see (12) and (13)) do not make sense when the approximate
source location xk happens to be at an element vertex or lies on some element edge
during the iterations. A natural way to overcome such numerical difficulties is to
use higher order C1 elements [4], but these elements are too expensive, especially in
three dimensions and for our current inverse problem, which is highly unstable and
time-consuming itself. On the other hand, higher order C1 elements do not provide
any better accuracy than the piecewise linear C0 elements for the entire inversion
process as the highest regularity of the solution to the continuous adjoint system is
at most H2 due to the noisy data serving as the source term in the adjoint system;
see (18).

In the rest of this section we shall propose several remedies to make it feasible
for us to still use piecewise linear finite element spaces, that are continuous finite
elements of lowest order, also the least expensive ones. This last fact serves as a very
important ingredient to the final efficiency of our current entire numerical inversion
process. One can easily observe from the equations (15)-(16) that the piecewise
constant finite elements are infeasible to our current inverse problem since they
generate only trivial solutions to (15)-(16). We shall demonstrate some effective
treatments to evaluate the derivatives of piecewise linear finite element functions
along all the common edges shared by two neighboring elements.

4.4.1. Averaging schemes. A simplest treatment to avoid the undefinedness
of the derivatives of a piecewise linear finite element function wh (see (15)-(16))
needed for computing the derivatives of functional Jτ

h in (10) with respect to the
source location x∗ is to take the derivatives of wh at a given point x by using the
corresponding derivatives of wh in any one element where x is located. However,
this treatment may produce unbalanced or poor results when the given point x is
a common vertex shared by several neighboring elements or located on (or very
closely to) the common edge of two neighboring elements. Indeed this is confirmed
by many of our numerical simulations: the approximated source location point xk

gets frequently trapped in one element after the first few iterations.
A more effective treatment is to take the average of the derivatives of wh at a

given point x in those elements which share the point. The detailed procedure is as
follows: when the iterative location xk is inside an element Ti, then we simply take
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the derivatives of wh at this point; if xk is located on some common edge shared by
two elements or at some vertex shared by several elements, then the derivatives of
wh are computed by taking the average of its derivatives in those elements which
share the point xk. This treatment takes care of the derivative information from all
neighboring elements that share the approximate location point xk, thus it proves
to work much better than the previous simplest technique, as we will see in the
numerical experiments in Section 5.

4.4.2. Approximation of Dirac delta function. The averaging schemes pro-
posed in section 4.4.1 work satisfactorily, but it requires to locate all the neigh-
boring elements that share the approximate source point xk during each iteration.
We now present a more systematic treatment. This treatment is to reformulate the
finite element equations (15)-(16) by approximating the singular delta functions by
some smoother functions so that the derivatives of piecewise linear finite element
functions wh are needed only inside elements, not on any element edges any more.

Dirac delta function δ(x− x∗) can be regarded as the weak limit of a sequence
of smooth functions {δa} with a spike at a given point x∗, namely

lim
a→0+

∫

R

δa(x − x∗)f(x) = f(x∗),

for all compactly supported continuous function f . Many such approximations are
available, such as the following Gaussian function δ1a, Lorentz-Cauchy function δ2a
and hyperbolic function δ3a (see [2, 20]):

δ1a(x− x∗) =
1

a
√
π
e−

(x−x
∗)2

a2 ,

δ2a(x− x∗) =
a/π

a2 + (x− x∗)2
,

δ3a(x− x∗) =
1

2a cosh2(x−x∗

a
)
.

One can easily test numerically that the above three functions are nearly zero for
almost all x except near x = x∗, where the values of these functions tend to infinity
as a → 0, and that their integrals over [−l, l] is approaching to one as a → 0 and
l → ∞.

With these approximate delta functions δa, we can now replace the equations
(15) and (16) by the following two:

(∂τE
n

h , wh) + (a∇Ē
n

h ,∇wh) + (∇ · (vĒn

h ), wh) = ((wh)x1 , δa(x1 − x
∗

1)δa(x2 − x
∗

2))f̄
n(t)

(∂τF
n

h , wh) + (a∇F̄
n

h ,∇wh) + (∇ · (vF̄n

h ), wh) = ((wh)x2 , δa(x1 − x
∗

1)δa(x2 − x
∗

2))f̄
n(t)

for any wh ∈ V̊ h. We can see that the right-hand sides of these two equations
are now well defined and can be computed elementwise, since the derivatives of wh

appear as part of the integrand, and the undefined pointwise evaluations of wh are
no longer needed, unlike in the original formulations (15) and (16). As we will see
in the numerical experiments in Section 5, these treatments work very well.

5. Numerical Examples

We present in this section some numerical examples of recovering both the source
location x∗ and the intensity function f(t) in the system (1). We set the testing
domain to be Ω = (−2, 2)× (−1, 1), and the terminal time at T = 1. Homogeneous
Dirichlet and Neumann conditions are imposed on Γ1 = {x = (x1, x2); |x1| =
2} and Γ2 = {x = (x1, x2); |x2| = 1} respectively. Unless otherwise specified
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the diffusion and convection coefficients a(x) and v(x) are chosen to be 1.0 and
(1.0, 1.0)T respectively. In order to generate the observation data, we first solve the
forward convection-diffusion system (1)-(3) with a very fine mesh, 513 × 257, and
the time stepsize τ = 1/100, then add a random noise of the following form to the
terminal concentration C(x, T ):

Cε(x) = C(x, T ) + ε r C(x, T ),

where r is the uniform distribution function in [−1, 1], and ε is the noise level. In
our numerical experiments, we take the noise level to be ε = 3%. In each example
we will show both the true intensity function f(t) and its reconstructed one fk, as
well as the convergence history of the approximate source location xk = (xk

1 , x
k
2).

Example 1. We take the true intensity function and the source location to be

f(t) = t2, x∗ = (1.1, 0.1)

and their initial guesses to be

f0(t) = 0.01, x0 = (0.9, 0.3).

In our numerical inversion we take the mesh and the time step size to be 33× 17
and τ = 1/50 respectively. Figure 1 shows the numerical reconstructed source
intensity f(t) and the convergence history of the source location using the H1

regularization with regularization parameter β = 8.0e−6. One can see that the
numerical reconstruction algorithm performs very well: it converges very stably
and quickly for both the source location (12 iterations) and intensity function (36
iterations).
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Figure 1. Reconstruction for Example 1

Remark 5.1. We have also tried the steepest descent method for reconstructing
the intensity function f(t) and found that nonlinear CG method usually converges
much faster. This is also true for the remaining Examples 2 and 3.

Example 2. We take the true intensity function and source location to be

f(t) =
75

4
t(1 − t)(

1

6
− t)2 + 1.0, x∗ = (−0.5, 0.5)

and their initial guesses to be

f0 = 1.0 + 0.3t, x0 = (−0.2, 0.75).

In this example, we compare the reconstruction results for different amount of
measurement data used, with a mesh 33 × 17 and time step size τ = 1/40. Let
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Ns be the number of locations where the data are collected, then we consider the
following two cases:

(1) Ns = 25, data points {xij = (−2 + i,−1 + 0.5j), i, j = 0, 1, 2, 3, 4};
(2) Ns = 9, data points {xij = (−1 + i,−0.5 + 0.5j), i, j = 0, 1, 2}.

We test a mixed L2 and H1 regularization, with two regularization parameters to
be β1 = 10−2 and β2 = 10−3 for case 1 with Ns = 25, and β1 = 0 and β2 = 7×10−5

for case 2 with Ns = 9. The reconstruction results are also given for a finer set of
data points, Ns = 33 × 17 = 561, with the regularization parameters β1 = 0 and
β2 = 5×10−5. From Figure 2 we observe that the reconstruction results deteriorate
slowly as we can expect, but the convergence becomes slower and slower when we
reduce the number of measured data points. However, as we observe, we can still
obtain reasonable reconstruction even with as less as Ns = 25 data points.
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Figure 2. Reconstructions for Example 2 with different amount
of measurement data with Ns = 561 (top), Ns = 25 (middle) and
Ns = 9 (bottom).
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Example 3. We take the true intensity function and the source location to be

f(t) =







0.3πt , 0 ≤ t < 0.5
0.15π , 0.5 ≤ t < 0.7
0.5π − 0.5πt , 0.7 ≤ t < 1.0

, x∗ = (0.5, 0.75)

and the initial guess to the intensity to be f0(t) = t. This example tests a piecewise
smooth intensity function. We use a mesh 33 × 17 and time step size τ = 1/40.
Next we compare the performance of the averaging scheme and the scheme of
approximated Dirac delta function proposed in section 4.4. To ensure the situations
described therein to occur in our iterative process, i.e., some iterated approximation
xk of the source location lies at a mesh point or on some element edge, we consider
the following two initial guesses for the source location:

(1) The initial guess lies on an element edge: x0 = (0.88, 1.0).
(2) The initial guess is a mesh point: x0 = (0.25, 0.25).

Note that in our settings the true source location x∗ is also a grid point. Recall
the three different approximated Dirac delta functions, namely δ1a, δ

2
a, δ

3
a, for which

we take the corresponding parameters to be a = 0.01, 0.001, 0.001 respectively. In
this example we test the mixed BV and L2 regularization, with the regularization
parameters 5 × 10−8 and 2 × 10−6 respectively. See Figure 3-4 for the case with
initial point (0.88, 1.0) and Figure 5-6 for the case with initial point (0.25, 0.25).
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Figure 3. Reconstructions for Example 3 with initial guess
(0.88, 1.0) for the source location by the averaging scheme.

We observe from these figures that the schemes of using approximated Dirac
delta function perform basically as well as the averaging scheme. So this verifies
the effectiveness of our proposed treatments to obtain a reasonable approximate
solution to the derivative equations (15) and (16).

Example 4. We take the exact intensity and the source location to be

f(t) =

{

0.65, 0 ≤ t < 0.5
0.3, 0.5 ≤ t ≤ 1.0

, x∗ = (−0.3, 0.1)

and their initial guesses to be

f0(t) = t, x0 = (−0.01, 0.3).

This example tests how our reconstruction algorithm works for recovering the dis-
continuous intensity, which is more challenging than the smooth cases. A natural
regularization to handle discontinuity is the BV regularization. In this experiment
we use the very coarse mesh 17× 9 and the time step size τ = 1/40, and apply the
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Figure 4. Reconstructions for Example 3 with initial guess
(0.88, 1.0) for the source location by the scheme of approximat-
ed Dirac delta function δ1a (top), δ2a (middle) and δ3a (bottom).

approximated Dirac delta function approach proposed in section 4.4. We observe
from Figure 7 that the numerical reconstruction is quite satisfactory.

6. Concluding remarks

This work investigates the numerical recovery of the source location and the cor-
responding time-dependent intensity using the measured data of concentration at
the terminal time. The reconstruction is achieved by using the output least-squares
formulation with appropriate regularizations, including L2, H1 and BV penalties.
Our major focus is to have a detailed study of the space discretization of the result-
ing nonlinear optimization system by the piecewise linear finite element method,
which is the least expensive finite element. For the reconstruction of the source
location we need to evaluate the derivatives of linear finite element functions, but
that are unfortunately not well-defined along all the common edges shared by two
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Figure 5. Reconstructions for Example 3 with initial guess
(0.25, 0.25) for the source location by the averaging scheme.

neighboring elements. Two effective numerical remedies, an averaging scheme and
a scheme by the approximated Dirac delta functions, are proposed to overcome
such difficulty. The numerical experiments have demonstrated the robustness and
effectiveness of the reconstruction algorithms by the simplest and least expensive
linear finite elements, in simultaneously recovering the source location and inten-
sity, including both continuous and discontinuous cases. All the derivations and
discussions of this work have been carried out for two space dimensions. But the
algorithms and numerical remedies proposed here can be naturally extended to
three space dimensions.
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