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THE ARAKAWA JACOBIAN METHOD AND A

FOURTH-ORDER ESSENTIALLY NONOSCILLATORY SCHEME

FOR THE BETA-PLANE BAROTROPIC EQUATIONS

ABDERRAHIM KACIMI, TARIK ALIZIANE, AND BOUALEM KHOUIDER

Abstract. In this paper we use the Arakawa Jacobian method [1] and the fourth-order essentially
non-oscillatory (ENO-4) scheme of Osher and Shu [15] to solve the equatorial beta-plane barotropic
equations. The Arakawa Jacobian scheme is a second order centred finite differences scheme that
conserves energy and enstrophy. The fourth-order essentially non-oscillatory scheme is designed
for Hamilton-Jacobi equations and traditionally used to track sharp fronts. We are interested in
the performance of these two methods on the baratropic equations and determine whether they
are adequate for studying the barotropic instability. The two methods are tested and compared
on two typical exact solutions, a smooth Rossby wave-packet and a discontinuous shear, on the
long-climate scale of 100 days. The numerical results indicate that the Arakawa Jacobian method
conserves energy and enstrophy nearly exactly, as expected, captures the phase speed the Rossby
wave, and achieves an overall second order accuracy, in both cases. The same properties are
preserved by the ENO-4 scheme but the fourth order accuracy is observed only for the smooth
Rossby wave solution while in the case of the discontinuous shear, it yields an overall third order
accuracy, even in the smooth regions, away from the discontinuity.

Key words. Arakawa Jacobian, Essentially non-oscillatory schemes, Spectral methods, Finite d-
ifference, Large scale equatorial waves, Atmospheric circulation, Barotropic flow, Vorticity, Stream
function.

1. INTRODUCTION

One of the important strategies for understanding atmospheric general circula-
tion is to study the numerical solutions of its governing equations. The equatorial
beta-plane barotropic equations, a simple atmospheric model, have been studied
for more than half a century and are at the heart of a hierarchy of more complex
models. The first successful numerical weather prediction model, used by Charny
et al in 1950 [3], was based on the barotropic vorticity equation (BVE). A barotrop-
ic atmosphere is a single-layered fluid; under this assumption there is no vertical
component, and hence the equation to be solved is two dimensional (2D). For the-
oretical investigation of the evolution of vortices, atmospheric researchers are still
using the barotropic assumption. For example, the BVE is useful for modelling the
movement of tropical cyclones [2]. The barotropic assumption is also used to model
global wave patterns in the middle troposphere [19]. To model tropical cyclones,
the computational domain is a midlatitude β-plane. The β-plane approximation is
a linear approximation to the Coriolis parameter found by Taylor expansion [10]
for small displacement in latitude. Scale analysis show that the nonlinear term is
negligible.

Most numerical models of the BVE use finite differences or spectral methods. A
recent state of the art method from the applied mathematics [13] to the problem of
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tropical climate modelling [12] showed that a non-oscillatory central scheme can
accurately model equatorial waves without undue dissipation of energy but seems
to suffer some serious shortcoming [12, 4] (see conclusion section). However, the
Arakawa Jacobian scheme [1], which is specifically designed for the incompressible
BVE, is widely used in the atmosphere-ocean community. The Arakawa Jacobian
has the useful feature that both domain integrated enstrophy and domain integrat-
ed kinetic energy are conserved. It also conserves mean wavenumber; this prevents
nonlinear instabilities from occurring. The third method which we can adapt to
solve the incompressible BVE is the high-order essentially non-oscillatory scheme
(ENO) of Osher and Shu [15]. The ENO scheme is a high order accurate finite
difference scheme designed for problems with piecewise smooth solutions contain-
ing discontinuities. ENO schemes are traditionally used for hyperbolic conservation
laws and Hamilton-Jacobi equations [15]. The key idea lies at the approximation
level, where a nonlinear adaptive procedure is used to automatically choose the lo-
cally smoothest stencil, hence avoiding crossing discontinuities in the interpolation
procedure as much as possible. ENO schemes have been quite successful in appli-
cations, especially for problems containing both shocks and complicated smooth
solution structures, such as compressible turbulence simulations and aeroacoustic.
The paper is organized as follows. In section 2, we present the barotropic equations
on the equatorial β-plane. In Sections 3 and 4, we study the numerical methods
needed for solving the equatorial beta-plane barotropic equations. The Arakawa
Jacobian is used together with the second-order numerical solution of the Poisson
equation, used to enforce the incompressibility constraint. The fourth-order essen-
tially non-oscillatory (ENO-4) scheme is coupled with a fourth-order Poisson solver.
We validate the numerical methods in Section 5, and a summary with conclusion
is presented in Section 6.

2. The Barotropic Equations on an Equatorial β-plane

In standard nondimensional units, that are defined below, the barotropic equa-
torial β-plane equations, for the horizontal velocity, v, and pressure, p, are given
by

(1)

{

∂v

∂t
+ v·∇v + yv⊥ +▽p = 0,

div v = 0.

In (1) , v = (u, v) with u, v are respectively the zonal (east-west) and meridional

(north-south) velocity components. The operator ∇ =

(

∂

∂x
,
∂

∂y

)

is the horizontal

gradient vector and div v =
∂u

∂x
+
∂v

∂y
is the horizontal divergence while the term

yv⊥ = y (−v, u) represents the horizontal components of the Coriolis force due to
the vertical component of Earth’s rotation (beta effect). The nonlinear equations
for the barotropic mode in (1) is derived from the full 3d geophysical flow equations
by assuming a rigid lid and flat bottom, constant density and hydrostatic balance.
These assumptions are sufficient to neglect the vertical velocity and viscosity in the
rotating Boussinesq equations [5, 14].

The equations in (1) were nondimensionalized by using the characteristic units
of equatorial synoptic scale dynamics [5, 14], so that the Coriolis gradient at the
equator is normalized to β = 1: the velocity scale is the gravity wave speed c =
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NHT /π ≈ 50 ms−1 with N = 10−2s−1 is the Brunt-Väisälä frequency, and HT =
16 km is the tropospheric height. The length scale choice is based on the equatorial

Rossby wave deformation radius Le = (c/β)
1

2 ≈ 1500 km and the time scale is given

by T = Le/c = (cβ)
− 1

2 ≈ 8.3 hours.

2.1. Barotropic Equations in Vorticity Stream Form. For convenience, the
system in (1) is often written in vorticity-stream function form [12]:

(2)



















∂ξ

∂t
+ J (ψ, ξ) = 0,

∆ψ = ξ − y,

u = −
∂ψ

∂y
, v =

∂ψ

∂x
.

Here ξ =
∂v

∂x
−
∂u

∂y
+ y is the potential vorticity, that is the relative vorticity,

∂v

∂x
−
∂u

∂y
, due the flow velocity plus the vertical component of Earth’s rotations, βy,

and ψ is the stream function; the velocity field is given by u = −
∂ψ

∂y
, v =

∂ψ

∂x
. The

term J (ψ, ξ) is the Jacobian determinant with J (ψ, ξ) =
∂ψ

∂x

∂ξ

∂y
−
∂ψ

∂y

∂ξ

∂x
represents

the advective non-linearity of potential vorticity, ξ by the associated flow.

2.2. Conservation properties. For our problem, we will restrict the domain to
a rectangular strip which is periodic in x. This domain is centred on the equator
and represents the tropics, our principal region of interest. The north-south walls
are located at a distance Y = 5000 km away from the equator and the zonal period
is equal to the perimeter of the earth at the equator, i.e., X = 40000 km. We
assume there is no-flow through the boundaries:

(3) v (x,±Y, t) = 0,

then from (2) the mean potential vorticity satisfies

(4)
d

dt
Z =

d

dt

X
∫

0

Y
∫

−Y

ξdxdy = 0,

is conserved (independent of time t). Under the same conditions, the total enstro-
phy,

(5) ζ (t) =
1

2

X
∫

0

Y
∫

−Y

(

∂v (x, y, t)

∂x
−
∂u (x, y, t)

∂y

)2

dxdy,

and kinetic energy

(6) E (t) =
1

2

X
∫

0

Y
∫

−Y

(

u2 (x, y, t) + v2 (x, y, t)
)

dxdy,

are also conserved. The conservation of ζ and E implies that the mean wavenumber
of the flow is conserved [1]. In Khouider and Majda [12], the equations in (2) are
solved by the non-oscillatory central scheme of Levy and Tadmor [13]. Here we
propose to develop other high order and highly conservative numerical methods for
the barotropic equations in (2) to compare and analyze the behavior of some simple
exact and asymptotic solution to the barotropic equations. Namely we consider two
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different numerical approaches: The Arakawa Jacobian method [1], which conserves
both energy and enstrophy and a fourth-order ENO scheme [15].

3. The Arakawa method for barotropic waves

3.1. Free Equatorial Barotropic Vorticity Equation. The free equatorial
barotropic vorticity equation can be alternatively written in an advective form

(7)
∂ξ

∂t
+ u

∂ξ

∂x
+ v

∂ξ

∂y
= 0,

or in the conservative form,

(8)
∂ξ

∂t
+
∂ (uξ)

∂x
+
∂ (vξ)

∂y
= 0.

Even though it is simple to code the advective form (7) is not typically used in prac-
tice because it does not have any obvious conservative properties and can result
in instabilities which can grow with time. The numerical treatment of the con-
servative form, on the other hand, allows solutions that contain shocks. Khouider
and Majda [12] adapted a central scheme [13] using both the advective and con-
servative forms (7)-(8) to avoid this problem. A piecewise approximation at each
time step using staggered averaging results in smooth numerical fluxes, thereby
avoiding discontinuous Riemann fans. The results of Khouider and Majda [12] are
used as a benchmark to validate the two methods considered here. We consider the
vorticity-stream function equation in the generic form,

(9)
∂ξ

∂t
+ J (ψ, ξ) = 0.

Under suitable boundary conditions, this equation has the useful feature of con-
serving both domain integrated enstrophy and domain integrated kinetic energy.
It is natural to desire these same conservation properties during the discretization
of the Jacobian in the (9). In additions of conserving these important physical
quantities, this would guaranty the stability of the numerical scheme. The method
used in [12] insures stability by relying on the machinery of high-resolution method
for conservation laws. The Arakawa Jacobian method on the other hand achieves
stability by conserving energy and enstrophy.

3.2. Arakawa Jacobian. A naive way to discretize the Jacobian would be to use
centred differences to approximate the derivatives of

(10) J1 (ψ, ξ) =
∂ψ

∂x

∂ξ

∂y
−
∂ξ

∂x

∂ψ

∂y
.

However, it was noted by Phillips [16] that this scheme is subject to instabilities
stemming from the misrepresentation of wavelengths shorter than two grid intervals.
This misrepresentation is called aliasing. It is not due to a poor choice of boundary
conditions or to an inappropriately large time step but is rather an inherent feature
of the scheme. The instabilities resulting from aliasing can grow without bound in
a finite amount of time.

Alternatively, one would discretize either of the following equivalent formulations
of the Jacobian.

(11)
J2 (ψ, ξ) =

∂

∂x

(

ψ
∂ξ

∂y

)

−
∂

∂y

(

ψ
∂ξ

∂x

)

,

J3 (ψ, ξ) =
∂

∂y

(

ξ
∂ψ

∂x

)

−
∂

∂x

(

ξ
∂ψ

∂y

)

.
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Using a judicious combination of J1, J2 and J3, Arakawa was able to propose a
discrete Jacobian that conserves the numerical analogues of the domain-integrated
kinetic energy, domain-integrated enstrophy, and average wave number. We intro-
duce the standard notation of centred differences:

δi (ψ)
j
= ψi+1,j − ψi−1,j ,

δj (ξ)
i
= ξi,j+1 − ξi,j−1.

The most obvious discretization of the Jacobian is given by

(12) J++ (ψ, ξ) =
1

∆x∆y

(

δi (ψ)
j
δj (ξ)

i
− δj (ψ)

i
δi (ξ)

j
)

,

which corresponds to centered differences of continuum form J1 (ψ, ξ) . The flux
form Jacobian,

(13) J+× (ψ, ξ) =
1

∆x∆y

(

δi

(

ψδj (ξ)
i
)j

− δj

(

ψδi (ξ)
j
)i
)

,

corresponds to the continuum form J2 (ψ, ξ) and the flux form Jacobian,

(14) J×+ (ψ, ξ) =
1

∆x∆y

(

δj

(

ξδi (ψ)
j
)i

− δi

(

ξδj (ψ)
i
)j

)

,

corresponds to the continuum form J3 (ψ, ξ) . Arakawa [1], showed that J++ pre-
serves the symmetry, J++ (ψ, ξ) = −J++ (ξ, ψ) , J+× (ψ, ξ) conserves the domain
integrated enstrophy,

∫

ξ2 dxdy and J×+ (ψ, ξ) conserves the integral of energy,
∫

▽ψ · ▽ψ dxdy. As a consequence, he proved that the combination

(15) J =
1

3
(J++ + J+× + J×+) ,

conserves both energy and ensotrophy as well as the mean wavenumber, which as
already mentioned, prevents numerical instabilities from occurring. This is what is
called the Arakawa Jacobian.

3.3. Basic discretization. On a uniform grid with grid points (xi, yj) = (x0 + ih, y0 + jh)
i = 0, · · · , N, j = 0, · · · ,M , we can discretize (2) in space by second-order centered
finite differences combined with a second order Runge-Kutta predictor-corrector
method in time:

(16)
ξn+1
i,j − ξni,j

∆t
+ Jn

i,j (ψ, ξ) = 0,

(17) ∆n
i,jψ

n =
ψn
i+1,j − 2ψn

i,j + ψn
i−1,j

∆x2
+
ψn
i,j+1 − 2ψn

i,j + ψn
i,j−1

∆y2
= ξni,j − yj .

Here Jn
i,j is the Arakawa Jacobian given in (15) . The use of the Arakawa Jacobian

ensures conservation of discrete analogues of (4), (5) and (6), as detailed in [1]. ∆n
i,j

is the usual five-point approximation of the Laplacian. The Arakawa method for
the barotropic system (2) is achieved by combining the discretization equation of
potential vorticity in (16) with a solver for the stream-function Poisson equation
in (17). We solve the difference equation in (17) by combining the FFT method
for the periodic x-direction and a direct method in y [12]. The Poisson equation in
(17) is closed by the periodic boundary conditions in x and the Neumann boundary
condition in y,

(18)
∂ψ

∂x
(x,±Y ) = 0,
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dictated by the no-flow condition in (3). The Fourier method,

(19) ψi,j =

N
∑

k=1

∧

ψk,j exp (I (i− 1) (k − 1) 2π∆x) , I2 = −1,

applied to the difference equation in (17), leads to a tridiagonal system for each

Fourier mode with the homogeneous Dirichlet boundary conditions,
∧

ψk,0 =
∧

ψk,M =
0, for all the modes, 2 ≤ k ≤ N , except for the first mode, k = 1. We obtain a
boundary condition for the first mode by relying on the conservation of the zonal
mean wind at the north-south boundaries. In fact, the zonal averaging of the
equation in (7) combined with the no-flow condition in (3) leads to [12]

(20)
∂

∂t





1

X

X
∫

0

u (x, y, t) dx



 = 0 at y = ±Y.

This condition is used during the coding of the Poisson solver. The complete
algorithm for solving the barotropic system (1) is as follows: From ξn, compute
ψn by inverting ∆n

i,jψ
n = ξn −y, compute the Jacobian Jn (ψn, ξn) then compute

ξn+1 = ξn−∆tJn (ψ, ξ), increment n and repeat the cycle. Homogeneous Dirichlet
boundary conditions are used at the walls for the potential vorticity,

(21) ω = ξ − y = 0 at y = ±Y .,

combined with periodic boundary conditions in x. The validation of Arakawa’s
method is given in section 5.

4. Fourth-order Essentially Non-Oscillatory scheme for barotropic waves

4.1. ENO Interpolation . Essentially non-oscillatory schemes were developed
by Harten et al. in 1987 [8, 9] when working on the numerical solution of nonlin-
ear hyperbolic conservation laws (HCL). The solution of a system of HCL involves
discontinuities. Interpolating across these discontinuities leads to Gibbs phenom-
enon which results in loss of accuracy and ultimately numerical instabilities. The
ENO interpolation scheme is a data dependent, nonlinear reconstruction technique
which can eliminate the Gibbs phenomenon. ENO schemes for Hamilton-Jacobi
equations were developed in [15]. The key idea is an adaptive stencil interpolation
which automatically selects the locally smoothest region, and hence yields a uni-
formly high-order essentially non-oscillatory approximation for piecewise smooth
functions. Given point values G (xj), j = 0,±1,±2, · · · of a (piecewise smooth)

function G at discrete nodes xj , we associate an m-th degree polynomial P
j+ 1

2

m with
each interval [xj , xj+1]. The ENO scheme selects the smoothest possible region of
the domain by choosing the m+1 interpolation points, in the neighbourhood of the
cell [xj , xj+1] (including xj and xj+1), that achieve the smallest divided differences
G[x1, x2, · · · , xk], of all order k, 1 ≤ k ≤ m+ 1.

The ENO interpolation procedure starts with a base stencil containing two grid
points, then adaptively adds one point to the stencil at each stage, which is either
the left neighbouring point or the right neighbouring point to the current stencil
depending on which would yield a smaller divided differences value. The ENO
interpolation procedure results in a high order approximation that avoids spurious
oscillations. More precisely, we can show that the total variation of the interpolation
polynomial is at most O (∆xr) , r > 0 larger than the total variation of the piecewise
smooth function being interpolated. Thus the ENO procedure is especially suited
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for problems with singular but piecewise smooth functions, such as solutions of
nonlinear conservation laws and Hamilton-Jacobi equations. When combined with
an exact or approximate Riemann solver the ENO reconstruction results in a TVB
(total variation bounded) stable numerical scheme.

High-order ENO schemes for Hamilton-Jacobi equations use a monotone flux as
a building block and the ENO interpolation procedure to approximate the left and
right derivatives at the cell center. For the barotropic equations in (1), we propose
to adapt the fourth-order ENO scheme introduced and used in [15] by Osher and
Shu for Hamilton-Jacobi equations. The advective form of the potential vorticity
equation (7) is thus regarded as a Hamilton-Jacobi equation:

(22)
∂ξ

∂t
+H (ξx, ξy) = 0,

where H (ξx, ξy) represents the Hamiltonian of ξ:

(23) H (ξx, ξy) = −
∂ψ

∂y

∂ξ

∂x
+
∂ψ

∂x

∂ξ

∂y
.

Both the conservative and advective forms were exploited in [12] where the central
scheme for conservation laws is used.

Remark 4.1. In Khouider and Majda [12], the barotropic vorticity equation is
solved by the central incompressible scheme of Levy and Tadmor [13], using both
the advective form in (7) and the conservative form in (8). The design of this
scheme is based on a predictor corrector scheme that takes advantage of the fact
that the barotropic vorticity equation can be alternatively written in both forms. The
conservative form justifies the use of the finite volume method during the correction
step while the advective form highlights the finite-speed of propagation and is used
to advance the scheme during the prediction step. The interested reader is referred
to [13] for more details. While the Arakawa Jacobian insures stability by conserving
energy and enstrophy, the central incompressible scheme used in [12] insures stability
by relying on the machinery of high-resolution methods for conservation laws. As
demonstrated in [12], the central scheme captures accurately the solution of the
rotating barotropic equations on an equatorial beta-plane but it suffers from a phase
lagging problem; The numerical Rossby wave solution propagates slower that its
exact analog.

4.2. Scheme construction. For mesh sizes ∆x,∆y,∆t, the numerical approxi-
mation to the potential vorticity solution ξ of (22) is denoted ξni,j . We also use the
standard notation

ξ±x,i,j = ±
(ξi±1,j − ξi,j)

∆x
, ξ±y,i,j = ±

(ξi,j±1 − ξi,j)

∆y
.

The numerical scheme for the equation of the potential vorticity in (22), in its Euler
form, is

(24)
ξn+1
i,j − ξni,j

∆t
= −Hn

LLF

(

ξ+x,i,j , ξ
−
x,i,j, ξ

+
y,i,j , ξ

−
y,i,j

)

where Hn
LLF is the local Lax Friedrichs numerical Hamiltonian [15]:

Hn
LLF

(

ξ+x , ξ
−
x , ξ

+
y , ξ

−
y

)

= H

(

ξ+x + ξ−x
2

,
ξ+y + ξ−y

2

)

−
1

2
αx

(

ξ+x , ξ
−
x

) (

ξ+x − ξ−x
)

−
1

2
αy

(

ξ+y , ξ
−
y

) (

ξ+y − ξ−y
)
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Table 4.1. Coefficients of a TVD Runge-Kutta scheme for the ENO-4 scheme [15].

αk,l βk,l
1
1
2

1
2

1
9

2
9

2
3

0 1
3

1
3

1
3

1
2

− 1
4

1
2

− 1
9 − 1

3 1
0 1

6 0 1
6

and

αx = max
r ∈ I (ξ−x , ξ

+
x )

C ≤ q ≤ D

|H1 (r, q)| , αy = max
q ∈ I

(

ξ−y , ξ
+
y

)

A ≤ r ≤ B

|H2 (r, q)| ,

which is a Lipschitz continuous monotone flux consistent with H in PDE (22) [7]:

Hn
LLF (r, r, s, s) = H (r, s) .

Here Hi (r, q) is the partial derivative of H with respect to the i-th argument, or the
Lipschitz constant ofH with respect to the i-th argument. Monotonicity here means
that Hn

LLF is nonincreasing in its first and third arguments and nondecreasing
in the other two (Hn

LLF (↓, ↑, ↓, ↑)). The scheme (24) with a monotone numerical
Hamiltonian is called a monotone scheme. It is proven in [7] that monotone schemes
converge to the viscosity solution of (22). We now begin the description of the
fourth-order ENO scheme. The monotone flux described above play the role of
building blocks. The ENO interpolation described in subsection 4.1 is used to
compute fourth-order approximations to the left and right derivatives ξ±x and ξ±y .
The fourth order centred differences is used to compute fourth-order approximations
to the derivatives ψx and ψy. These values are then put into the monotone flux
Hn

LLF

(

ξ+x , ξ
−
x , ξ

+
y , ξ

−
y

)

. Time accuracy is obtained by a class of TVD Runge-Kutta
type time discretizations [6, 17, 18]. The algorithm can be summarized as follows:
(1) At any node (xi, yj), fix j to compute a derivative along the x-direction, by
using the ENO interpolation procedure

ξ±x =
d

dx
P

j± 1

2

4 (xi) .

(2) Similarly, at the node (xi, yj), fix i to compute along the y-direction, by using
the ENO interpolation procedure

ξ±y =
d

dx
P

j± 1

2

4 (yj) .

Then let

Li,j = −∆tHn
LLF

(

ξ+x , ξ
−
x , ξ

+
y , ξ

−
y

)

,

(3) obtain ξn+1 from ξn by the following forth-order Runge-Kutta method:

ξ
(0)
i,j = ξni,j ,(25)

ξ
(k)
i,j =

k−1
∑

l=0

(αk,lξ
(l)
i,j + βk,lL

(l)
i,j), k = 1, 2, 3, 4,

ξ
(n+1)
i,j = ξ

(4)
i,j ,

where αk,l and βk,l are given in Table 4.1.
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The method (25) can be proven total variation diminishing, under the CFL
condition:

(26)
∆t

min(∆x,∆y)
≤ C4λ0

where

λ0 =
1

max(u, v)
and C4 =

2

3
.

As remarked in [15], when implementing the ENO-4 interpolation described in
subsection 4.1 we use undivided differences [15]:

(27) φ (i, j, 0) = ξi,j ,

for k = 1, 5

(28) φ (i, j, k) = φ (i+ 1, j, k − 1)− φ (i, j, k − 1) .

The computation of (28) can be easily vectorized. The ENO stencil-choosing process
is as follows. For computing ξ+x , starting with k1min = i

if
∣

∣φ
(

k1min − 1, j, k
)∣

∣ <
∣

∣φ
(

k1min, j, k
)∣

∣ ,

then
k1min = k1min − 1,

for k = 2, 3, 4 where k1min is the leftmost point in the stencil for P
j+ 1

2

4 (x). This
can also be vectorized. Finally,

(ξx)
+
i,j =

1

∆x

4
∑

k=1

C
(

k1min − i, k
)

.φ
(

k1min, j, k
)

,

where

C (4, k) =
1

k!

k+3
∑

s=4

k+3
∏

l=4,l 6=s

(−l) .

Note that the small matrix C, which is independent of ξ, is computed only once, and
then stored. The fourth-order essentially non-oscillatory scheme (ENO-4) for the
barotropic system (2) is achieved by combining the discrete equation of potential
vorticity in (25) with a fourth-order Poisson solver for the stream-function. We use
a nine point stencil for the Poisson equation:

(29)

∆n
i,jψ

n =
−ψn

i+2,j + 16ψn
i+1,j − 30ψn

i,j − 56ψn
i−1,j − ψn

i−2,j

12∆x2

+
−ψn

i,j+2 + 16ψn
i,j+1 − 30ψn

i,j + 16ψn
i,j−1 − ψn

i,j−2

12∆y2

= ξni,j − yj ,

0 ≤ i ≤ N et 0 ≤ j ≤M. The method of resolution of the equation in (29) is similar
to that used with second-order Poisson equation in (17) using the same boundary
conditions for the stream-function in (18) and the same boundary conditions for
the potential vorticity in (21) .

5. Validation tests

Here, the numerical solutions of the equatorial barotropic vorticity equation
using the Arakawa Jacobian and the fourth-order essentially non-oscillatory scheme
are validated through known exact solutions.
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Table 5.2. L1-norm relative error between the exact and the numerical
potential vorticity using the Arakawa method.

Grid 5 days 10 days 15 days 20 days 50 days 100 days

128× 75 2.47E − 02 4.89E − 02 7.32E − 02 9.82E − 02 2.41E − 01 4.61E − 01

256× 150 6.34E − 03 1.25E − 02 1.87E − 02 2.51E − 02 6.25E − 02 1.24E − 01

Order 1.97 1.97 1.97 1.97 1.95 1.90

Table 5.3. Same as Table 5.2 but with the ENO-4 scheme.

Grid 5 days 10 days 15 days 20 days 50 days 100 days

128× 75 3.93E − 07 6.97E − 07 1.05E − 06 1.42E − 06 4.07E − 06 1.08E − 05

256× 150 2.72E − 08 4.67E − 08 7.24E − 08 9.86E − 08 2.88E − 07 7.76E − 07

Order 3.87 3.91 3.87 3.86 3.83 3.81

5.1. Rossby waves packets. We consider the Rossby wave packets used in [12]

(30) ψ (x, y, t) = cos (k1x− ωt) sin (k2y)

with k1 is the zonal wavenumber, k2 is the meridional wavenumber, and ω =
−k1

k21 + k22
is the dispersion relation. These wave packets are defined on a period-

ic channel of zonal length X = 40000 km and meridional width 2Y = 10000 km
and they solve the nonlinear barotropic equations in (1) exactly. It can be seen
that these wave packets have vanishing meridional velocity v at the channel walls

(y = ±Y ) provided k2 is chosen to be a multiple of
π

Y
. The solutions described by

(30) represent a traveling wave packet which propagates in the zonal direction at

the speed
ω

k1
. We set k1 = 8π/X and k2 = π/Y , which we may abbreviate by

writing k1 ≡ 4 and k2 ≡ 1. We fix the initial magnitude of the wind such that

max
x,y

√

(u2 (x, y, 0) + v2 (x, y, 0)) = 5m/s.

and we run the barotropic code described in section 3 and 4 forward in time.
A CFL condition with Courant number 0.8 is used to calculate the time step
∆t from the given grid spacing ∆x and ∆y, and velocities (u, v) . We choose
∆t = 0.8 × (min (∆x,∆y) /max (u, v)) in Arakawa method and ∆t = 0.8 × C4 ×
(min (∆x,∆y) /max (u, v)) in ENO-4 scheme. Notice that the Rossby wave packet
in (30) satisfies the Dirichlet boundary condition in (21) .

We report in table 5.2 the L1-norm relative error, with respect to the potential
vorticity ξ, between the exact and numerical solutions for two different grids, 128×
75 and 256× 150 at six consecutive times, 5, 10, 15, 20, 50 and 100 days, using the
Arakawa Jacobian method.

The same relative errors computed using the fourth-order essentially non-oscillatory
scheme are shown in table 5.3. An examination of the rate of convergence, found
by taking the ratio of errors of the two grids at a given time, suggests that both
methods are able to capture the large scale dispersive wave with an overall sec-
ond order and forth-order accuracy for Arakawa Jacobian method and forth-order
essentially non-oscillatory scheme, respectively.

Energy-time series plots in Figure 5.1 show that energy remains relatively con-
stant in time for the Arakawa method and the forth-order essentially non-oscillatory
scheme, regardless of the number of grid points. In Figure 5.2, a zonal slice of the
vorticity ω = ξ − y at y ≈ 1600 km at t = 20 days are shown for the grids 128× 75
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Figure 5.1. (A) and (B): Energy and Enstrophy time plots using 128x75
and 256x150 grid points using Arakawa method. (C) and (D) same as in
(A) and (B) but with ENO-4 scheme.

and 256× 150 using the Arakawa Jacobian method and forth-order essentially non-
oscillatory scheme and is compared with the exact solution. From this plots, it is
apparent that the phase speed obtained by Arakawa method and ENO-4 scheme
is nearly identical of the phase speed of Rossby wave packets, unlike the central
scheme that suffered from apparent phase lag [12]. Though, at coarse resolution,
the Arakawa solution seems to be slightly slower that the exact wave solution while
the ENO-4 method is faster. Recall that the wave is moving westward, i.e, to the
left. Note that with k1 = 4, there are only 32 and 64 grid points per wavelength,
respectively for the two grids in figure 5.2

In figure 5.3, contour plots of the vorticity ω are shown for the different grids
and the exact solution at t = 20 days. Velocity profiles are also superimposed. It
appears that the structure and velocity field of the wave packet is nearly identical in
all three cases. The y-plots of the L1-norm errors in x-direction for the two grids at
5 days for both methods in figure 5.4 show that we have not an error accumulation
at the walls. This is most likely due to the fact that at each time step, the Arakawa
Jacobian and the Hamiltonian of ξ vanish at the boundary y = ±Y.

5.2. A discontinuous shear flow. As an extreme test case, we consider a dis-
continuous shear flow given by

(31) v = (u (y) , 0)

where

(32) u (y) =

{

1 y > 0
−1 y < 0.

From the last equations in (2) we have:

u = u (y) = −
∂ψ

∂y
and v = 0 =

∂ψ

∂x
,
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Figure 5.2. One wavelength zonal slice plot at t=20 days of the vorticity
ω at y ≈ 1600 km. (A) -Arakawa method, (B)-ENO-4 scheme.

 Y
(1

00
0k

m
)

(A)−Exact solution,128x75

 

 

0 5 10 15 20 25 30 35 40
−5

0

5
(B)−Exact solution, 256x150

 

 

0 5 10 15 20 25 30 35 40
−5

0

5

 Y
(1

00
0k

m
)

(C)−Arakawa,128x75

 

 

0 5 10 15 20 25 30 35 40
−5

0

5

(D)−Arakawa,256x150

 

 

0 5 10 15 20 25 30 35 40
−5

0

5

X(1000 km)

 Y
(1

00
0k

m
)

(E)−ENO−4,128x75

 

 

0 5 10 15 20 25 30 35 40
−5

0

5

 (X(1000 km)

(F)−ENO−4,256x150

 

 

0 5 10 15 20 25 30 35 40
−5

0

5

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Figure 5.3. 2D structure of Rossby wave packet with k1 ≡ 4 and k2 ≡ 1.
at time t = 20 days. Contours of the vorticity and velocity profile (arrows)
for (C) and (D), using Arakawa method,(A) and (B) exact solution, and (E)
and (F) ENO-4 scheme.
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Figure 5.4. (A): L1-norm error in x-direction versus y at time t = 5 days
for Arakawa method. (B): same as in (A) but with ENO-4 scheme.

which gives

(33) ψ (y) =

{

−y y > 0
y y < 0

and

(34) ξ (y) = ∆ψ + y = −2δ0 + y,

where δ0 is the Dirac delta function at y = 0. Before we proceed for validation
runs, particular care needs to be taken with regards to the solutions given in (33)
and (34). We note that the discontinous shear flow is a solution to the barotropic
equation in the weak sense, i.e, in the sense of distributions. Thus, the Dirac delta
function is replaced by a regularization sequence (ρε), which converges towards δ0
when ε→ 0. Let

(35) ρε (y) =















0 |y| > ε
1

ε2
y +

1

ε
−ε ≤ y ≤ 0

−
1

ε2
y +

1

ε
0 ≤ y ≤ ε,

where ε is a small positive number. In our numerical solution, we take ε = ∆y for
the second-order method that couples the Arakawa Jacobian and the second order
Poisson solver, and ε = 8∆y for the fourth-order method (ENO-4). Where ∆y
is the grid spacing in the North-South direction. These are the smallest ε values
that work for the two methods, respectively. The ENO scheme doesn’t yield the
expected order of accuracy and blows up if a small perturbation is added on top
of the discontinuous shear when ǫ < 8∆y (results not reported here; see [11] for
more details). Non-homogeneous Neumann and homogeneous Dirichlet boundary
conditions are used at the wall for the stream-function and the potential vorticity,
respectively:
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Table 5.4. L1-norm relative error between the exact and the numerical
streamfunction using the Arakawa method in the case of the discontinuous
shear.

Grid L1 Error (at 20 days) order of accuracy
64× 38 6.41E − 04 1.88
128× 75 1.75E − 04 2.00
256× 150 4.35E − 05

Table 5.5. Same as Table 5.4 but with the ENO-4 scheme. L1 error on the
whole domain and its restriction to the smooth regions |y| > 8∆y.

Whole domain Smooth regions
Grid L1 Error order of accuracy L1 Error order of accuracy
64× 38 1.31E − 03 2.62 8.11E − 04 3.22
128× 75 2.15E − 04 2.93 8.77E − 05 3.26
256× 150 2.83E − 05 9.23E − 06

(36)
∂ψ

∂y
(Y ) = −1,

∂ψ

∂y
(−Y ) = 1

(37) ω = ξ − y = 0 at y = ±Y.

We report in table 5.4 the L1-norm relative error, with respect to the streamfunc-
tion ψ, between the exact and numerical solutions for three different grids, 64× 38,
128×75 and 256×150 at time 20 days, using the Arakawa Jacobian method for the
discontinuous shear flow. The same relative errors computed using the fourth-order
essentially non-oscillatory scheme are shown in table 5.5. Note that in Table 5.5,
both the L1 error on the whole domain and its restriction to the smooth region
away from y = 0, and the associated order of accuracy, are reported. In Figure 5.5,
the smoothed vorticity and streamfunction of the ”exact” and numerical solutions
are shown for the grid 128× 75 using the Arakawa Jacobian method. Figure 5.6 is
the same as Figure 5.5 but for the ENO-4 scheme.

We note that in this case of the discontinuous shear (exact) solution, none of
the schemes is expected to return its theoretical order of accuracy. However, as
we can see from Tables 5.4 and 5.5 and Figures 5.5 and 5.6, both the Arakawa
Jacobian and the ENO-4 methods reproduce the discontinuous shear solution with
great accuracy. However, it is interesting to note here that while Arakawa’s method
recovers the formal second order convergence (as shown on the last column of Table
5.4), the actual order of accuracy is less than 3 i.e way below the theoretical fourth
order convergence rate, unlike the smooth case in Table 5.3. This can be explained
in part by the fact that the Arakawa method uses a smoother ε = ∆y while ENO-4
necessitates ε = 8∆y. But for all practical purposes, both methods seem to yield
adequate results. When the error calculation for the ENO scheme is restricted
to the region of the domain where the solution is smooth, we recover an order
of accuracy larger than 3 but still smaller than 4. Due to the ellipticity of the
Poisson equation, the numerical “inaccuracy” which is otherwise concentrated near
the singularity propagates (with an infinite speed) to the rest of the domain. This
explains in part why even within the smooth regions of the domain fourth order
accuracy is not achieved as shown in Table 5.5.
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Figure 5.5. Three dimensional plots of the exact and numerical solutions,
128× 75 grid points using Arakawa method in the case of the discontinuous
Shear.

Figure 5.6. Same as in figure 5.5 but with ENO-4 scheme.

6. Summary and conclusion

This paper discusses the implementation of the Arakawa Jacobian method and
the fourth-order essentially non-oscillatory scheme (ENO-4) of Osher and Shu [15]
for solving the equatorial barotropic equations. The Arakawa Jacobian scheme [1]
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is a second order centered finite differences scheme that conserves energy and en-
strophy and it is specifically designed for the barotropic vorticity equation in (2).
As such, it is widely used in the atmosphere-ocean community. The fourth-order
essentially non-oscillatory scheme of Osher and Shu [15] however, is originally de-
signed for hyperbolic conservation laws and Hamilton-Jacobi equations, and is used
to track sharp fronts. Nonetheless, it can be implemented for any first order non-
linear evolution PDE, and in particular for the barotropic vorticity equation in
(2). The incompressible barotropic vorticity equation is considered in the advective
form and solved using the Arakawa Jacobian method and the ENO-4 scheme with
an explicit Runge-Kutta time integration. At each stage of the Runge-Kutta inte-
gration, the wind field was updated by solving a Poisson problem for the stream
function.

In a first test, the numerical schemes for the equatorial barotropic vorticity
equations using the Arakawa Jacobian and ENO-4 scheme are validated using a
known Rossby wave packet solution. It is shown that as expected the Arakawa
Jacobian method conserves energy and enstrophy nearly exactly and captures the
dispersive wave structure of the test solution with an overall second order accuracy.
The same properties are preserved by the ENO scheme and the large scale dispersive
wave is captured with an overall forth-order accuracy. In a second validation test,
we considered a discontinuous shear flow with a jump discontinuity at the equator,
which in theory, is an exact solution for the system (1), in the weak sense, despite
the jump discontinuity. Because the vorticity of the prescribed discontinuous shear
flow is a Dirac delta function, a smoothing procedure consisting of approximating
the delta function with the regularizing sequence (ρε), where ε, the width of the
smoothing region around the discontinuity, is set to ε = ∆y for Arakawa’s method
and ε = 8∆y for the ENO-4 scheme; ∆y is the grid spacing in North-South direction.
An examination of the rate of convergence, found by taking the ratio of error of two
grids at a given time, show that Arakawa’s method reproduces the discontinuous
shear solution with second order accuracy but the ENO-4 scheme is only third order
accurate, for the grids used here.

Comparing the two methods, Arakawa’s method is simpler to code and faster at
run-time. Moreover in the case of the discontinuous shear flow, the ENO-4 scheme’s
order of accuracy is reduced due to the regularizing sequence (ρε), which uses a
much larger ε value. A recent state of the art method for solving the barotropic
vorticity equation is a non-oscillatory central scheme by Khouider and Majda [12].
They showed that the non-oscillatory central scheme can accurately model equa-
torial waves. However, as demonstrated in [12], the central scheme suffers from a
serious problem of phase lagging. The numerical wave solution propagates slower
that it exact analog. As it can be surmised from Figure 5.2, the same issue seems
to occur her for Arakawa method but it is less severe than what was seen in [12].
The ENO scheme on the other hand, seems to produce a wave packet that moves
slightly faster. Moreover, the central scheme has a more serious problem of dis-
torting the shape of the wave because various parts of the wave may be lagged
differently, as shown in [4] for the case of equatorially trapped waves. This is due
to the systematic averaging along grid cells that characterizes the central scheme
[4]. The objective of this numerical solution of the barotropic system by the two
methods described in this paper is a search for an adequate numerical method to
study the barotropic instability on the equatorial beta-plane. This is pursued in
[11].
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