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UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE

ELEMENT METHODS FOR THE STOKES EQUATIONS

JUNPING WANG, YANQIU WANG, AND XIU YE

Abstract. This paper is concerned with residual type a posteriori error estimators for finite
element methods for the Stokes equations. In particular, the authors established a unified ap-
proach for deriving and analyzing a posteriori error estimators for velocity-pressure based finite
element formulations for the Stokes equations. A general a posteriori error estimator was pre-
sented with a unified mathematical analysis for the general finite element formulation that covers
conforming, non-conforming, and discontinuous Galerkin methods as examples. The key behind
the mathematical analysis is the use of a lifting operator from discontinuous finite element spaces
to continuous ones for which all the terms involving jumps at interior edges disappear.
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1. Introduction

A posteriori error estimator refers to a computable formula that offers a measure
for judging the reliability and efficiency of a particular numerical scheme employed
for approximating the solution of partial differential equations or alike. With a
mathematically justified a posteriori error estimator, one would be able to generate
a mesh that is tailored at reducing computational errors at places of great need.
This process is commonly known as adaptive mesh refinement which has become
a useful and important tool in today’s scientific and engineering computing. The
goal of this paper is to offer a systematic framework for developing and analyzing a
posteriori error estimators for finite element methods for model Stokes equations.

This paper is concerned with residual type a posteriori error estimators. In other
words, the computable formula for judging the efficiency and reliability of numerical
schemes shall be given by functions of residuals. Along this avenue, several fine
results have been developed for finite element methods for the Stokes equations.
For conforming finite element methods, some a posteriori error estimators have
been derived for mini-elements by Verfurth [21] and Bank-Welfert [4]. Ainsworth-
Oden [3] and Nobile [18] have considered more general conforming finite elements
in their study. For nonconforming finite elements, a posteriori error estimation for
the Crouzeix-Raviart element [8] has been developed by several researchers such
as Verfurth [22], Dari-Durán-Padra [9] and Doerfler-Ainsworth [10]. Carstensen,
Gudi, and Jensen [5] proposed and analyzed an a posteriori error estimator for
discontinuous Galerkin methods by using a stress-velocity-pressure formulation for
the Stokes equations. Kay and Silvester [16] established a posteriori error estimation
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for the stabilized finite element formulation. The recovery based a posteriori error
estimate for the Stokes equations is investigated in [12].

In both [9] and [10], the analysis for their a posteriori error estimators was based
on a Helmholtz decomposition for decomposing the Crouzeix-Raviart element into
two parts: an exactly divergence-free part and the second as its orthogonal com-
plement. While the Helmholtz decomposition offers an applaudable approach for
analyzing the efficiency and reliability of a posteriori error estimators for the Stokes
equations, the method has difficulty in being extended to finite element approxima-
tions arising from discontinuous Galerkin methods. The main difficulty comes from
the fact that the approximate velocity field from the discontinuous finite element
methods is not divergence-free in the classical sense. Therefore, other analytical
techniques have been developed for discontinuous finite elements; but most of them
requires special and unnecessary properties about the finite element mesh. For
example, Houston, Schötzau and Wihler [14] have developed an a posteriori er-
ror analysis for the discontinuous Qk − Qk−1 element on partitions consisting of
parallelograms only.

In this paper, we establish a unified approach for deriving and analyzing a pos-
teriori error estimators of residual type for velocity-pressure based formulations
of the Stokes equations. In particular, we shall develop a general finite element
formulation that covers conforming, non-conforming, and discontinuous Galerkin
methods as examples. Then, a general a posteriori error estimator shall be present-
ed with a unified mathematical analysis. The key behind the analysis is the use of
a lifting operator from discontinuous finite element spaces to continuous ones for
which all the terms involving jumps at interior edges disappear. A similar lifting
operator was employed by Karakashian and Pascal [15] for analyzing a posteriori
error estimates for a discontinuous Galerkin approximation to second order elliptic
equations.

The paper is organized as follows. In Section 2, a model Stokes problem and
some notations are introduced. In Section 3, we shall first present a general finite
element formulation for the Stokes equations, and then illustrate how most existing
conforming, nonconforming, and discontinuous Galerkin methods be represented by
the general framework. In Section 4, we establish an analytical tool for analyzing
the general a posteriori error estimator of residual type. Finally in Section 5, we
present some numerical results to confirm the theory developed in previous sections.

2. Preliminaries and notations

Let Ω be an open bounded domain in Rd, d = 2, 3. Denote by ∂Ω the boundary
of Ω. The model problem seeks a velocity function u and a pressure function p

satisfying

−∆u+∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on ∂Ω,(3)

where ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence operators,
respectively, and f is the external volumetric force acting on the fluid.

For simplicity, the algorithm and its analysis will be presented for the model
Stokes problem (1)-(3) only in two-dimensional spaces (i.e.; d = 2) with polygonal
domains. An extension to the Stokes problem in three dimensions can be made
formally for general polyhedral domains.
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For any given polygon D ⊆ Ω, we use the standard definition of Sobolev spaces
Hs(D) with s ≥ 0 (e.g., see [1, 6] for details). The associated inner product, norm,
and seminorms in Hs(D) are denoted by (·, ·)s,D, ‖ · ‖s,D, and | · |r,D, 0 ≤ r ≤ s,
respectively. When s = 0, H0(D) coincides with the space of square integrable
functions L2(D). In this case, the subscript s is suppressed from the notation
of norm, semi-norm, and inner products. Furthermore, the subscript D is also
suppressed when D = Ω. Denote by L2

0(D) the subspace of L2(D) consisting of
functions with mean value zero.

The above definition/notation can easily be extended to vector-valued and matrix-
valued functions. The norm, semi-norms, and inner-product for such functions shall
follow the same naming convention. In addition, all these definitions can be trans-
ferred from a polygonal domain D to an edge e, a domain with lower dimension.
Similar notation system will be employed. For example, ‖ · ‖s,e and ‖ · ‖e would
denote the norm in Hs(e) and L2(e) etc.

Throughout the paper, we follow the convention that a bold Latin letter denotes
a vector. Let u = [ui]1≤i≤2, v = [vi]1≤i≤2 be two vectors, and σ = [σij ]1≤i,j≤2,
τ = [τij ]1≤i,j≤2 be two matrices, define

∇v =

(

∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)

, ∇ · v =
∂v1

∂x
+

∂v2

∂y
,

u⊗ v =

(

u1v1 u1v2
u2v1 u2v2

)

, σ : τ =
2
∑

i,j=1

σijτij ,

v · σ =

(

σ11v1 + σ12v2
σ21v1 + σ22v2

)

, v · σ · u =

2
∑

i,j=1

σijuivj .

It is not hard to see that

σ : (u⊗ v) = v · σ · u.
Let Th be a geometrically conformal triangulation of the domain Ω; i.e., the

intersection of any two triangles in Th is either empty, a common vertex, or a
common edge. Denote by hT the diameter of triangle T ∈ Th, and h the maximum
of all hT . We assume that Th is shape regular in the sense that for each T ∈ Th, the
ratio between hT and the diameter of the inscribed circle is bounded from above.
The shape regularity of Th ensures a validity of the inverse inequality for finite
element functions. In addition, shape regularity allows one to apply the routine
scaling arguments in finite element analysis.

Let us introduce two finite dimensional spaces Vs and Pt as follows:

Vs = {v ∈ V : v|T ∈ [Ps(T )]
2, for all T ∈ Th},

Pt = {q ∈ L2
0(Ω) : q|T ∈ Pt(T ), for all T ∈ Th},

where V = [L2(Ω)]2 or [H1
0 (Ω)]

2, s and t are non-negative integers, and Pk(T ) is the
set of polynomials of degree no more than k on T . A finite element method usually
seeks discrete velocity and pressure approximations in some subspaces Vh ⊆ Vs and
Qh ⊆ Qt. Certain continuity condition may be imposed on Vh and Qh, depending
on the type of finite elements. For a posteriori error estimates only, Vh and Qh are
not required to satisfy the discrete inf-sup condition. However, we do need to make
the following assumption

(4) {v ∈ [H1
0 (Ω)]

2 : v|T ∈ [P1(T )]
2, for all T ∈ Th} ⊆ Vh,
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in the analysis of the a posteriori error estimates. For a finite element partition Th,
with triangles only, (4) is satisfied as long as k, order of the polynomials, is no less
than 1. Therefore, the assumption (4) is reasonable and examples that satisfy it
will be given later.

Denote by Eh the set of all edges in Th, and denote by E0
h := Eh\∂Ω the collection

of all interior edges. Next, we define the average and jump on edges for scalar-valued
function q, vector-valued function w, and matrix-valued function τ , respectively.
For any interior edge e ∈ E0

h, let T1, T2 be two triangles sharing e and n1 and n2

be the unit outward normal vectors on e, associated with T1 and T2, respectively.
Define the average {·} and jump [·] on e by

{q} =
1

2
(q|T1

+ q|T2
), [[q]] = q|T1

n1 + q|T2
n2,

{w} =
1

2
(w|T1

+w|T2
), [[w]] = w|T1

· n1 +w|T2
· n2,

{τ} =
1

2
(τ |T1

+ τ |T2
), [[τ ]] = n1 · τ |T1

+ n2 · τ |T2
.

We also define a matrix-valued jump [·] for w on e by

[w] = w|T1
⊗ n1 +w|T2

⊗ n2.

If e is a boundary edge, the above definitions need to be adjusted accordingly so
that both the average and the jump are equal to the one-sided values on e. That
is,

{q} = q|e, {w} = w|e, {τ} = τ |e,
[[q]] = q|en, [[w]] = w|e · n, [[τ ]] = n · τ |e,
[w] = w|e ⊗ n,

where n is the unit outward normal of Ω.
Let q, v and τ be scalar-, vector-, and matrix-valued functions that are regular

enough to make all involving terms well-defined, then the following identities are
standard [2]:

∑

T∈Th

∫

∂T

q v · n ds =
∑

e∈E0

h

∫

e

[[q]] · {v} ds+
∑

e∈Eh

∫

e

{q}[[v]] ds,(5)

∑

T∈Th

∫

∂T

n · τ · v ds =
∑

e∈E0

h

∫

e

[[τ ]] · {v} ds+
∑

e∈Eh

∫

e

{τ} : [v] ds.(6)

3. Finite element formulation

We first derive a general weak formulation for the Stokes equations that covers
a set of existing numerical methods including discontinuous Galerkin, conforming
finite elements, and some nonconforming finite element schemes. To this end, let v
and w be vector-valued functions, and we introduce the following notation

(v, w)Th
:=

∑

K∈Th

∫

K

v ·w dx,

(v, w)Eh
:=
∑

e∈Eh

∫

e

v ·w ds.

Testing the momentum equation (1) by v ∈ Vh yields

(7) −(∆u, v) + (∇p, v) = (f , v).
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Next, using integration by parts, Equation (6) and the fact that [[∇u]] = 0 on all
e ∈ E0

h, we have

−(∆u, v) = (∇u, ∇v)Th
−
∑

K∈Th

∫

∂K

n · ∇u · v ds

= (∇u, ∇v)Th
− ({∇u}, [v])Eh

.

Analogously, since [[p]] = 0 on all e ∈ E0
h, then by using Equation (5) we arrive at

(∇p, v) = −(∇ · v, p)Th
+
∑

K∈Th

∫

∂K

v · n p ds

= −(∇ · v, p)Th
+ ({p}, [[v]])Eh

.

Thus, (7) can be rewritten as

(8) (∇u, ∇v)Th
− ({∇u}, [v])Eh

− (∇ · v, p)Th
+ ({p}, [[v]])Eh

= (f , v).

The mass conservation equation (2) can be tested by using any q ∈ Qh, yielding

(9) (∇ · u, q)Th
= 0.

In order to derive a general weak formulation, we introduce the following bilinear
forms:

a(u,v) := (∇u,∇v)Th

−γ

(

({∇u}, [v])Eh
+ δ({∇v}, [u])Eh

− α(h−1
e [u], [v])Eh

)

,(10)

b(v, p) := −(∇ · v, p)Th
+ γ([[v]], {p})Eh

,(11)

where γ = 0 or 1, δ = 1, −1 or 0, and α ≥ 0 are parameters with various values.
The general weak formulation for the Stokes equations is then given as follows:

• Algorithm G: Find (uh; ph) ∈ Vh ×Qh such that

a(uh,v) + b(v, ph) = (f ,v),(12)

b(uh, q) = 0(13)

for all (v; q) ∈ Vh ×Qh.

When γ = 1, it is not hard to see that system (12)-(13) is consistent with the
system (8)-(9), as the exact solution of the Stokes problem satisfies [[u]] = 0 and
[u] = 0 on all e ∈ Eh. When γ = 0, these two systems are in general not consistent.
It should be pointed out that by choosing different values of γ and the spaces Vh

and Qh, Algorithm G represents different types of finite element formulations.
For illustrative purpose, we shall list three most important examples; all of which
satisfy the assumption (4) on Vh.

• Example 1: Discontinuous Galerkin. Set γ = 1 and

Vh ⊆ {v ∈ [L2(Ω)]2 : v|T ∈ [Ps(T )]
2, for all T ∈ Th},

Qh ⊆ {q ∈ L2
0(Ω) : q|T ∈ Pt(T ), for all T ∈ Th}.

When δ = 1, the corresponding formulation is symmetric. One example
of such a discontinuous Galerkin formulation was discussed in [25], where
Vh, Qh are chosen to be H(div) conforming elements and the well-known
inf-sup condition was inherited to be valid.
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• Example 2: Conforming finite element method. Set γ = 1 and

Vh ⊆ {v ∈ [H1
0 (Ω)]

2 : v|T ∈ [Ps(T )]
2, for all T ∈ Th},

Qh ⊆ {q ∈ L2
0(Ω) : q|T ∈ Pt(T ), for all T ∈ Th}.

By the continuity requirement on Vh, we easily see that the two bilinear
forms are simplified to

a(v,w) = (∇v,∇w),

b(v, q) = −(∇ · v, q).
The conforming finite element scheme is one of the most well-studied for-
mulations for the Stokes problems. Later in the section for numerical ex-
periments, we shall consider one such element, namely, the Taylor-Hood
element [13].

• Example 3: Nonconforming finite element method. Set γ = 0 and
chose a finite element space Vh such that Vh * [H1

0 (Ω)]
2. This gives some

nonconforming finite element methods, depending on the selection of Vh

and Qh. In this paper, we only consider nonconforming finite elements
which satisfies the following condition:

Assumption (H):

({∇u− pI}, [v])Eh
= 0 for all u, v ∈ Vh, p ∈ Qh,

where I is the 2×2 identity matrix. It is not hard to see that the Crouzeix-
Raviart type nonconforming elements [8, 11, 7] satisfy this assumption,
because by its definition, {∇u− pI} is a polynomial one degree lower than
[v] and [v] vanishes at all Gaussian points on each edge e ∈ Eh.

The goal of this manuscript is to provide a tool that can be employed to analyze
a posteriori error estimators for the unified formulation (12)-(13). To this end, we
first derive an orthogonality property of the error between the exact solution and
its finite element approximation:

e = u− uh, ǫ = p− ph.

By subtracting (12) from (8) and using ({ph}, [[v]])Eh
= ({phI}, [v])Eh

, we have

(∇e,∇v)Th
− ({∇e}, [v])Eh

+ γ

(

δ({∇v}, [uh])Eh
− α(h−1

e [uh], [v])Eh

)

− (∇ · v, ǫ)Th
+ ({ǫ}, [[v]])Eh

− (1− γ)({∇uh − phI}, [v])Eh
= 0.

Note that for all of the above-mentioned discontinuous Galerkin, conforming and
nonconforming cases, we must have

(14) (1− γ)({∇uh − phI}, [v])Eh
= 0.

In fact, (14) follows from γ = 1 for the discontinuous Galerkin and the conforming
cases, and from Assumption (H) for the nonconforming case. Combining this and
the fact that [u] = 0 on all edges, the above equation can be rewritten as

(15)
(∇e,∇v)Th

− ({∇e}, [v])Eh
− γ

(

δ({∇v}, [e])Eh
− α(h−1

e [e], [v])Eh

)

− (∇ · v, ǫ)Th
+ ({ǫ}, [[v]])Eh

= 0.

Moreover, if v ∈ Vh ∩ [H1
0 (Ω)]

2, then (15) becomes

(16) (∇e,∇v)Th
+ γδ({∇v}, [uh])Eh

− (∇ · v, ǫ)Th
= 0.



UNIFIED A POSTERIORI ERROR ESTIMATE FOR STOKES EQUATIONS 557

Next, we introduce a norm ||| · ||| for the space [H1
0 (Ω)]

2 + Vh as follows

(17) |||v|||2 =
∑

T∈Th

|v|21,T +
∑

e∈Eh

h−1
e ‖[v]‖2e.

For a well-crafted numerical scheme, we usually expect to have an a priori error
estimate like the following

(18) |||e|||+ ‖ǫ‖ ≤ Chk+1 (|u|k+1 + |p|k) ,
where C is a positive constant and k is determined by the order of the corresponding
finite elements and the regularity of the exact solution (u; p). For some elements,
the a priori error estimate (18) may have variations on the right-hand side, but
this does not affect our analysis to be presented. A priori error estimation like (18)
is well known for conforming finite element methods, for which |||v||| = |v|1. Such
an estimate is also known for some discontinuous Galerkin formulations; e.g., see
[24, 25] for an approach with H(div)-elements. For nonconforming finite elements,
such as the Crouzeix-Raviart type elements, similar error estimates hold true due
to the fact that the jump term, [uh], vanishes at all Gaussian points on the edge
e. In fact, for any interior edge e shared by two elements T1 and T2, let ē be the
average value of e on edge e. Since [e] = −[uh] vanishes at all Gaussian points on
the edge e, then ē has the same value when the trace of e was taken from either T1

or T2. Hence,

h−1
e ‖[e]‖2e = h−1

e ‖[e− ē]‖2e
≤ 2h−1

e

∑

T1,T2

‖e− ē‖2e∩∂Ti

≤ C
∑

T1,T2

|e|21,Ti
.

Consequently, we have
∑

e∈Eh

h−1
e ‖[e]‖2e ≤ C

∑

T∈Th

|e|21,T .

Therefore, |||e||| is in the same order as
∑

T∈Th
|e|21,T for the Crouzeix-Raviart type

elements. The analysis here shows that the norm ||| · ||| as defined in (17) is a
reasonable one to use in the a priori and later the a posteriori error estimates for
the unified formulation (12)-(13).

4. A posteriori error estimation

The goal of this section is to derive an a posteriori error estimation for the
Algorithm G by using a unified framework. For simplicity of notation, we shall
use “.” to denote “less than or equal to up to a constant independent of the mesh
size, variables, or other parameters appearing in the inequality”. To this end, define

J1(∇uh − phI) =

{

[[∇uh − phI]] on e ∈ E0
h,

0 on boundary edges,

and

J2(uh) =

{

[uh] on e ∈ E0
h,

2uh ⊗ n on boundary edges.

Our residual-based global error estimator is given by

(19) η2 =
∑

T∈Th

η2T ,
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where
η2T =h2

T ‖fh +∆uh −∇ph‖2T + ‖∇ · uh‖2T

+
1

2

∑

e∈Eh

∫

e

(

heJ1(∇uh − phI)
2 + h−1

e J2(uh)
2
)

ds,

with he being the length of edge e, and fh the L2 projection of the load function
f onto Vh. It is also convenient to introduce an oscillation quantity for the load
function f on Th as follows

osc(f) =

(

∑

T∈Th

h2
T ‖f − fh‖2T

)1/2

.

Our ultimate goal is to establish the following result.

Theorem 1. Let (u; p) be the solution of (1)-(2), and (uh; ph) be its finite element
approximation arising from (12)-(13). Then, one has

(20)

(

∑

T∈Th

‖∇(u− uh)‖2T

)1/2

+ ‖p− ph‖ . η + osc(f)

and

(21) η .

(

∑

T∈Th

‖∇(u− uh)‖2T

)1/2

+ ‖p− ph‖+ osc(f).

For convenience, the relation (20) is referred to as a reliability estimate and (21)
as an efficiency estimate.

4.1. A lifting operator and some technical estimates. Define H1(Th) =
∏

T∈Th
H1(T ) and Sk =

∏

T∈Th
Pk(T ). For any triangle T ∈ Th, denote by T (T )

the set of all triangles in Th having a nonempty intersect with T , including T itself.
Denote by E(T ) the set of all edges in Eh having a nonempty intersection with T ,
including all three edges of T . Similarly, for any point x in Ω, denote by E(x) the
set of all edges that pass through x. Note that E(x) is nonempty only when x

lies on Eh. Let e be an edge of triangle T . For any v ∈ Sk, let us define a lifting
operator

(22) Lk : v → Lk(v) ∈ Sk ∩H1
0 (Ω)

that lifts a discontinuous piecewise polynomial to a continuous piecewise polynomial
with vanishing boundary trace as follows. Let Gk(T ) be the set of all Lagrangian
nodal points for Pk(T ). At all internal Lagrangian nodal points xj ∈ Gk(T ), we
set Lk(v)(xj) = v(xj). At boundary Lagrangian points xj ∈ Gk(T ) ∩ ∂T , we let
Lk(v)(xj) be either a trace of v from any side or a prescribed weighted average of all
possible traces. At global Lagrangian points xj ∈ ∂T ∩ ∂Ω, we set Lk(v)(xj) = 0.

Note that for any function g ∈ H1(T ) the following estimate holds:

(23) ‖g‖2e . h−1
T ‖g‖2T + hT ‖∇g‖2T .

Lemma 1. For any v ∈ Sk, k ≥ 1, the lifting operator Lk as defined in (22)
satisfies the following estimate:

(24) ‖v − Lk(v)‖2T + h2
T ‖∇(v − Lk(v))‖2T .

∑

e∈E(T )

he‖[[v]]‖2e ∀T ∈ Th.
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Proof. The proof follows from a routine scaling argument and the fact that all
norms on finite dimensional spaces are equivalent. To this end, we observe that

‖v − Lk(v)‖2T + h2
T ‖∇(v − Lk(v))‖2T . h2

T

∑

xj∈Gk(T )

|(v − Lk(v))(xj)|2,

where Gk(T ) is the set of all Lagrangian nodal points for Pk(T ). For simplicity, let
Lk(v) be defined by taking a random one-sided trace on the boundary Lagrangian
points. It follows from the definition of Lk that v − Lk(v) vanishes at all internal
Lagrangian points in T . At Lagrangian points on ∂T , there are two possibilities:
(1) xj is in the interior of an edge e; (2) xj is a vertex of T . In the first case, we see
that |(v − Lk(v))(xj)| is either 0 or |[[v]]e(xj)|, where [[v]]e denotes the jump on e.
In the second case, we can use the triangle inequality to traverse through all edges
e ∈ E(xj) and to obtain

|(v − Lk(v))(xj)| ≤
∑

e∈E(xj)

|[[v]]e(xj)|.

The above analysis, together with the shape regularity of Th, implies that
∑

xj∈Gk(T )

|(v − Lk(v))(xj)|2 .
∑

e∈E(T )

∑

xj∈Gk(e)

|[[v]]e(xj)|2,

where Gk(e) was used to denote the corresponding Lagrangian points on edge e.
Then, using the routine scaling argument on edges, inequality (24) follows imme-
diately. �

The following is another result that turns out to be very useful in the forthcoming
analysis.

Lemma 2. For any v ∈ H1(Th), there exists a vI ∈ Sk ∩H1
0 (Ω), k ≥ 1, satisfying

(25)

‖v − vI‖2T + h2
T ‖∇(v − vI)‖2T .

∑

T ′∈T (T )

h2
T ′‖∇v‖2T ′ +

∑

e∈E(T )

he‖[[v]]‖2e ∀T ∈ Th.

Proof. First of all, there exists a piecewise constant v0 ∈ Sk (e.g., the cell average
of v) such that

(26) ‖v − v0‖2T + h2
T ‖∇(v − v0)‖2T . h2

T ‖∇v‖2T ∀T ∈ Th.

Furthermore, by the approximation property, inequality (23) and the shape regu-
larity of Th, we have for each e ∈ E0

h

(27)

he‖[[v0]]‖2e = he

∫

e

∣

∣

∣

∣

v0|T1
n1 + v0|T2

n2

∣

∣

∣

∣

2

ds

≤ he

∫

e

∣

∣

∣

∣

(v0 − v)|T1
n1

∣

∣

∣

∣

2

ds+ he

∫

e

∣

∣

∣

∣

(v0 − v)|T2
n2

∣

∣

∣

∣

2

ds+ he‖[[v]]‖2e

. h2
T1
‖∇v‖2T1

+ h2
T2
‖∇v‖2T2

+ he‖[[v]]‖2e,

where T1 and T2 are the two triangles sharing e as a common edge. On boundary
edges, similar result can obviously be obtained without any difficulty.

Since v0 ∈ Sk with k = 1, according to Lemma 1, one may lift v0 to a continuous
piecewise linear function L1(v0) ∈ S1 ∩ H1

0 (Ω) which satisfies (24). By taking
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vI = L1(v0), we obtain from the usual triangle inequality, (26), and (27) that

‖v − vI‖2T + h2
T ‖∇(v − vI)‖2T ≤‖v − v0‖2T + h2

T ‖∇(v − v0)‖2T
+ ‖v0 − L1(v0)‖2T + h2

T ‖∇(v0 − L1(v0))‖2T
.h2

T ‖∇v‖2T +
∑

e∈E(T )

he‖[[v0]]‖2e

.
∑

T ′∈T (T )

h2
T ′‖∇v‖2T ′ +

∑

e∈E(T )

he‖[[v]]‖2e,

which completes the proof. �

4.2. Reliability estimate. We first establish an estimate for the pressure error
in terms of the a priori error estimator and the velocity error. The result can be
stated as follows.

Lemma 3. Let (u; p) be the solution of (1)-(2) and (uh; ph) be its finite element
approximation arising from (12)-(13). Then, we have

(28) ‖p− ph‖ . η + osc(f) +

(

∑

T∈Th

‖∇(u− uh)‖2T

)1/2

.

Proof. Let v ∈ [H1
0 (Ω)]

2 and vI ∈ Vh ∩ [H1
0 (Ω)]

2 be an interpolation of v such that
both components satisfy (25). Observe that such an interpolation vI is possible if
Vh satisfies the assumption (4). Note that [[v]] = 0 on every edge since v ∈ [H1

0 (Ω)]
2.

Let e = u − uh and ǫ = p − ph be the error for velocity and pressure approxi-
mations, respectively. Using integration by parts, (6), (16), (23), (25), and the fact
that both v and vI are continuous across each interior, we arrive at

(∇ · v, ǫ) = (∇ · (v − vI), ǫ) + (∇ · vI , ǫ)

= (∇ · (v − vI), ǫ) + (∇e, ∇vI)Th
+ γδ({∇vI}, [e])Eh

= (∇(v − vI), ǫI −∇e)Th
+ (∇e, ∇v)Th

+ γδ({∇vI}, [e])Eh

= −(f +∆uh −∇ph, v − vI)Th
+ ({v − vI}, [[∇uh − phI]])E0

h

−γδ({∇vI}, [uh])Eh
+ (∇e, ∇v)Th

. ‖v‖1
(

(
∑

T∈Th

h2
T ‖f +∆uh −∇ph‖2T )1/2 + (

∑

e∈E0

h

he‖[[∇uh − phI]]‖2e)1/2

+(
∑

e∈Eh

h−1
e ‖[uh]‖2e)1/2 + (

∑

T∈Th

‖∇e‖2T )1/2
)

,

which, together with the following inf-sup condition

(29) ‖p− ph‖ . sup
v∈[H1

0
(Ω)]2

(∇ · v, p− ph)

‖v‖1

yields the required estimate (28). �

The next result is concerned with an estimate for the velocity approximation,
which can be stated as follow.
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Theorem 2. Let (u; p) and (uh; ph) be the solutions of (1)-(2) and (12)-(13). Then
one has the following global reliability estimate:

(30)

(

∑

T∈Th

‖∇(u− uh)‖2T

)1/2

. η + osc(f).

Substituting (30) into (28) yields the following estimate for the pressure approxi-
mation:

(31) ‖p− ph‖ . η + osc(f).

Thus, it follows from the definition of ||| · ||| that

|||e|||+ ‖ǫ‖ . η + osc(f).

Proof. Let eI ∈ Vh ∩ [H1
0 (Ω)]

2 be an interpolation of e satisfying (25). Again, such
a choice of eI is possible because Vh was assumed to satisfy (4). Observe that
[[e]] = −[[uh]]. Thus, it follows from (25) and the mesh regularity that

(32) ‖e−eI‖2T+h2
T ‖∇(e−eI)‖2T . h2

T





∑

T ′∈T (T )

‖∇e‖2T ′ +
∑

e∈E(T )

h−1
e ‖J2(uh)‖2e



 .

Using (16), integration by parts, (6), and the fact that eI , u,∇u, p are continuous
across all interior edges, we obtain

(∇e, ∇e)Th
= (∇e, ∇(e− eI))Th

+ (∇e, ∇eI)Th

= (∇e, ∇(e− eI))Th
+ (∇ · eI , ǫ)− γδ({∇eI}, [e])Eh

= (∇(e− eI), ∇e− ǫI)Th
+ (∇ · e, ǫ)Th

− γδ({∇eI}, [e])Eh

= (f +∆uh −∇ph, e− eI)Th
+ (∇ · e, ǫ)Th

− γδ({∇eI}, [e])Eh

−({e− eI}, [[∇uh − phI]])E0

h
− ({∇e− ǫI}, [uh])Eh

= (f +∆uh −∇ph, e− eI)Th
+ (∇ · e, ǫ)Th

− γδ({∇eI}, [e])Eh

−({e− eI}, [[∇uh − phI]])E0

h
− ({∇e− ǫI}, [uh − χ])Eh

= I1 + I2 + I3 + I4 + I5;(33)

where χ = Lk(uh) ∈ Vh∩[H1
0 (Ω)]

2 is a continuous interpolation of uh such that (24)
is satisfied, and Ij represents the corresponding term from the previous equation.
The first term I1 can be estimated by using the inequality (32) as follows

|I1| ≤
(

∑

T∈Th

h2
T ‖f +∆uh −∇ph‖2T

)
1

2

(

∑

T∈Th

h−2
T ‖e− eI‖2T

)
1

2

.

(

∑

T∈Th

h2
T ‖f +∆uh −∇ph‖2T

)
1

2

(

∑

T∈Th

‖∇e‖2T +
∑

e∈Eh

h−1
e ‖J2(uh)‖2e

)
1

2

. (η + osc(f))



η +

(

∑

T∈Th

‖∇e‖2T

)1/2


 .(34)
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The term I2 can be handled by using (28) and the fact that ∇ · e = −∇ · uh as
follows

|I2| ≤
(

∑

T∈Th

‖∇ · uh‖2T

)1/2

‖p− ph‖

. η



η + osc(f) +

(

∑

T∈Th

‖∇e‖2T

)1/2


 .(35)

Using [e] = −[uh] and the estimate (32), the term I3 can be bounded as follows

|I3| ≤ |γδ|
(

∑

e∈Eh

he‖∇eI‖2e

)
1

2

(

∑

e∈Eh

h−1
e ‖[uh]‖2e

)
1

2

.

(

∑

T∈Th

‖∇eI‖2T

)
1

2

(

∑

e∈Eh

h−1
e ‖[uh]‖2e

)
1

2

.

(

∑

T∈Th

‖∇e‖2T +
∑

e∈Eh

h−1
e ‖[uh]‖2e

)
1

2

(

∑

e∈Eh

h−1
e ‖[uh]‖2e

)
1

2

.





(

∑

T∈Th

‖∇e‖2T

)
1

2

+ η



 η.(36)

The same argument can be applied to provide an estimate for the term I4:

|I4| ≤





(

∑

T∈Th

‖∇e‖2T

)
1

2

+ η



 η.(37)

As to I5, we first use (15) to obtain

−I5 =({∇e− ǫI}, [uh − χ])Eh

=({∇e}, [uh − χ])Eh
− ({ǫ}, [[uh − χ]])Eh

=(∇e, ∇(uh − χ))Th
− γδ({∇(uh − χ)}, [e])Eh

+ γα(h−1
e [uh − χ], [e])Eh

− (∇ · (uh − χ), ǫ)Th

=(∇e, ∇(uh − χ))Th
− γδ({∇(uh − χ)}, [e])Eh

− γα(h−1
e [uh], [uh])Eh

− (∇ · (uh − χ), ǫ)Th

=J1 + J2 + J3 + J4.

Recall that χ = Lk(uh) is a lift of uh so that the estimate (24) holds true. It follows
from (24) that

|J1| ≤ η

(

∑

T∈Th

‖∇e‖2T

)
1

2

Next, we use [e] = −[uh] to obtain

|J2| ≤ |γδ|
∑

e∈Eh

‖∇(uh − Lk(uh))‖e‖[uh]‖e,

which, with the help of (23) and (24), can be bounded by

|J2| . η2.
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It is obvious that |J3| . η2, and it follows from (28) and (24) that

|J4| . η
(

η + osc(f) + (∇e, ∇e)
1

2

Th

)

.

Collecting all the estimates for Js yields

(38) |I5| . η
(

η + osc(f) + (∇e, ∇e)
1

2

Th

)

.

Now we substitute all the estimates for Is into (33) to obtain

(∇e, ∇e)Th
. (η + osc(f))



η + osc(f) +

(

∑

T∈Th

‖∇e‖2T

)1/2




≤ 3

2
(η + osc(f))2 +

1

2
(∇e, ∇e)Th

.

This completes the proof of (30). �

4.3. Efficiency. We first define two bubble functions, which are widely used in a
posteriori error estimations [23].

For each triangle T ∈ Th, denote by φT the following bubble function

φT =

{

27λ1λ2λ3 in T,

0 in Ω\T,

where λi, i = 1, 2, 3 are barycentric coordinates on T . It is clear that φT ∈ H1
0 (Ω)

and satisfies the following properties [23]:

• For any polynomial q with degree at most m, there exist positive constants
cm and Cm, depending only on m, such that

cm‖q‖2T ≤
∫

T

q2φT dx ≤ ‖q‖2T ,(39)

‖∇(qφT )‖T ≤ Cmh−1
T ‖q‖T .(40)

For each e ∈ E0
h, we can analogously define an edge bubble function φe. Let T1

and T2 be two triangles sharing the edge e. To this end, denote by ωe = T1 ∪ T2

the union of the elements T1 and T2. Assume that in Ti, i = 1, 2, the barycentric
coordinates associated with the two ends of e are λTi

1 and λTi

2 , respectively. The
edge bubble function can be defined as follows

φe =











4λT1

1 λT1

2 in T1,

4λT2

1 λT2

2 in T2,

0 in Ω\ωe.

Then φe ∈ H1
0 (Ω) and satisfies the following properties [23]:

• For any polynomial q with degree at most m, there exist positive constants
dm, Dm and Em, depending only on m, such that

dm‖q‖2e ≤
∫

e

q2φe ds ≤ ‖q‖2e,(41)

‖∇(qφe)‖ωe
≤ Dmh−1/2

e ‖q‖e,(42)

‖qφe‖ωe
≤ Emh1/2

e ‖q‖e.(43)

Then we have the following efficiency bound.
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Theorem 3. Let (u; p) and (uh; ph) be the solutions of (1)-(2) and (12)-(13),
respectively. Then for all T ∈ Th and e ∈ E0

h, we have

hT ‖fh +∆uh −∇ph‖T . ‖∇e‖T + ‖ǫ‖T + hT ‖f − fh‖T ,(44)

h1/2
e ‖J1(∇uh − phI)‖e . he‖f − fh‖ωe

+

(

∑

T∈ωe

‖∇e‖2T

)1/2

+ ‖ǫ‖ωe
,(45)

‖∇ · uh‖T ≤ ‖∇e‖T .(46)

By summing the above estimates over all element T ∈ Th and edges e ∈ Eh, we
obtain the following efficiency estimate:

η . |||e|||+ ‖ǫ‖+ osc(f).

Proof. Let wT = (fh +∆uh −∇ph)φT . Since f = −∆u+∇p and wT vanishes on
∂T , we clearly have

(f − fh, wT )T + (fh +∆uh −∇ph, wT )T = (∇e, ∇wT )T − (∇ ·wT , ǫ )T .

Then, by inequalities (39)-(40),

‖fh +∆uh −∇ph‖2T . (fh +∆uh −∇ph, wT )T

= (∇e, ∇wT )T − (∇ ·wT , ǫ )T − (f − fh, wT )T

.

(

‖∇e‖T + ‖ǫ‖T
)

‖∇wT ‖T + ‖f − fh‖T ‖wT ‖T

.

(

h−1
T ‖∇e‖T + h−1

T ‖ǫ‖T + ‖f − fh‖T
)

‖fh +∆uh −∇ph‖T .

This completes the proof of (44).
Similarly, for any e ∈ E0

h, let we = ([[∇uh − phI]])φe. Using integration by parts
and the fact that we = 0 on ∂ωe, we have

(47) (∇uh,∇we)ωe
= −

∑

T∈ωe

(∆uh,we)T +

∫

e

[[∇uh]] ·weds,

and

(48) (∇ ·we, ph)ωe
= −

∑

T∈ωe

(∇ph,we)T +

∫

e

[[phI]] ·weds.

Testing (1) by using we over ωe and then using integration by parts give

(49) (f , we)ωe
= (∇u,∇we)ωe

− (∇ ·we, p)ωe
.

Using the properties of φe and equations (47)-(49), we have

‖[[∇uh − phI]]‖2e .

∫

e

[[uh − phI]] ·weds

=
∑

T∈ωe

(

(f − fh, we)T + (fh +∆uh −∇ph, we)T − (∇e,∇we)T + (ǫ, ∇ ·we)T

)

.‖[[∇uh − phI]]‖e
(

h1/2
e ‖f − fh‖ωe

+ h1/2
e ‖fh +∆uh −∇ph‖ωe

+ h−1/2
e (

∑

T∈ωe

‖∇e‖2T )1/2 + h−1/2
e ‖ǫ‖ωe

)

Combining the above with (44) gives (45).
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Finally, the estimate (46) holds true as ∇ · u = 0 and clearly

‖∇ · uh‖T = ‖∇ · uh −∇ · u‖T = ‖∇ · e‖T ≤ ‖∇e‖T .
This completes the proof of the theorem. �

5. Numerical results

Some numerical results for such a posteriori error estimators have been reported
in [10] for the Crouzeix-Raviart element, and in [24] for an H(div) based discon-
tinuous Galerkin formulation. In this section, we would like to present some com-
putational results for the conforming finite element method in order to verify the
theory established in previous Sections. To this end, we consider the Taylor-Hood
element [13] when applied to the Stokes problem. We use the BiConjugate Gradient
(BICG) iterative solver for solving the resulting linear algebraic equations, with a
relative residual = 10−8 being set as a stopping criteria.

5.1. Test problems. Three problems are considered in the numerical test; all are
defined on the domain of unit square Ω = (0, 1) × (0, 1). Two of them have exact
solutions given by:

• Test Problem 1: A first Stokes problem with exact solution

u =

(

−2x2y(x− 1)2(2y − 1)(y − 1)
xy2(2x− 1)(x− 1)(y − 1)2

)

,

p = sin
π(y − x)

2
,

• Test Problem 2: A second Stokes problem with exact solution in the
polar coordinate system

u =

(

3
2

√
r
(

cos θ
2 − cos 3θ

2

)

3
2

√
r
(

3 sin θ
2 − sin 3θ

2

)

)

,

p = −6r−1/2 cos
θ

2
.

Observe that the solution has a corner singularity of order 0.5 at the origin
(0, 0).

• Test Problem 3: 2D lid driven cavity. This is a Stokes problem which
describes the flow of fluid in a rectangular container driven by a uniform
motion of the top lid [20]. Note that the boundary condition features a
discontinuity at two top corners. The exact solution (u; p), if it exists,
should not be sufficiently smooth so that (u; p) ∈ [H1]2×L2. However, the
discrete problem is still well-posed and should provide an approximation to
the actual solution.

It must be pointed out that the finite element formulation was only presented for
the homogeneous Dirichlet boundary condition in the previous Sections. But the
formulation can be easily extended to problems with non-homogeneous Dirichlet
boundary conditions such as u = g on ∂Ω. In this case, the term J2(uh) in the a
posteriori error estimator needs to be modified as follows

J2(uh) =

{

[uh] on interior edge e ∈ E0
h,

(uh − g)⊗ n on boundary edges.

Also, in the computational implementation, we had replaced h2
T ‖fh+∆uh−∇ph‖2T

by |T | ‖fh +∆uh −∇ph‖2T , where |T | stands for the area of triangle T .
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5.2. Results with uniform meshes. In this experiment, we solve test problems
1 and 2 on uniform meshes and compute the asymptotic order of the error estimator
η. The coarsest mesh is generated by dividing Ω into 4×4 sub-rectangles, and then
dividing each sub-rectangle into four triangles by connecting its two diagonal lines.
We then use the routine uniform refinement procedure, which divides each triangle
into four sub-triangles by connecting the center of its three edges, to generate several
levels of fine meshes.

For test problem 1, we know theoretically that η = O(h2). For test problem
2, the order of η is expected to be O(h0.5). Numerical results for these two test
problems are reported in tables 1 and 2. For test problem 2, the error of pressure
is not calculated since the pressure goes to infinity at the point (0, 0).

Table 1. Error profiles for test problem 1 on uniform triangular meshes.

h dofs η ‖∇(u− uh)‖ ‖u− uh‖ ‖p− ph‖
2−2 331 1.70e-02 4.15e-03 1.10e-04 3.08e-03
2−3 1235 4.94e-03 1.07e-03 1.38e-05 7.88e-04
2−4 4771 1.30e-03 2.71e-04 1.70e-06 1.96e-04
2−5 18755 3.33e-04 6.79e-05 2.13e-07 4.89e-05

Asym. Order
O(hk), k =

-1.9423 1.8956 1.9796 3.0064 1.9931

Table 2. Error profiles for test problem 2 on uniform triangular meshes.

h ndofs η ‖∇(u− uh)‖ ‖u− uh‖
2−2 331 2.39e+00 4.76e-01 1.54e-02
2−3 1235 1.63e+00 3.30e-01 5.83e-03
2−4 4771 1.12e+00 2.33e-01 2.17e-03
2−5 18755 7.97e-01 1.64e-01 8.09e-04

Asym. Order
O(hk), k =

-1.9423 0.5295 0.5094 1.4183

5.3. Results with adaptive refinement. We perform adaptive refinements for
test problems 2 and 3, which have corner singularities. Two different refinement
strategies are employed in this study. The first one is based on a comparison of
each error ηT with the maximum value of all the error estimators. The strategy
can be described as follows:

Local Refinement by “Maximum Strategy”:

(1) Given a current triangular mesh, error indicators ηT on each triangle, and
a threshold θ ∈ (0, 1) (e.g., θ = 0.5). One computes the maximum error
ηmax = max ηT .

(2) For each triangle T , if ηT ≥ θ ηmax, mark this triangle for refinement.
(3) The actual refinement is done by the newest node bisection method [17, 19].

It has been proved that this method will not cause mesh degeneration. The
only requirement is that the “newest nodes” for the coarsest mesh must be
assigned carefully such that every triangle is compatibly divisible. This can
be easily checked.
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Table 3. Error profiles for test problem 2 using adaptive mesh refinements.

Strategy Refinement times dofs η ‖∇(u− uh)‖ ‖u− uh‖

Maximum
0 331 2.3955 0.4763 0.0154
8 432 0.9453 0.1968 0.0029
16 764 0.4021 0.0844 0.0012

Local
0 331 2.3955 0.4763 0.0154
8 545 0.7596 0.1519 0.0012
16 1117 0.2505 0.0618 0.0006

The second refinement strategy is based on a comparison of ηT with those for its
neighbors. To explain the main idea, let ρ > 0 be a prescribed distance parameter
and set

Tρ,T = {T̃ : 0 < ‖T − T̃‖ ≤ ρ},
where ‖T − T̃‖ stands for the distance of the centers of T and T̃ . With a given
threshold θ > 1, we mark a triangle T for refinement if

ηT ≥ θ ηN(T ),

where ηN(T ) is the average of the local error indicator on all the neighboring tri-

angles T̃ ∈ Tρ,T . The following is such a refinement strategy that was numerically
investigated in this study.

Local Refinement by “Local Strategy”:

(1) Given a current triangular mesh, error estimators ηT on each triangle, and
a threshold θ > 1.0 (e.g., θ = 1.5). One computes an error indicator ηN(T )

as the average of the local error indicator on neighboring triangles that
share a vertex or an edge with T , not including T itself.

(2) For each triangle T , if ηT ≥ θ ηN(T ), mark this triangle for refinement.
(3) The actual refinement is again done by the newest node bisection method

[17, 19].

The residual estimator η and errors between the true solution and its finite
element approximations for test problem 2 are reported in Table 3. By comparing
tables 2 and 3, one clearly sees the power of adaptive refinements in numerical
methods for PDEs. For example, the error in L2 and H1 norms are given by
6.0 × 10−4 and 6.18 × 10−2 with only 1117 degree of freedoms when the local
adaptive refinement strategy was used, while the uniform partition requires more
than 18755 degree of freedoms in order to reach a comparable accuracy.

The refined meshes after 0, 8, and 16 refinements are illustrated in Figures 1 and
2, which show that our residual estimator really captures the corresponding corner
singularity correctly, under both refinement strategies. Furthermore, in Figures 3
and 4, we examine the relation of η, ‖∇(u − uh)‖, and ‖u − uh‖ with the degree
of freedoms N during the process of the adaptive refinement. The plots start from
the coarsest mesh and ends after 16 refinements.

For the driven cavity problem, since the exact solution may not be sufficiently
as smooth as in [H1]2 × L2, the residual error η is not expected to decrease when
the mesh is refined. Our numerical experiments show that the error indicator ηT is
able to locate both corner singularities for this problem. The meshes after 0, 8, and
16 refinements are plotted in Figures 5 and 6. Readers are invited to make their
own conclusions for the numerical results illustrated in this Section.
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Figure 1. Test problem 2, maximum strategy adaptive refine-
ment. Meshes after 0, 8, and 16 refinements.

Figure 2. Test problem 2, local strategy adaptive refinement.
Meshes after 0, 8, and 16 refinements.
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Figure 3. Test problem 2, maximum strategy adaptive refine-
ment. Plot of η, ‖∇(u− uh)‖ and ‖u− uh‖, versus the degrees of
freedom N .
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