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Abstract. Pursuing our work in [18], [17], [20], [5], we consider in this article the two-dimensional
thermohydraulics equations. We discretize these equations in time using the implicit Euler scheme
and we prove that the global attractors generated by the numerical scheme converge to the global
attractor of the continuous system as the time-step approaches zero.
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1. Introduction

In this article we discretize the two-dimensional thermohydraulics equations in
time using the implicit Euler scheme, and we show that global attractors generated
by the numerical scheme converge to the global attractor of the continuous system
as the time-step approaches zero. In order to do this, we first prove that the scheme
is H1-uniformly stable in time (see Section 4) and then we show that the long-term
dynamics of the continuous system can be approximated by the discrete attractors
of the dynamical systems generated by the numerical scheme (see Section 5).

In the case of the Navier–Stokes equations with Dirichlet boundary conditions,
the H1-uniform stability of the fully implicit Euler scheme has proven to be rather
challenging. However, using techniques based on the classical and uniform discrete
Gronwall lemmas, we have been able to show the H1-stability for all time of the
implicit Euler scheme for the Navier–Stokes equations with Dirichlet boundary
conditions (see [20]). The H2-stability has also been established. More precisely,
the H2-stability has first been proven in the simpler case of space periodic boundary
conditions (see [17]), and then extended to Dirichlet boundary conditions (see [18]);
the magnetohydrodynamics equations are also considered in [18].

Our first objective in this article is to extend the H1-uniform stability proven
in [20] for the Navier–Stokes equations with Dirichlet boundary conditions, to the
thermohydraulics equations. In order to do so, we divide our proof into three step-
s. First, we prove the L2-uniform stability of both the discrete temperature θn

and the discrete velocity vn (see Lemma 3.2 and Lemma 3.3 below). Then, using
techniques based on the classical and uniform discrete Gronwall lemmas, we derive
the H1-uniform stability of vn (see Proposition 4.1 below), which we will use in
Subsection 4.2 in order to establish the H1-uniform stability of θn (see Proposi-
tion 4.2 below). Besides the intrinsec interest of considering the thermohydraulics
equations, the new technical difficulties which appear here are related to the spe-
cific treatment of the temperature with the necessary utilization of the maximum

Received by the editors May 24, 2012 and, in revised form, June 6, 2012.
2000 Mathematics Subject Classification. 65M12, 76D05.
This work was partially supported by the National Science Foundation under the grant NSF–

DMS–0906440.
509



510 B. EWALD AND F. TONE

principle. Furthermore, we have simplified some steps of the proof as compared to
[20].

Our second objective in this article is to employ the technique developed in [5] to
prove that the global attractors generated by the fully implicit Euler scheme con-
verge to the global attractor of the continuous system as the time-step approaches
zero. When discretizing the two-dimensional thermohydraulics equations in time
using the implicit Euler scheme, one can prove the uniqueness of the solution pro-
vided that the time step is sufficiently small. More precisely, the time restriction
depends on the initial value, and thus one cannot define a single-valued attrac-
tor in the classical sense. This is why we need to use the theory of the so-called
multi-valued attractors, which we briefly recall in Subsection 5.1.

2. The thermohydraulics equations

Let Ω = (0, 1) × (0, 1) be the domain occupied by the fluid and let e2 be the
unit upward vertical vector. The thermohydraulics equations consist of the coupled
system of the equations of fluid and temperature in the Boussinesq approximation
and they read (see, e.g., [6], [15]):

∂v

∂t
+ (v · ∇)v − ν∆v +∇p = e2(T − T1),(2.1)

∂T

∂t
+ (v · ∇)T − κ∆T = 0,(2.2)

div v = 0;(2.3)

here v = (v1, v2) is the velocity, p is the pressure, T is the temperature, T1 is the
temperature at the top boundary, x2 = 1, and ν, κ are positive constants. We
supplement these equations with the initial conditions

v(x, 0) = v0(x),(2.4)

T (x, 0) = T 0(x),(2.5)

where v0 : Ω → R
2, T 0 : Ω → R are given, and with the boundary conditions

v = 0 at x2 = 0 and x2 = 1,(2.6)

T = T0 = T1 + 1 at x2 = 0 and T = T1 at x2 = 1,(2.7)

and

p, v, T and the first derivatives of v and T are periodic

of period 1 in the direction x1,
(2.8)

meaning that φ|x1=0 = φ|x1=1 for the corresponding functions φ.
Letting

(2.9) θ = T − T0 + x2,

and changing p to

(2.10) p−
(

x2 −
x22
2

)

,
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equations (2.1)–(2.3) together with the boundary conditions (2.6)–(2.8) become

∂v

∂t
+ (v · ∇)v − ν∆v +∇p = e2θ,(2.11)

∂θ

∂t
+ (v · ∇)θ − v2 − κ∆θ = 0,(2.12)

div v = 0,(2.13)

v = 0 at x2 = 0 and x2 = 1,(2.14)

θ = 0 at x2 = 0 and x2 = 1,(2.15)

(2.8) holds with T replaced by θ.(2.16)

These equations are supplemented with the initial conditions

v(x, 0) = v0(x),(2.17)

θ(x, 0) = T 0(x)− T0 + x2 =: θ0(x).(2.18)

For the mathematical setting of the problem we define the space H = H1 × H2,
where

H1 =
{

v ∈ L2(Ω)2, div = 0, v2|x2=0 = v2|x2=1 = 0, v1|x1=0 = v1|x1=1

}

,(2.19)

H2 = L2(Ω),(2.20)

and we denote the scalar products and norms in H1, H2 and H by (·, ·) and | · |.
We also define the space V = V1 × V2, where

V1 =
{

v ∈ H1(Ω)2, v|x2=0 = v|x2=1 = 0, v|x1=0 = v|x1=1, div v = 0
}

,(2.21)

V2 =
{

θ ∈ H1(Ω), θ|x2=0 = θ|x2=1 = 0, θ|x1=0 = θ|x1=1

}

.(2.22)

The space V2 is a Hilbert space with the scalar product and the norm

(2.23) ((φ, ψ)) =

∫

∇φ · ∇ψ dx, ‖φ‖ =
√

((φ, φ)),

and we have the Poincaré inequality (see, e.g., [15], page 134)

(2.24) |φ| ≤ ‖φ‖, ∀φ ∈ V1 or V2.

We denote both scalar products and norms in V1 and V by ((·, ·)) and ‖ · ‖.
Let D(A) = D(A1)×D(A2), where

(2.25) D(Ai) =

{

v ∈ Vi ∩H2(Ω)2,
∂v

∂x1

∣

∣

∣

x1=0
=

∂v

∂x1

∣

∣

∣

x1=1

}

, i = 1, 2,

and let A be the linear operator from D(A) into H and from V into V ′ defined by

(2.26) (Au1, u2) = a(u1, u2), ∀ui = {vi, θi} ∈ D(A), i = 1, 2,

with

(2.27) a(u1, u2) = ν((v1, v2)) + κ((θ1, θ2)).

We consider the trilinear continuous form b on V , defined by

b(u1, u2, u3) =b1(v1, v2, v3) + b2(v1, θ2, θ3), ∀ui = {vi, θi} ∈ V,(2.28)

where

(2.29) b1(y, w, z) =
∑

i,j=1,2

∫

Ω

yi
∂wj

∂xi
zj dx, ∀ y, w, z ∈ H1(Ω)2,
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(2.30) b2(y, φ, ψ) =

2
∑

i=1

∫

Ω

yi
∂φ

∂xi
ψ dx, ∀ y ∈ H1(Ω)2, φ, ψ ∈ H1(Ω).

The form b1 is trilinear continuous on V1 × V1 × V1 and enjoys the following prop-
erties:

(2.31) |b1(y, w, z)| ≤ cb|y|1/2‖y‖1/2‖w‖|z|1/2‖z‖1/2, ∀ y, w, z ∈ V1,

(2.32)
|b1(y, w, z)| ≤ cb|y|1/2|A1y|1/2‖w‖|z|,

∀ y ∈ D(A1), w ∈ V1, z ∈ H1,

(2.33)
|b1(y, w, z)| ≤ cb|y|1/2‖y‖1/2‖w‖1/2|A1w|1/2|z|,

∀ y ∈ V1, w ∈ D(A1), z ∈ H1,

(2.34) b1(y, w,w) = 0, ∀ y, w ∈ V1,

the last equation implying

(2.35) b1(y, w, z) = −b1(y, z, w), ∀ y, w, z ∈ V1.

The form b2 is trilinear continuous on V1 × V2 × V2 and enjoys the following
properties, similar to (2.31)–(2.35):

(2.36) |b2(y, φ, ψ)| ≤ cb|y|1/2‖y‖1/2‖φ‖|ψ|1/2‖ψ‖1/2, ∀ y, φ, ψ ∈ V2,

(2.37)
|b2(y, φ, ψ)| ≤ cb|y|1/2|A2y|1/2‖φ‖|ψ|,

∀ y ∈ D(A2), φ ∈ V2, ψ ∈ H2,

(2.38)
|b2(y, φ, ψ)| ≤ cb|y|1/2‖y‖1/2‖φ‖1/2|A2φ|1/2|ψ|,

∀ y ∈ V1, φ ∈ D(A2), ψ ∈ H2,

(2.39) b2(y, φ, φ) = 0, ∀ y ∈ V1, φ ∈ V2,

the last equation implying

(2.40) b2(y, φ, ψ) = −b2(y, ψ, φ), ∀ y ∈ V1, φ, ψ ∈ V2.

We associate with b the bilinear continuous operator B from V × V into V ′ and
from D(A)×D(A) into H , such that

(2.41) 〈B(u1, u2), u3〉V ′,V = b(u1, u2, u3), ∀u1, u2, u3 ∈ V.

We also define the continuous operator in H

(2.42) Ru = −{e2θ, v2}, u = {v, θ}.
For more details about the function spaces D(A), V and H , as well as the operators
A, B, R and b, the reader is referred to, e.g., [15].

In the above notation, the system (2.11)–(2.13) can be written as the functional
evolution equation

(2.43) ut +Au+B(u) +Ru = 0, u(0) = u0 = {v0, θ0}.
In the two-dimensional case under consideration, the solution to the thermohy-

draulics equations is known to be smooth for all time (cf. [15]). Using the maximum
principle for parabolic equations, one can show that θ ∈ L∞(R+;L

2(Ω)) and the
velocity u is bounded uniformly for all time by

(2.44) |v(t)|2L2(Ω)2 ≤ e−νt|v0|2L2(Ω)2 +
θ2∞
ν2
(

1− e−νt
)

,
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where θ∞ = |θ|L∞(R+;L2(Ω)). Furthermore, using techniques based on the uniform
Gronwall lemma (cf. [15]), one can bound the solution u of (2.43) uniformly in V
for all t ≥ 0.

In this article we discretize (2.43) in time using the fully implicit Euler scheme,
and define recursively the elements un = {vn, θn} of V as follows:

u0 = {v0, θ0}, where v0(x) = v0(x), and

θ0(x) = θ0(x) := T 0(x) − T0 + x2 are given;
(2.45)

then when u0 = {v0, θ0}, · · · , un−1 = {vn−1, θn−1} are known, we define un =
{vn, θn} ∈ V such that

1

k
(vn − vn−1, v) + ν((vn, v)) + b1(v

n, vn, v) = (e2θ
n, v), ∀v ∈ V1,(2.46)

1

k
(θn − θn−1, θ) + κ((θn, θ)) + b2(v

n, θn, θ)− (vn2 , θ) = 0, ∀θ ∈ V2.(2.47)

The above system is very similar to the stationary Navier–Stokes equations and
the existence of solutions is proven e.g. by the Galerkin method, as in [16]. Unique-
ness can also be derived as in [16] under some conditions. Let us explain this point,
which somehow motivates the developments in Section 5. For that, we rewrite the
system (2.45)–(2.47) in the form

(vn, v) + νk((vn, v)) + kb1(v
n, vn, v)− k(e2θ

n, v) = (vn−1, v), ∀v ∈ V1,(2.48)

(θn, θ) + κk((θn, θ)) + kb2(v
n, θn, θ)− k(vn2 , θ) = (θn−1, θ), ∀θ ∈ V2,(2.49)

and assume that {vn, θn} and {v̄n, θ̄n} are two solutions corresponding to the same

initial data {v0, θ0} ∈ V . Setting ṽn = vn − v̄n and θ̃n = θn − θ̄n, we obtain that

{ṽn, θ̃n} is a solution to the following system:

(ṽn, v) + νk((ṽn, v)) + kb1(ṽ
n, vn, v) + kb1(v̄

n, ṽn, v)− k(e2θ̃
n, v) = 0, ∀v ∈ V1,

(2.50)

(θ̃n, θ) + κk((θ̃n, θ)) + kb2(ṽ
n, θn, θ) + kb2(v̄

n, θ̃n, θ)− k(ṽn2 , θ) = 0. ∀θ ∈ V2,

(2.51)

Taking v = ṽn in (2.50) and using (2.34), we obtain

(2.52) |ṽn|2 + νk‖ṽn‖2 + kb1(ṽ
n, vn, ṽn)− k(e2θ̃

n, ṽn) = 0.

Using property (2.31) of the trilinear form b1 and the bound (4.52) below on ‖vn‖,
we obtain (for k ≤ κ4(‖{v0, θ0}‖), with κ4(‖{v0, θ0}‖) given in Theorem 4.1 below):

kb1(ṽ
n, vn, ṽn) ≤ cbk|ṽn|‖ṽn‖‖vn‖ ≤ cbK6k|ṽn|‖ṽn‖

≤ ν

4
k‖ṽn‖2 + cb

ν
K2

6k|ṽn|2.
(2.53)

We also have

k(e2θ̃
n, ṽn) ≤ k|e2θ̃n||ṽn| ≤ k|θ̃n|‖ṽn‖

≤ ν

4
k‖ṽn‖2 + 1

ν
k|θ̃n|2.

(2.54)

Relations (2.52)–(2.54) imply

(2.55)
(

1− cb
ν
K2

6k
)

|ṽn|2 + ν

2
k‖ṽn‖2 ≤ 1

ν
k|θ̃n|2.

Now taking θ = θ̃n in (2.51) and using (2.39), we obtain

(2.56) |θ̃n|2 + κk‖θ̃n‖2 + kb2(ṽ
n, θn, θ̃n)− k(ṽn2 , θ̃

n) = 0.
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Using property (2.36) of the trilinear form b2 and the bound (4.52) below on ‖θn‖,
we obtain

kb2(ṽ
n, θn, θ̃n) ≤ cbk|ṽn|1/2‖ṽn‖1/2‖θn‖|θ̃n|1/2‖θ̃n‖1/2

≤ ν

4
k‖ṽn‖2 + κ

4
k‖θ̃n‖2 + cK2

6k|ṽn|2 + cK2
6k|θ̃n|2.

(2.57)

We also have

k(ṽn2 , θ̃
n) ≤ k|ṽn2 ||θ̃n| ≤ k|ṽn|‖θ̃n‖ ≤ κ

4
k‖θ̃n‖2 + 1

κ
k|ṽn|2.(2.58)

Relations (2.56)–(2.58) yield

(2.59) (1− cK2
6k)|θ̃n|2 +

κ

2
k‖θ̃n‖2 ≤ ν

4
k‖ṽn‖2 + cK2

6k|ṽn|2 +
1

κ
k|ṽn|2.

Adding relations (2.55) and (2.59), we obtain
(

1− cb
ν
K2

6k − cK2
6k −

1

κ
k

)

|ṽn|2 +
(

1− cK2
6k −

c

ν
k
)

|θ̃n|2

+
ν

4
k‖ṽn‖2 + κ

2
k‖θ̃n‖2 ≤ 0.

(2.60)

Assuming k is sufficiently small, that is

(2.61) k ≤ min

{

κ4(‖{v0, θ0}‖),
1

2
(

cb
ν K

2
6 + cK2

6 + 1
κ

) ,
1

2
(

cK2
6 + c

ν

)

}

,

relation (2.60) implies ṽn = θ̃n = 0. Hence, the system (2.45)–(2.47) possesses a
unique solution, provided that the time-step satisfies the constraint (2.61). This
is enough to uniquely define the sequence {vn, θn} for k small enough, but the
dependence of the time step k on the initial data prevents us from defining a single-
valued attractor in the classical sense, and this is why we need the theory of the
multi-valued attractors, that we discuss in Subsection 5.1.

Our next aims are to prove that the solution un = {vn, θn} to the discrete system
(2.45)–(2.47) is uniformly bounded in the V -norm and then to show that the global
attractors generated by the numerical scheme (2.45)–(2.47) converge to the global
attractor of the continuous system as the time-step approaches zero.

In this article we only consider time discretization, we do not consider space
discretization. Important background information on space discretization and on
various computational methods can be found in some of the books and articles
available in the literature. On finite elements, see, e.g., [7], [9]; on finite differences
and finite elements, [10], [16]; on spectral methods, [3], [8].

3. H-Uniform Boundedness of vn and θn

In proving the H-uniform boundedness of vn and θn, we need first to prove
a variant of the maximum principle for θn. In order to do so, we introduce the
following truncation operators (cf. [15]), that associate with the function ϕ, the
functions ϕ+ and ϕ−, given by

(3.1) ϕ+(x) = max(ϕ(x), 0), ϕ−(x) = max(−ϕ(x), 0).
Note that, with this notation, we have ϕ = ϕ+ − ϕ−, the absolute value |ϕ| of
ϕ is ϕ+ + ϕ− and ϕ+ϕ− = 0. Using these operators, we can prove the following
preliminary lemma
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Lemma 3.1. If ϕ, ψ ∈ L2(Ω), then

(3.2) 2(ϕ− ψ, ϕ+) ≥ |ϕ+|2 − |ψ+|2 + |ϕ+ − ψ+|2,

(3.3) −2(ϕ− ψ, ϕ−) ≥ |ϕ−|2 − |ψ−|2 + |ϕ− − ψ−|2.
Proof. We have

2(ϕ− ψ, ϕ+) = 2(ϕ+ − ϕ− − ψ+ + ψ−, ϕ+)

= 2(ϕ+ − ψ+, ϕ+)− 2(ϕ− − ψ−, ϕ+)

= |ϕ+|2 − |ψ+|2 + |ϕ+ − ψ+|2 + 2

∫

Ω

ψ−ϕ+ dx

≥ |ϕ+|2 − |ψ+|2 + |ϕ+ − ψ+|2,

(3.4)

since ψ−ϕ+ ≥ 0. The proof is similar for (3.3) and the lemma is proved. �

We are now able to prove the following variant of the maximum principle for θn:

Lemma 3.2. If vn and θn satisfy (2.46) and (2.47), then

θn = θ̃n + θ̄n,(3.5)

with

x2 − 1 ≤ θ̃n ≤ x2,(3.6)

|θ̄n| ≤
(

|θ0+|+ |θ0−|
)

(1 + 2κk)−
n
2 .(3.7)

Moreover, there exists M1 =M1(|θ0|), given in (3.26) below, such that

(3.8) |θn| ≤M1, ∀n ≥ 1.

Proof. Rewriting (2.47) in terms of T n = θn + T0 − x2, we find:

1

k
(T n − T n−1, T ) + κ((T n, T )) + b2(v

n, T n, T ) = 0, ∀T ∈ V2,= 0, n ≥ 1.(3.9)

Replacing T by 2k(T n − T0)+ in the above equation and using (3.2), we obtain:

|(T n − T0)+|2 − |(T n−1 − T0)+|2

+|(T n − T0)+ − (T n−1 − T0)+|2 + 2kκ‖(T n − T0)+‖2 ≤ 0.
(3.10)

Using the Poincaré inequality (2.24), we find

|(T n − T0)+|2 ≤ 1

α
|(T n−1 − T0)+|2,(3.11)

where

(3.12) α = 1 + 2κk.

Using recursively (3.11), we find

|(T n − T0)+|2 ≤ (1 + 2κk)−n|(T 0 − T0)+|2.(3.13)

Similarly, using (3.3), we obtain

|(T n − T1)−|2 ≤ (1 + 2κk)−n|(T 0 − T1)−|2.(3.14)

Setting

T n = T̃ n + T̄ n, with T̄ n = (T n − T0)+ − (T n − T1)−,(3.15)

we find that T̃ n = T n − (T n − T0)+ + (T n − T1)−, so that T̃ n = T1, for T
n ≤ T1,

T̃ n = T n, for T1 ≤ T n ≤ T0, and T̃
n = T0, for T

n > T0; in all cases

T1 ≤ T̃ n ≤ T0.(3.16)
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Rewriting (3.13)–(3.15) in terms of θ, we obtain

|(θn − x2)+|2 ≤ (1 + 2κk)−n|(θ0 − x2)+|2,(3.17)

|(θn − x2 + 1)−|2 ≤ (1 + 2κk)−n|(θ0 − x2 + 1)−|2,(3.18)

θn + T0 − x2 = T̃ n + (θn − x2)+ − (θn − x2 + 1)−.(3.19)

Setting

θ̄n = (θn − x2)+ − (θn − x2 + 1)−,(3.20)

θ̃n = T̃ n − T0 + x2,(3.21)

equation (3.19) becomes

θn = θ̃n + θ̄n.(3.22)

By (3.16), we have

x2 − 1 ≤ θ̃n ≤ x2,(3.23)

and by (3.20), (3.17) and (3.18) we derive

|θ̄n| ≤ |(θn − x2)+|+ |(θn − x2 + 1)−|
≤ (1 + 2κk)−

n
2 (|θ0+|+ |θ0−|).

(3.24)

To complete the proof of the lemma, we note that (3.22), (3.23) and (3.24) yield

(3.25) |θn| ≤ |Ω|1/2 +
(

|θ0+|+ |θ0−|
)

(1 + 2κk)−
n
2 , ∀n ≥ 1,

and setting

(3.26) M1(|θ0|) = |Ω|1/2 + |θ0+|+ |θ0−|,
we obtain conclusion (3.8) of the lemma. �

Corollary 3.1. If

(3.27) k ≤ 1

2κ
,

then BL2(0, 2|Ω|1/2), the ball in L2 centered at 0 and radius 2|Ω|1/2, is an absorbing
ball for θn in L2.

Proof. Indeed, let B be any bounded set in L2 and assume that it is included in a
ball B(0, R) of L2. It is easy to deduce from (3.25) that for any θ0 ∈ B(0, R),

(3.28) |θn| ≤ |Ω|1/2 + 2R(1 + 2κk)−
n
2 , ∀n ≥ 1,

and using assumption (3.27) on k and the fact that 1+x ≥ exp(x/2) if x ∈ (0, 1), we

obtain that there existsN1
0 (R, k) :=

2 ln

(

2R

|Ω|1/2

)

κk such that θn ∈ BL2(0, 2|Ω|1/2), ∀n ≥
N1

0 . This completes the proof of the corollary. �

We are now able to prove the H-uniform boundedness of vn. More precisely, we
have the following:

Lemma 3.3. Let {vn, θn} be the solution of the numerical scheme (2.46)–(2.47).
Then for every k > 0, we have

(3.29) |vn|2 ≤ (1 + νk)
−n |v0|2 +

M2
1

ν2

[

1− (1 + νk)
−n
]

, ∀n ≥ 0.

Moreover, there exists K1 = K1(|v0|, |θ0|), such that

(3.30) |vn| ≤ K1, ∀n ≥ 0,



LONG-TERM DYNAMICS OF 2D THERMOHYDRAULICS EQUATIONS 517

and

(3.31) νk

m
∑

j=i

‖vj‖2 ≤ |vi−1|2 + 1

ν
k

m
∑

j=i

|θj |2, ∀ i = 1, · · · ,m,

(3.32) κk

m
∑

j=i

‖θj‖2 ≤ |θi−1|2 + 1

κ
k

m
∑

j=i

|vj |2, ∀ i = 1, · · · ,m.

Proof. Taking v to be 2kvn in (2.46) and using the relation

(3.33) 2(ϕ− ψ, ϕ) = |ϕ|2 − |ψ|2 + |ϕ− ψ|2,
as well as the skew property (2.34), we obtain

|vn|2 − |vn−1|2 + |vn − vn−1|2 + 2νk ‖vn‖2 = 2k(e2θ
n, vn).(3.34)

Using the Cauchy–Schwarz inequality and the Poincaré inequality (2.24), we ma-
jorize the right-hand side of (3.34) by

2k(e2θ
n, vn) ≤ 2k|e2θn||vn| ≤ 2k|θn||vn|

≤ 2k|θn|‖vn‖ ≤ νk‖vn‖2 + 1

ν
k |θn|2.

(3.35)

Relations (3.34) and (3.35) imply

(3.36) |vn|2 − |vn−1|2 + |vn − vn−1|2 + νk ‖vn‖2 ≤ 1

ν
k |θn|2.

Using again the Poincaré inequality (2.24), we find

(3.37) |vn|2 ≤ 1

α
|vn−1|2 + 1

αν
k |θn|2,

where

(3.38) α = 1 + νk.

Using recursively (3.37), we find

|vn|2 ≤ 1

αn
|v0|2 + 1

ν
k

n
∑

i=1

1

αi
|θn+1−i|2

≤ (1 + νk)−n |v0|2 + M2
1

ν2

[

1− (1 + νk)−n
]

,

(3.39)

which proves (3.29).

Taking K2
1 = |v0|2 + M2

1

ν2 relation (3.30) follows right away.
Adding inequalities (3.36) with n from i to m we obtain (3.31).
Now, replacing θ by 2kθn in (2.47) and using the skew property (2.39), we obtain

|θn|2 − |θn−1|2 + |θn − θn−1|2 + 2κk ‖θn‖2 = 2k(vn2 , θ
n).(3.40)

Using again the Cauchy–Schwarz inequality and the Poincaré inequality (2.24), we
majorize the right-hand side of (3.40) by

2k(vn2 , θ
n) ≤ 2k|vn2 ||θn| ≤ 2k|vn|‖θn‖

≤ κk‖θn‖2 + 1

κ
k |vn|2.

(3.41)

Relations (3.40) and (3.41) imply

(3.42) |θn|2 − |θn−1|2 + |θn − θn−1|2 + κk ‖θn‖2 ≤ 1

κ
k |vn|2.

Summing inequalities (3.42) with n from i to m we obtain (3.32). �
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Corollary 3.2. Let

(3.43) k ≤ min

{

1

2κ
,
1

ν

}

=: κ1,

and set ρ0 = 2|Ω|1/2 +
√
5|Ω|1/2

ν . Then BH(0, ρ0), the ball in H centered at 0 and
radius ρ0, is an absorbing ball for {vn, θn} in H.

Proof. Let B be any bounded set in H and assume that it is included in a ball
B(0, R) of H . For any initial data {v0, θ0} ∈ B, Corollary 3.1 implies that

(3.44) |θn| < 2|Ω|1/2, ∀n ≥ N1
0 (R, k),

and then (3.37) becomes

(3.45) |vn|2 ≤ 1

α
|vn−1|2 + 4

αν
|Ω|k, ∀n ≥ N1

0 (R, k),

where

(3.46) α = 1 + νk.

Iterating the above inequality, we find (for any n ≥ N1
0 (R, k))

|vn|2 ≤ 1

α(n−N1
0 )
|vN1

0 |2 + 4

ν
|Ω|k

n−N1
0

∑

i=1

1

αi

= (1 + νk)−(n−N1
0 ) |vN1

0 |2 + 4

ν2
|Ω|
[

1− (1 + νk)−(n−N1
0 )
]

,

≤ (1 + νk)
−(n−N1

0 )

[

R2 +
4

ν2
(|Ω|+ 2R2)

]

+
4

ν2
|Ω|

(by (3.29) and (3.26)),

(3.47)

and using assumption (3.43) on k and the fact that 1 + x ≥ exp(x/2) if x ∈ (0, 1),
we obtain that there exists N2

0 (R, k),

(3.48) N2
0 (R, k) :=

2

νk
ln
ν2
[

R2 + 4
ν2 (|Ω|+ 2R2)

]

|Ω| ,

such that |vn| ≤
√
5|Ω|1/2/ν, ∀n ≥ N1

0 +N2
0 =: N0(R, k).

We, therefore, have that {vn, θn} ∈ BH(0, ρ0), for all n ≥ N0(R, k), which
completes the proof of the corollary. �

4. V -Uniform Boundedness of vn and θn

We now seek to obtain uniform bounds for vn and θn in V , similar to those we
have already obtained in H (see (3.30) and (3.8) above). In order to do this, we will
first use the discrete Gronwall lemma to derive an upper bound on ‖vn‖, n ≤ N , for
some N > 0, and then we will use the discrete uniform Gronwall lemma to obtain
an upper bound on ‖vn‖, n ≥ N . Once we have obtained the V -uniform bounds on
vn, we can use those, together with a new version of the discrete uniform Gronwall
lemma, to derive the V -uniform boundedness of θn.

4.1. H1-Uniform Boundedness of vn.

Lemma 4.1. For every k > 0, we have

(4.1) ‖vn‖2 ≤ K2‖vn−1‖2 + 4

ν2
M2

1 , ∀n ≥ 1,

where K2 = K2(|v0|, |θ0|) = 2(1 + 2c2bK
2
1/ν

2).
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Proof. Replacing v by 2k(vn − vn−1) in (2.46), we obtain

2|vn − vn−1|2 + νk‖vn‖2 − νk‖vn−1‖2 + νk‖vn − vn−1‖2

+ 2k b1(v
n, vn, vn − vn−1) = 2k (e2θ

n, vn − vn−1).
(4.2)

Using properties (2.34), (2.35) and (2.31) of the trilinear form b1 and recalling
(3.30), we bound the nonlinear term as

2kb1(v
n, vn, vn − vn−1) = 2kb1(v

n, vn−1, vn) (by (2.34), (2.35))

≤ 2cbk|vn|‖vn‖‖vn−1‖ (by (2.31))

≤ ν

2
k‖vn‖2 + 2c2b

ν
K2

1k‖vn−1‖2.
(4.3)

We bound the right-hand side of (4.26) using Cauchy–Schwarz’ inequality, (2.24)
and (3.8):

2k(e2θ
n, vn − vn−1) ≤ 2k|θn||vn − vn−1|

≤ k|θn|‖vn − vn−1‖

≤ ν

2
k‖vn − vn−1‖2 + 2

ν
kM2

1 .

(4.4)

Gathering relations (4.26) through (4.4), we find

2|vn − vn−1|2 + ν

2
k‖vn‖2 −

(

ν +
2c2b
ν
K2

1

)

k‖vn−1‖2

+
ν

2
k ‖vn − vn−1‖2 ≤ 2

ν
kM2

1 ,

(4.5)

We thus obtain

(4.6) ‖vn‖2 ≤ K2‖vn−1‖2 + 4

ν2
M2

1 ,

which is exactly conclusion (4.1) of the lemma. �

Lemma 4.2. For every k > 0, we have

(4.7) c1K
2
1k‖vn‖4 − ‖vn‖2 + ‖vn−1‖2 + 2

ν
kM2

1 ≥ 0, ∀n ≥ 1,

where c1 = 27c4b/(2ν
3).

Proof. Replacing v by 2kA1v
n in (2.46), we obtain

‖vn‖2 − ‖vn−1‖2 + ‖vn − vn−1‖2 + 2kb1(v
n, vn, A1v

n)

+ 2νk|A1v
n|2 = 2k(e2θ

n, A1v
n).

(4.8)

Using property (2.32) of the trilinear form b1 and recalling (3.30), we have the
following bound of the nonlinear term,

2kb1(v
n, vn, A1v

n) ≤ 2 cb k |vn|1/2‖vn‖|A1v
n|3/2

≤ ν

2
k|A1v

n|2 + 27c4b
2ν3

K2
1k‖vn‖4.

(4.9)

Using the Cauchy–Schwarz inequality and recalling (3.8), we bound the right-hand
side of (4.8) by

2k(e2θ
n, A1v

n) ≤ 2k|θn||A1v
n|

≤ ν

2
k|A1v

n|2 + 2

ν
kM2

1 .
(4.10)
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Relations (4.8)–(4.10) imply

‖vn‖2 − ‖vn−1‖2 + ‖vn − vn−1‖2 + νk|A1v
n|2

≤ 27c4b
2ν3

K2
1k‖vn‖4 +

2

ν
kM2

1 ,
(4.11)

from which we obtain conclusion (4.7) of Lemma 4.1. �

In what follows, we will make use of the following two lemmas, whose proofs can
be found in [14]:

Lemma 4.3. Given k > 0 and positive sequences ξn, ηn and ζn such that

(4.12) ξn ≤ ξn−1(1 + kηn−1) + kζn, for n ≥ 1,

we have, for any n ≥ 2,

(4.13) ξn ≤
(

ξ0 +

n
∑

i=1

kζi

)

exp

(n−1
∑

i=0

kηi

)

.

Lemma 4.4. Given k > 0, a positive integer n0, positive sequences ξn, ηn and ζn
such that

(4.14) ξn ≤ ξn−1(1 + kηn−1) + kζn, for n ≥ n0,

and given the bounds

(4.15)

N+k0
∑

n=k0

kηn ≤ a1,

N+k0
∑

n=k0

kζn ≤ a2,

N+k0
∑

n=k0

kξn ≤ a3,

for any k0 ≥ n0, we have,

(4.16) ξn ≤
( a3
Nk

+ a2

)

ea1 , ∀n ≥ N + n0.

Proposition 4.1. Let T > 0 be arbitrarily fixed and let {vn, θn} be the solution
of the numerical scheme (2.46)–(2.47). Then there exists K5 = K5(‖v0‖, |θ0|, T ),
such that for every k ≤ κ1, we have

(4.17) ‖vn‖ ≤ K5, ∀n ≥ 0,

m
∑

n=i

‖vn − vn−1‖2 ≤K2
5 +

27c4b
2ν3

K2
1K

4
5(m− i+ 1)k

+
2

ν
M2

1 (m− i+ 1)k, ∀ i = 1, · · · ,m.
(4.18)

Moreover, for any initial data from H, there exists K4(T ) such that

(4.19) ‖vn‖ ≤ K4, ∀n ≥ N +N0 + 1,

where N := ⌊T/k⌋ and T0 = N0k is the time the approximate solution {vn, θn}
enters the absorbing ball B(0, ρ0) in H.
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Proof. Using (4.1), we infer from (4.7)

‖vn‖2 ≤ c1K
2
1k

(

K2‖vn−1‖2 + 4

ν2
M2

1

)2

+ ‖vn−1‖2 + 2

ν
kM2

1

≤ ‖vn−1‖2
(

1 + c1K
2
1K

2
2k‖vn−1‖2 + 8

ν2
c1K

2
1K2M

2
1k

)

+
1

ν
kM2

1

(

16

ν3
c1K

2
1M

2
1 + 2

)

.

(4.20)

We rewrite (4.20) in the form

(4.21) ξn ≤ ξn−1(1 + kηn−1) + kζn,

with
(4.22)

ξn = ‖vn‖2, ηn = c1K
2
1K

2
2‖vn‖2+

8

ν2
c1K

2
1K2M

2
1 , ζn =

1

ν
M2

1

(

16

ν3
c1K

2
1M

2
1 + 2

)

,

and recalling (3.8) and (3.30), we compute the following:

(4.23)

n
∑

i=1

kζi =
1

ν
M2

1

(

16

ν3
c1K

2
1M

2
1 + 2

)

nk,

(4.24)
n−1
∑

i=0

kηi = c1K
2
1K2k

n−1
∑

i=0

(

K2‖vn‖2 +
8

ν2
M2

1

)

≤ c1
ν
K2

1K
2
2

[

K2
1 +

M2
1

ν
(n− 1)k

]

+ c1K
2
1K2k‖v0‖2 +

8

ν2
c1K

2
1K2M

2
1nk

(by (3.31)).

Then conclusion (4.13) of Lemma 4.3 yields

‖vn‖2

≤
(

‖v0‖2 + 1

ν
M2

1

(

16

ν3
c1K

2
1M

2
1 + 2

)

nk

)

exp

{

c1
ν
K2

1K2

[

K2
1K2 +

M2
1

ν
(K2 + 8)nk

]}

exp
{

c1K
2
1K2k‖v0‖2

}

=: K2
3 (‖v0‖, |θ0|, nk),

(4.25)

and thus

(4.26) ‖vn‖2 ≤ K2
3(‖v0‖, |θ0|, T + T0), ∀n = 0, · · · , N +N0.

In order to derive a bound on ‖vn‖2 valid for n ≥ N +N0+1, we will apply (the
discrete uniform Gronwall) Lemma 4.4. In order to do so, we recall that |vn| < ρ0,
|θn| < ρ0, for n ≥ N0, and we compute the following (for k0 ≥ N0 + 1):

(4.27)

N+k0
∑

n=k0

kηn = c1K
2
1K2k

N+k0
∑

n=k0

(

K2‖vn‖2 +
8

ν2
M2

1

)

≤ c1
ν
ρ40K

2
2 (ρ0, ρ0)

(

1 +
1

ν
(N + 1)k

)

+
8

ν2
c1ρ

4
0K2(ρ0, ρ0)nk

(by (3.31)),
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(4.28)

N+k0
∑

n=k0

kζn =

N+k0
∑

n=k0

1

ν
M2

1

(

16

ν3
c1K

2
1M

2
1 + 2

)

nk

≤ 1

ν
ρ20

(

16

ν3
c1ρ

4
0 + 2

)

(N + 1)k,

(4.29)

N+k0
∑

n=k0

kξn =

N+k0
∑

n=k0

k‖vn‖2

≤ ρ20
ν

(

1 +
1

ν
(N + 1)k

)

(by (3.31)).

Then conclusion (4.16) of Lemma 4.4 yields

(4.30)

‖vn‖2 ≤
[

ρ20
νNk

(

1 +
1

ν
(N + 1)k

)

+
1

ν
ρ20

(

16

ν3
c1ρ

4
0 + 2

)

(N + 1)k

]

exp

{

c1
ν
ρ40K

2
2 (ρ0, ρ0)

(

1 +
1

ν
(N + 1)k

)

+
8

ν2
c1ρ

4
0K2(ρ0, ρ0)nk

}

≤
[

ρ20
νT

(

1 +
T

ν
+

1

ν2

)

+
1

ν
ρ20

(

16

ν3
c1ρ

4
0 + 2

)(

T +
1

ν

)]

exp

{

c1
ν
ρ40K

2
2 (ρ0, ρ0)

(

1 +
T

ν
+

1

ν2

)

+
8

ν2
c1ρ

4
0K2(ρ0, ρ0)T

}

=: K2
4(T ), ∀n ≥ N +N0 + 1.

Combining the above bound with (4.26), we obtain both conclusion (4.17) and
conclusion (4.19) of the proposition.

Taking the sum of (4.11) with n from i to m and using (4.17) gives conclusion
(4.18) and thus the proof of Proposition 4.1 is complete.

�

4.2. H1-Uniform Boundedness of θn. We are now going to prove the H1-
uniform boundedness of θn, for all n ≥ 0. In order to do so, we will first use
the discrete Gronwall lemma to derive an upper bound on ‖θn‖, n ≤ N , for some
N > 0, and then we will use another version of the discrete uniform Gronwall
lemma (see Lemma 4.6 below) to obtain an upper bound on ‖θn‖, n ≥ N .

Lemma 4.5. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the numerical scheme
(2.46)–(2.47). Also, let T > 0 be arbitrarily fixed and k be such that

(4.31) k ≤ min

{

κ1,
1

2c2K2
1K

2
5 (‖v0‖, |θ0|)

}

=: κ2(‖v0‖, |θ0|),

where κ1 is given by (3.43), c2 = 27c4b/(32κ
2) and K5(‖v0‖, |θ0|) is given in Propo-

sition 4.1. Then we have

(4.32) ‖θn‖2 ≤ 4c2K
2
1K

2
5T

(

‖θ0‖2 + 2

c2κK2
5

)

, ∀n = 1, · · · , N := ⌊T/k⌋.

Proof. Replacing θ by 2kA2θ
n in (2.47), we obtain

‖θn‖2 − ‖θn−1‖2 + ‖θn − θn−1‖2 + 2kb2(v
n, θn, A2θ

n)

− 2k(vn2 , A2θ
n) + 2κk|A2θ

n|2 = 0.
(4.33)
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Using property (2.38) of the trilinear form b2 and recalling (3.30) and (4.17), we
have the following bound of the nonlinear term,

2kb2(v
n, θn, A2θ

n) ≤ 2 cb k |vn|1/2‖vn‖1/2‖θn‖1/2|A2θ
n|3/2

≤ κ

2
k|A2θ

n|2 + c2K
2
1K

2
5k‖θn‖2.

(4.34)

Using the Cauchy–Schwarz inequality and recalling (3.30), we have the following
bound

−2k(vn2 , A2θ
n) ≤ 2k|vn2 ||A2θ

n|

≤ κ

2
k|A2θ

n|2 + 2

κ
K2

1k.
(4.35)

Relations (4.33)–(4.35) imply

‖θn‖2 − ‖θn−1‖2 + ‖θn − θn−1‖2 + κk|A2θ
n|2

≤ c2K
2
1K

2
5k‖θn‖2 +

2

κ
K2

1k,
(4.36)

from which we obtain

(4.37) ‖θn‖2 ≤ 1

α
‖θn−1‖2 + 2

κα
K2

1k,

where

(4.38) α = 1− c2K
2
1K

2
5k.

Using recursively (4.37), we find

(4.39) ‖θn‖2 ≤ (1 − c2K
2
1K

2
5k)

−n

(

‖θ0‖2 + 2

c2κK2
5

)

.

Since

1− x ≥ 4−x, 0 < x ≤ 1

2
,

and, by hypothesis, c2K
2
1K

2
5k ≤ 1/2, conclusion (4.32) follows immediately. This

completes the proof of Lemma 4.5. �

In order to derive an upper bound on ‖θn‖, n ≥ N , we will need the following
version of the discrete uniform Gronwall lemma, slightly different from Lemma 4.4:

Lemma 4.6. We are given k > 0, positive integers n0, n1 and positive sequences
ξn, ηn, ζn such that

(4.40) kηn <
1

2
, for n ≥ n0,

(4.41) (1 − kηn)ξn ≤ ξn−1 + kζn, for n ≥ n0.

Assume also that

(4.42)

k

k0+n1
∑

n=k0

ηn ≤ a1(n0, n1), k

k0+n1
∑

n=k0

ζn ≤ a2(n0, n1),

k

k0+n1
∑

n=k0

ξn ≤ a3(n0, n1),

for any k0 ≥ n0. We then have,

(4.43) ξn ≤
(a3(n0, n1)

kn1
+ a2(n0, n1)

)

e4a1(n0,n1),

for any n ≥ n0 + n1.
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Proof. Let n3 and n4 be such that n0 ≤ n2 < n3 ≤ n2 + n1. Using recursively
(4.41), we derive

(4.44) ξn2+n1
≤ 1
∏n2+n1

n=n3
(1− kηn)

ξn3−1 ++k

n2+n1
∑

n=n3

1
∏n2+n1

j=n (1 − kηj)
ζn.

Using the fact that 1 − x ≥ e−4x, ∀x ∈
(

0, 12
)

, and recalling assumptions (4.42)1
and (4.42)2, we obtain

ξn2+n3
≤ (ξn3−1 + a2)e

−4a1 .

Multiplying this inequality by k, summing n3 from n2 + 1 to n2 + n1 and using
assumption (4.42)3 gives the conclusion (4.43) of the lemma. �

We are now able to derive an upper bound on ‖θn‖, n ≥ N . More precisely, we
have the following:

Lemma 4.7. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the numerical scheme
(2.46)–(2.47). Also, let T > 0 be arbitrarily fixed and k be such that

k ≤ min

{

κ2(‖v0‖, |θ0|),
T

2

}

=: κ3(‖v0‖, |θ0|),(4.45)

where κ2(·, ·) is given in Lemma 4.5. Then there exists M2 = M2(‖v0‖, |θ0|, T ),
given in (4.48) below, such that

(4.46) ‖θn‖ ≤M2(‖v0‖, |θ0|, T ), ∀n ≥ N := ⌊T/k⌋.

Proof. We apply Lemma 4.6 to (4.36), which we rewrite as

(1 − c2K
2
1K

2
5k)‖θn‖2 − ‖θn−1‖2 + ‖θn − θn−1‖2 + κk|A2θ

n|2

≤ 2

κ
K2

1k.
(4.47)

We set ξn = ‖θn‖2, ηn = c2K
2
1K

2
5 , ζn = 2

κK
2
1 , n0 = 1, n1 = N − 1 and for k0 ≥ 1

we compute:

k

k0+n1
∑

n=k0

ηn = k

k0+n1
∑

n=k0

c2K
2
1K

2
5 ≤ c2K

2
1K

2
5T,

k

k0+n1
∑

n=k0

ζn = k

k0+n1
∑

n=k0

2

κ
K2

1 ≤ 2

κ
K2

1T,

k

k0+n1
∑

n=k0

ξn = k

k0+n1
∑

n=k0

‖θn‖2 ≤ 1

κ

(

M2
1 +

K2
1

κ
T

)

(by (3.32)).

Then Lemma 4.6 implies

‖θn‖2 ≤ 2

κ

(

M2
1

T
+
K2

1

κ
+K2

1T

)

e4c2K
2
1K

2
5T

:=M2
2 (‖v0‖, |θ0|, T ), ∀n ≥ N.

(4.48)

Thus, the lemma is proved. �

Combining Lemma 4.5 and Lemma 4.7, we obtain that θn are uniformly bounded
in V , for all n ≥ 0. More precisely, we have
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Proposition 4.2. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the numer-
ical scheme (2.46)–(2.47). Also, let T > 0 be arbitrarily fixed and k be such
that k ≤ κ3(‖v0‖, |θ0|), where κ3(·, ·) is given in Lemma 4.7. Then there exists
M3 =M3(‖v0‖, ‖θ0‖), such that

(4.49) ‖θn‖ ≤M3(‖v0‖, ‖θ0‖), ∀n ≥ 0.

Proof. Taking

M3(‖v0‖, ‖θ0‖) = max

{

4c2K
2
1K

2
5T

(

‖θ0‖2 +
2

c2κK2
5

)

,M2(‖v0‖, |θ0|, T )
}

,

Lemmas 4.5 and 4.7 give conclusion (4.49) of the proposition. �

Corollary 4.1. Under the assumptions of Proposition 4.2, we also have

m
∑

n=i

‖θn − θn−1‖2 ≤M2
3 + c2K

2
1K

2
5M

2
3k(m− n+ 1)

+
2

κ
K2

1k(m− n+ 1), ∀ i = 1, · · · ,m.
(4.50)

Proof. Taking the sum of (4.36) with n from i tom and using (4.49) gives conclusion
(4.50) of the corollary right away. �

With the notation ‖{v0, θ0}‖ = ‖v0‖+ ‖θ0‖, Proposition 4.1 and Proposition 4.2
can be combined to obtain the following theorem, which is one of our main results:

Theorem 4.1. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the numerical
scheme (2.46)–(2.47). Then there exists a positive function κ4(·), depending de-
creasingly of its argument, and a positive function K6(·), depending increasingly of
its argument, such that if

(4.51) k ≤ κ4(‖{v0, θ0}‖),

then

(4.52) ‖{vn, θn}‖ ≤ K6(‖{v0, θ0}‖), ∀n ≥ 0.

5. Convergence of Attractors

In this section we address the issue of the convergence of the attractors generated
by the discrete system (2.45)–(2.47) to the attractor generated by the continuous
system (2.11)–(2.18). Whereas for the continuous system (2.11)–(2.18) one can
prove both the existence and uniqueness of the solution (see, e.g., [15])–and, there-
fore, define a global attractor–, for the discrete system (2.45)–(2.47) one can prove
(using Theorem 4.1) the uniqueness of the solution provided that k ≤ κ(‖u0‖), for
some κ(‖u0‖) > 0. Since the time restriction depends on the initial data, one can-
not define a single-valued attractor in the classical sense, and this is why we need
to use the attractor theory for the so-called multi-valued mappings. Multi-valued
dynamical systems have been investigated by many authors (see, e.g., [1], [2], [4],
[11], [12], [13]), but in this article we use the tools developed in [5] to study the con-
vergence of the discrete (multi-valued) attractors to the continuous (single-valued)
attractor. For convenience, we recall those results in Subsection 5.1, and then we
apply them to the thermohydraulics equations in Subsection 5.2.
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5.1. Attractors for multi-valued mappings. Throughout this subsection, we
consider (H, | · |) to be a Hilbert space and T to be either R+ = [0,∞) or N.

Definition 5.1. A one-parameter family of set-valued maps S(t) : 2H → 2H is a
multi-valued semigroup (m-semigroup) if it satisfies the following properties:

(S.1) S(0) = I2H (identity in 2H);
(S.2) S(t+ s) = S(t)S(s), for all t, s ∈ T.

Moreover, the m-semigroup is said to be closed if S(t) is a closed map for every
t ∈ T, meaning that if xn → x in H and yn ∈ S(t)xn is such that yn → y in H,
then y ∈ S(t)x. (To simplify the notation, hereafter we have written S(t)x in place
of S(t){x}.)

Definition 5.2. The positive orbit of B, starting at t ∈ T, is the set

γt(B) =
⋃

τ≥t

S(τ)B,

where

S(t)B =
⋃

x∈B
S(t)x.

Definition 5.3. For any B ∈ 2H , the set

ω(B) =
⋂

t∈T

γt(B)

is called the ω-limit set of B.

Definition 5.4. A nonempty set B ∈ 2H is invariant for S(t) if

S(t)B = B, ∀t ∈ T.

Definition 5.5. A set B0 ∈ 2H is an absorbing set for the m-semigroup S(t) if
for every bounded set B ∈ 2H there exists tB ∈ T such that

S(t)B ⊂ B0, ∀t ≥ tB.

Definition 5.6. A nonempty set C ∈ 2H is attracting if for every bounded set B
we have

lim
t→∞

dist(S(t)B, C) = 0,

where dist(·, ·) is the Hausdorff semidistance, defined as

(5.1) dist(B, C) = sup
b∈B

inf
c∈C

|b− c|, ∀B, C ⊂ H.

Definition 5.7. A nonempty compact set A ∈ 2X is said to be the global attractor
of S(t) if A is an invariant attracting set.

Remark 5.1. The global attractor, if it exists, is necessarily unique. Moreover, it
enjoys the following maximality and minimality properties:

(i) if Ã is a bounded invariant set, then A ⊃ Ã;

(ii) if Ã is a closed attracting set, then A ⊂ Ã.

Definition 5.8. Given a bounded set B ∈ 2H , the Kuratowski measure of

noncompactness α(B) of B is defined as

α(B) = inf
{

δ : B has a finite cover by balls of X of diameter less than δ
}

.
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We note that α(B) = 0 if and only if B is compact.

The following theorem, whose proof can be found in [5], gives conditions under
which a global attractor exists.

Theorem 5.1. Suppose that the closed m-semigroup S(t) possesses a bounded ab-
sorbing set B0 ∈ 2H and

(5.2) lim
t→∞

α(S(t)B0) = 0.

Then ω(B0) is the global attractor of S(t).

For the purpose of this article, we need to introduce the notion of discrete m-
semigroups. More precisely, we have the following:

Definition 5.9. Given a set-valued map S : 2H → 2H , we define a discrete

m-semigroupby
S(n) = Sn, ∀n ∈ N,

and we will denote it by {S}n∈N (instead of {Sn}n∈N).

Remark 5.2. Given two nonempty sets B, C ∈ 2H , we write

B − C = {b− c : b ∈ B, c ∈ C} and |B| = sup
b∈B

|b|.

In order to prove the convergence of the attractors generated by the discrete
system (2.45)–(2.47) to the attractor generated by the continuous system (2.11)–
(2.18) we will use the following result, whose proof can be found in [5]; see also [21],
[19].

Theorem 5.2. Let S(t) be a closed m-semigroup, possessing the global attractor A,
and for κ0 > 0, let {Sk, 0 < k ≤ κ0}n∈N be a family of discrete closed m-semigroups,
with global attractor Ak. Assume the following:

(H1) [Uniform boundedness]: there exists κ1 ∈ (0, κ0] such that the set

K =
⋃

k∈(0,κ1]

Ak

is bounded in H;
(H2) [Finite time uniform convergence]: there exists t0 ≥ 0 such that for any

T ⋆ > t0,
lim
k→0

sup
x∈Ak, nk∈[t0,T⋆]

|Sn
k x− S(nk)x| = 0.

Then
lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance defined in (5.1).

5.2. Application: The thermohydraulics equations. The system (2.11)–(2.18)
possesses a unique solution and thus generates a continuous single-valued dynam-
ical system S(t) : H → H , with global attractor A, bounded in V (see, e.g., [15]).
Using Theorem 4.1 one can prove that the discrete system (2.45)–(2.47) has a u-
nique solution provided that k ≤ κ(‖u0‖), for some κ(‖u0‖) > 0. The dependence
of the time step k on the initial data prevents us from defining a single-valued at-
tractor in the classical sense, but this difficulty can be overcome by the theory of
the multi-valued attractors. More precisely, in this article we will prove that there
exists κ0 > 0 such that if 0 < k ≤ κ0, the system (2.45)–(2.47) generates a closed
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discrete m-semigroup {Sk}n∈N, with global attractors Ak, that will converge to A
in the sense of Theorem 5.2.

In order to do that, we define, for k > 0, the multi-valued map Sk : 2H → 2H as
follows: for every ũ = {ṽ, θ̃} ∈ H ,

Skũ = {u = {v, θ} ∈ V : u solves (5.3)–(5.4) below with time-step k} :

(v, v′) + νk((v, v′)) + kb1(v, v, v
′)− k(e2θ, v

′) = (ṽ, v′), ∀v′ ∈ V1,(5.3)

(θ, θ′) + κk((θ, θ′)) + kb2(v, θ, θ
′)− k(v2, θ

′) = (θ̃, θ′), ∀θ′ ∈ V2.(5.4)

We then have the following:

Theorem 5.3. The multi-valued map Sk associated with the implicit Euler scheme
(2.45)–(2.47) generates a closed discrete m-semigroup {Sk}n∈N.

Proof. Since conditions (S.1) and (S.2) are satisfied by definition, we just need
to prove that for each n ∈ N, Sn

k is a closed multi-valued map. For that, we
let n ∈ N be arbitrarily fixed and, as j → ∞, we let u0j → u0 in H , where

u0j = {v0j , θ0j}, u0 = {v0, θ0}. Also let unj ∈ Sn
k u

0
j be such that unj → un in H , where

unj = {vnj , θnj }, un = {vn, θn}. We need to show that un ∈ Sn
k u

0.

Indeed, since unj ∈ Sn
k u

0
j , there exists a sequence (u0j , u

1
j , . . . , u

n−1
j , unj ), with

uij ∈ Sku
i−1
j , such that

(vij , v
′) + νk((vij , v

′)) + kb1(v
i
j , v

i
j , v

′)− k(e2θ
i
j , v

′) = (vi−1
j , v′), ∀v′ ∈ V1,(5.5)

(θij , θ
′) + κk((θij , θ

′)) + kb2(v
i
j , θ

i
j , θ

′)− k((vij)2, θ
′) = (θi−1

j , θ′), ∀θ′ ∈ V2.(5.6)

The sequence u0j being convergent in H , it is also bounded in H and thus there
exists M > 0 such that

(5.7) sup
j

|u0j |2 ≤M.

Then Lemmas 3.2 and 3.3 imply that for every i = 1, . . . , n, the sequences vij and

θij are bounded in V1 and V2, respectively. We therefore have that there exist

subsequences still denoted vij and θij , such that as j → ∞:

vij → vi, strongly in H1 and weakly in V1,(5.8)

θij → θi, strongly in H2 and weakly in V2.(5.9)

Now, passing to the limit in (5.5)–(5.6), we obtain

(vi, v′) + νk((vi, v′)) + kb1(v
i, vi, v′)− k(e2θ

i, v′) = (vi−1, v′), ∀v′ ∈ V1,(5.10)

(θi, θ′) + κk((θi, θ′)) + kb2(v
i, θi, θ′)− k((vi)2, θ

′) = (θi−1, θ′), ∀θ′ ∈ V2.(5.11)

We therefore obtain that ui ∈ Sku
i−1, for each i = 1, . . . , n, and hence, un ∈

Sku
n−1 ⊂ Sn

k u
0. This completes the proof of the theorem. �

In order to prove the existence of the discrete global attractors, we first prove
the existence of absorbing sets. More precisely, we have the following:

Proposition 5.1. There exists κ5 > 0, independent of {v0, θ0}, n, k, such that if
k ∈ (0, κ5] the following holds: there exists a constant R1 > 0 such that for every
R ≥ 0 and |{v0, θ0}| ≤ R, there exists N1 = N1(R, k) ≥ 0 such that

(5.12) ‖Sn
k {v0, θ0}‖ ≤ R1, ∀n ≥ N1.

Hence, the set
B1 = {{v, θ} ∈ V : ‖{v, θ}‖ ≤ R1}



LONG-TERM DYNAMICS OF 2D THERMOHYDRAULICS EQUATIONS 529

is a V -bounded absorbing set for {Sk}n∈N, for k ∈ (0, κ5].

Proof. Let κ1 be as in Corollary 3.2 and let k ≤ min{1, κ1}. Also, let R ≥ 0 and
|{v0, θ0}| ≤ R. Then, by Corollary 3.2, there exists N0 = N0(R, k) ≥ 0 such that

(5.13) |{vn, θn}| ≤ ρ0, ∀n ≥ N0.

Let m := N0 +
⌊

1
k

⌋

. Then equations (3.31) and (3.32) imply

(5.14) νk
m
∑

j=N0+1

‖vj‖2 ≤ ρ20 +
1

ν
ρ20(m−N0)k,

(5.15) κk

m
∑

j=N0+1

‖θj‖2 ≤ ρ20 +
1

κ
ρ20(m−N0)k.

Adding the above relations we obtain

(5.16) k





m
∑

j=N0+1

(ν‖vj‖2 + κ‖θj‖2)



 ≤ ρ20

(

2 +
1

ν
(m−N0)k +

1

κ
(m−N0)k

)

.

Assuming that for every j ∈ {N0 + 1, · · · ,m}

(ν‖vj‖2 + κ‖θj‖2) ≥ ρ20
k(m−N0)

(

2 +
1

ν
(m−N0)k +

1

κ
(m−N0)k

)

,

we obtain

(5.17) k





m
∑

j=N0+1

(ν‖vj‖2 + κ‖θj‖2)



 ≥ ρ20

(

2 +
1

ν
(m−N0)k +

1

κ
(m−N0)k

)

,

which contradicts (5.16). Hence there exists l ∈ {N0 + 1, · · · ,m} such that

(ν‖vl‖2 + κ‖θl‖2) ≤ ρ20
k(m−N0)

(

2 +
1

ν
(m−N0)k +

1

κ
(m−N0)k

)

≤ 2ρ20

(

2 +
1

ν
+

1

κ

)

.

(5.18)

We, therefore, have

(5.19) ‖{vl, θl}‖2 ≤ 2ρ20

(

2 +
1

ν
+

1

κ

)(

1

ν
+

1

κ

)

=: R2
∗.

Applying Theorem 4.1 with initial data {vl, θl} we obtain that there exists κ4(‖{vl, θl}‖)
and K6(‖{vl, θl}‖) such that if k ≤ κ4(‖{vl, θl}‖), then
(5.20) ‖{vn, θn}‖ ≤ K6(‖{vl, θl}‖), ∀n ≥ l.

Recalling (5.19) and the fact that κ4(·) and K6(·) are, respectively, decreasing and
increasing functions of their arguments, (5.20) yields

(5.21) ‖{vn, θn}‖ ≤ K6(R∗) =: R1, ∀n ≥ N1 = N1(R, k) := N0 +
⌊1

k

⌋

,

provided that k ≤ κ5, where

(5.22) κ5 = min{1, κ1, κ4(R∗)}.
This completes the proof of Proposition 5.1. �

We are now in a position to prove the existence of the discrete global attractors.
More precisely, we have the following:
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Proposition 5.2. For every k ∈ (0, κ5], there exists the global attractor Ak of the
m-semigroup {Sk}n∈N.

Proof. Let B0 = BH(0, ρ0) be the bounded absorbing set given in Corollary 3.2.
Then Proposition 5.1 implies that Sn

kB0 is bounded in V , for all n ≥ N1(ρ0, k).
Since V is compactly embedded in H , we obtain that Sn

kB0 is relatively compact
in H and, thus, α(Sn

kB0) = 0, for all n ≥ N1(ρ0, k). Condition (5.2) of Theorem
5.1 is therefore satisfied and then the existence of the discrete global attractor Ak

follows right away. �

Remark 5.3. Since the global attractor Ak is the smallest closed attracting set of
H, Proposition 5.1 implies

(5.23) Ak ⊂ B1, ∀k ∈ (0, κ5],

and thus

(5.24)
⋃

k∈(0,κ5]

Ak ⊂ B1.

Let us recall that our goal is to prove, using Theorem 5.2, that the discrete
global attractors Ak converge to the continuous global attractor A. Thanks to
(5.24), condition (H1) of Theorem 5.2 holds true. There remains to prove the finite
time uniform convergence required by (H2). In order to do that, we define, for any
k > 0 and for any function ψ, the following:

(5.25) ψk(t) = ψn, t ∈ [(n− 1)k, nk),

(5.26) ψ̃k(t) = ψn +
t− nk

k
(ψn − ψn−1), t ∈ [(n− 1)k, nk).

With the above notations, equations (2.46) and (2.47) can be rewritten as follows;
for t ∈ [(n− 1)k, nk):

(

∂ṽk(t)

∂t
, v

)

+ ν((ṽk(t), v)) + b1(ṽk(t), ṽk(t), v) = (e2θ̃k(t), v) + (fk(t), v), ∀v ∈ V1,

(5.27)

(

∂θ̃k(t)

∂t
, θ

)

+ κ((θ̃k(t), θ)) + b2(ṽk(t), θ̃k(t), θ)− (ṽk(t))2, θ) = (gk(t), θ), ∀θ ∈ V2,

(5.28)

where

(fk(t), v) = ν((ṽk(t)− vk(t), v)) + b1(ṽk(t), ṽk(t), v)

− b1(vk(t), vk(t), v)− (e2(θ̃k(t)− θk(t)), v),
(5.29)

(gk(t), θ) = κ((θ̃k(t)− θk(t), θ)) + b2(ṽk(t), θ̃k(t), θ)

− b2(vk(t), θk(t), θ)− ((ṽk(t)− vk(t))2, θ).
(5.30)

Lemma 5.1. Let T ∗ > 0 be arbitrarily fixed and let k ≤ κ0, where

(5.31) κ0 = min{κ5, κ4(R1)},
with κ5 being given in (5.22) and κ4 being given in Theorem 4.1. Assume that
{v0, θ0} ∈ Ak and let {vn, θn} be the solution of the numerical scheme (2.45)–
(2.47). Then there exist K7(T

∗) and K8(T
∗) such that

(5.32) ‖fk‖2L2(0,T∗;V ′
1)

≤ kK7(T
∗),
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and

(5.33) ‖gk‖2L2(0,T∗;V ′
2 )

≤ kK8(T
∗).

Proof. Let us first note that for any t ∈ [(n− 1)k, nk) we have

ψ̃k(t)− ψk(t) =
t− nk

k
(ψn − ψn−1).(5.34)

Also, since {v0, θ0} ∈ Ak, we have that ‖{v0, θ0}‖ ≤ R1 (by (5.23)) and then
Theorem 4.1 implies that for k ≤ κ0,

(5.35) ‖{vn, θn}‖ ≤ K6(R1), ∀n ≥ 0.

Now let v ∈ V1 be such that ‖v‖ ≤ 1, and let t ∈ [(n− 1)k, nk) be fixed. Using
property (2.31) of the trilinear form b1, we have

|b1(ṽk(t), ṽk(t), v)− b1(vk(t), vk(t), v)|
= |b1(ṽk(t)− vk(t), ṽk(t), v) + b1(vk(t), ṽk(t)− vk(t), v)|
≤ cb(‖ṽk(t)− vk(t)‖(‖ṽk(t)‖+ ‖vk(t)‖)‖v‖
≤ c‖vn − vn−1‖ (by (5.34), (5.35) and ‖v‖ ≤ 1).

(5.36)

We also have

(5.37) ν|((ṽk(t)− vk(t), v))| ≤ ν‖vn − vn−1‖,

(5.38) |(e2(θ̃k(t)− θk(t)), v)| ≤ ‖θn − θn−1‖.
Relations (5.36)–(5.38) imply

(5.39) ‖fk(t)‖V ′
1
≤ c(‖vn − vn−1‖+ ‖θn − θn−1‖),

and thus, setting N∗ = ⌊T ⋆/k⌋ and recalling that ‖{v0, θ0}‖ ≤ R1 , we obtain

‖fk‖2L2(0,T∗;V ′
1 )

=

∫ T∗

0

‖fk(t)‖2V ′
1
dt =

N∗+1
∑

n=1

∫ nk

(n−1)k

‖fk(t)‖2V ′
1
dt

≤ kK7(T
∗) (by (5.39), (4.18), (4.50)),

(5.40)

which proves (5.32).
Now let θ ∈ V2 be such that ‖θ‖ ≤ 1, and let t ∈ [(n− 1)k, nk) be fixed. Using

property (2.36) of the trilinear form b2, we have

|b2(ṽk(t), θ̃k(t), θ)− b2(vk(t), θk(t), θ)|
= |b2(ṽk(t)− vk(t), θ̃k(t), θ) + b2(vk(t), θ̃k(t)− θk(t), θ)|
≤ cb(‖ṽk(t)− vk(t)‖‖θ̃k(t)‖ + ‖vk(t)‖‖θ̃k(t)− θk(t)‖)‖θ‖
≤ c(‖vn − vn−1‖+ ‖θn − θn−1‖) (by (5.34), (5.35) and ‖θ‖ ≤ 1).

(5.41)

We also have

(5.42) κ|((θ̃k(t)− θk(t), θ))| ≤ κ‖θn − θn−1‖,

(5.43) |((ṽk(t)− vk(t))2, θ)| ≤ ‖vn − vn−1‖.
Relations (5.41)–(5.43) imply

(5.44) ‖gk(t)‖V ′
2
≤ c(‖vn − vn−1‖+ ‖θn − θn−1‖),
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and thus setting N∗ = ⌊T ⋆/k⌋ and recalling that ‖{v0, θ0}‖ ≤ R1 , we obtain

‖gk‖2L2(0,T∗;V ′
2 )

=

∫ T∗

0

‖gk(t)‖2V ′
2
dt =

N∗+1
∑

n=1

∫ nk

(n−1)k

‖gk(t)‖2V ′
2
dt

≤ kK8(T
∗) (by (5.44), (4.18), (4.50)),

(5.45)

which proves (5.33) and the proof of the lemma is complete. �

We are now able to prove that condition (H2) of Theorem 5.2 is satisfied. More
precisely, we have the following

Proposition 5.3 (Finite time uniform convergence). For any T ∗ > 0 we have

(5.46) lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T∗]

|Sn
k {v0, θ0} − S(nk){v0, θ0}| = 0.

Proof. Let

(5.47) ξk(t) = v(t)− ṽk(t), ηk(t) = θ(t) − θ̃k(t).

Subtracting (5.27) and (5.28) from (2.11) and (2.12) written in their week form,
respectively, we obtain

(

∂ξk(t)

∂t
, v′
)

+ ν((ξk(t), v
′)) + b1(ξk(t), v(t), v

′)

+ b1(ṽk(t), ξk(t), v
′) = (e2ηk(t), v

′)− (fk(t), v
′), ∀v′ ∈ V1,

(5.48)

(

∂ηk(t)

∂t
, θ′
)

+ κ((ηk(t), θ
′)) + b2(ξk(t), θ(t), θ

′)

+ b2(ṽk(t), ηk(t), θ
′)− ((ξk(t))2, θ

′) = −(gk(t), θ
′), ∀θ′ ∈ V2.

(5.49)

Replacing v′ by ξk(t) in (5.48), we find

1

2

d

dt
|ξk(t)|2 + ν‖ξk(t)‖2 + b1(ξk(t), v(t), ξk(t))

= (e2ηk(t), ξk(t)) − (fk(t), ξk(t)).
(5.50)

Using property (2.31) of the form b1, we bound the nonlinear term as

b1(ξk(t), v(t), ξk(t)) ≤ cb|ξk(t)|‖ξk(t)‖‖v(t)‖

≤ ν

6
‖ξk(t)‖2 +

c

ν
|ξk(t)|2‖v(t)‖2.

(5.51)

Using the Cauchy–Schwarz inequality, we also have

|(e2ηk(t), ξk(t))| ≤ |ηk(t)||ξk(t)|
≤ |ηk(t)|‖ξk(t)‖

≤ ν

6
‖ξk(t)‖2 +

c

ν
|ηk(t)|2,

(5.52)

|(fk(t), ξk(t))| ≤ ‖fk(t)‖V ′
1
‖ξk(t)‖

≤ ν

6
‖ξk(t)‖2 +

c

ν
‖fk(t)‖2V ′

1
.

(5.53)

Relations (5.50)–(5.53) imply

d

dt
|ξk(t)|2 + ν‖ξk(t)‖2 ≤ c

ν
‖v(t)‖2|ξk(t)|2

+
c

ν
|ηk(t)|2 +

c

ν
‖fk(t)‖2V ′

1
.

(5.54)
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Now replacing θ′ by ηk(t) in (5.49), we find

1

2

d

dt
|ηk(t)|2 + κ‖ηk(t)‖2 + b2(ξk(t), θ(t), ηk(t))

− ((ξk(t))2, ηk(t)) = −(gk(t), ηk(t)).
(5.55)

Using property (2.36) of the form b2, we bound the nonlinear term as

|b2(ξk(t), θ(t), ηk(t))| ≤ cb|ξk(t)|1/2‖ξk(t)‖1/2‖θ(t)‖|ηk(t)|1/2‖ηk(t)‖1/2

≤ ν

6
‖ξk(t)‖2 +

κ

6
‖ηk(t)‖2

+
c

ν
‖θ(t)‖2|ξk(t)|2 +

c

κ
‖θ(t)‖2|ηk(t)|2.

(5.56)

Using the Cauchy–Schwarz inequality, we also have the following bounds:

|((ξk(t))2, ηk(t))| ≤ |ξk(t)||ηk(t)|

≤ κ

6
‖ηk(t)‖2 +

c

κ
|ξk(t)|2,

(5.57)

|(gk(t), ηk(t))| ≤ ‖gk(t)‖V ′
2
‖ηk(t)‖

≤ κ

6
‖ηk(t)‖2 +

c

κ
‖gk(t)‖2V ′

2
.

(5.58)

Relations (5.55)–(5.58) imply

d

dt
|ηk(t)|2 + κ‖ηk(t)‖2 ≤ν

3
‖ξk(t)‖2 +

c

ν
‖θ(t)‖2|ξk(t)|2

+
c

κ
‖θ(t)‖2|ηk(t)|2 +

c

κ
|ξk(t)|2

+
c

κ
‖gk(t)‖2V ′

2
.

(5.59)

Adding equations (5.54) and (5.59), we obtain

d

dt
(|ξk(t)|2 + |ηk(t)|2) +

2

3
ν‖ξ(t)‖2 + κ‖η(t)‖2

≤ c

ν

(

‖v(t)‖2 + ‖θ(t)‖2 + ν

κ

)

|ξk(t)|2

+ c

(

1

ν
+

1

κ
‖θ(t)‖2

)

|ηk(t)|2

+
c

ν
‖fk(t)‖2V ′

1
+
c

κ
‖gk(t)‖2V ′

2
.

(5.60)

As shown in [15], the solution {v, θ} of the continuous problem is uniformly bounded
in V for all t ≥ 0. More precisely, we have

(5.61) sup
t≥0

sup
{v0,θ0}∈B1

‖S(t){v0, θ0}‖ ≤ c.

Thus, inequality (5.60) becomes

d

dt
(|ξk(t)|2 + |ηk(t)|2) +

2

3
ν‖ξ(t)‖2 + κ‖η(t)‖2

≤ c(|ξk(t)|2 + |ηk(t)|2) +
c

ν
‖fk(t)‖2V ′

1
+
c

κ
‖gk(t)‖2V ′

2
.

(5.62)

By Gronwall’s lemma and using the fact that ξk(0) = η(0) = 0, we obtain

|ξk(t)|2 + |ηk(t)|2 ≤ cecT
∗

(‖fk‖2L2(0,T∗;V ′
1 )

+ ‖gk‖2L2(0,T∗;V ′
2 )
),(5.63)

and recalling (5.32) and (5.33), we find

|ξk(t)|2 + |ηk(t)|2 ≤ ck,(5.64)
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for some constant c = c(T ∗) > 0.
We therefore have,

lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T∗]

|Sn
k {v0, θ0} − S(nk){v0, θ0}|

= lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T∗]

sup
{vn,θn}∈Sn

k {v0,θ0}
|{vn, θn} − {v(nk), θ(nk)}|

= lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T∗]

sup
{vn,θn}∈Sn

k
{v0,θ0}

|{ṽk(nk), θ̃k(nk)} − {v(nk), θ(nk)}|

= lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T∗]

sup
{vn,θn}∈Sn

k {v0,θ0}
|{ξk(nk), ηk(nk)}| = 0,

(5.65)

which concludes the proof of the lemma. �

We have, therefore, proved that conditions (H1) and (H2) of Theorem 5.2 are
both satisfied and thus, the long-term behavior of the semigroup S(t) generated by
the continuous thermohydraulics equations (2.11)–(2.12) is approximated by that
of the m-semigroups generated by the discrete system (2.45)–(2.47). More precisely,
we have the following result concerning the approximation of the attractor; this is
our second main result:

Theorem 5.4. The family of attractors {Ak}k∈(0,κ0] converges, as k → 0, to A,
in the following sense:

lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance in H, namely

dist(Ak,A) = sup
xk∈Ak

inf
x∈A

|xk − x|.
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