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CONVERGENCE OF ROTHE SCHEME FOR

HEMIVARIATIONAL INEQUALITIES OF PARABOLIC TYPE

PIOTR KALITA

Abstract. This article presents the convergence analysis of a sequence of piecewise constant and
piecewise linear functions obtained by the Rothe method to the solution of the first order evolution

partial differential inclusion u′(t)+Au(t)+ι∗∂J(ιu(t)) 3 f(t), where the multivalued term is given
by the Clarke subdifferential of a locally Lipschitz functional. The method provides the proof of

existence of solutions alternative to the ones known in literature and together with any method for

underlying elliptic problem, can serve as the effective tool to approximate the solution numerically.
Presented approach puts into the unified framework known results for multivalued nonmonotone

source term and boundary conditions, and generalizes them to the case where the multivalued

term is defined on the arbitrary reflexive Banach space as long as appropriate conditions are
satisfied. In addition the results on improved convergence as well as the numerical examples are

presented.
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1. Introduction

Partial differential inclusions with the multivalued term given in the form of
Clarke subdifferential are known as hemivariational inequalities (HVIs). HVIs are
the natural generalization of the inclusions with monotone multivalued term (which
lead to variational inequalities) and were firstly considered by Panagiotopoulos in
early 1980s. For the description of the origins of HVIs and underlying mathematical
theory we refer the reader to the book [30].
This paper deals with the first order evolution inclusion of type u′(t) + A(u(t)) +
ι∗∂J(ιu(t)) 3 f(t). Such problems are known as parabolic HVIs or boundary para-
bolic HVIs depending whether an operator ι is the embedding operator from H1(Ω)

to L2(Ω) or the trace operator from H1(Ω) to H
1
2 (∂Ω). The first case corresponds

to multivalued and nonmonotone source term in the equation and the second one
to multivalued and nonmonotone boundary conditions of Neumann-Robin type.
Such inclusions are used to model the diffusive transport through semipermeable
membranes where the multivalued term represents the semipermeability relation
[25] and the temperature control problems where the multivalued term represents
the feedback control [16], [15].
The existence of solutions to problems governed by inclusions of considered type
was investigated by many authors. There are several techniques used to obtain the
existence results:

• Classical Faedo-Galerkin approach combined with the regularization of the
multivalued term by means of a standard mollifier; solutions of underlying
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system of ordinary differential equations are proved to converge (in appro-
priate sense) to the function which is shown to be the solution of analyzed
HVI. This technique was used in context of parabolic HVIs by Miettinen
[23], Miettinen and Panagiotopoulos [25] and Goeleven et al. [14].
• The approach based on the notion of upper and lower solutions. The so-

lution is shown to be the limit of solutions of problems governed by the
equations obtained by the regularization of the multivalued term together
with the truncation by the lower and upper solutions. The distinctive fea-
ture of this approach is that the growth conditions on the multivalued term
are replaced by the assumption of the existence of lower and upper solu-
tions. The technique was used for parabolic HVIs by Carl [4] and developed
in [5], [6], [7], [9].
• The technique based on showing that the analyzed HVI satisfies the as-

sumptions of the general framework for which the appropriate surjectivity
result holds. This approach was used by Liu [20] and by Migórski [27] and
developed for the boundary case in [28].
• The technique based on adding to the inclusion the regularizing term mul-

tiplied by ε > 0, showing that the solutions to obtained problems satisfy
some bounds uniformly in ε and passing to the limit ε → 0. This tech-
nique was used for parabolic HVIs by Liu and Zhang [18] and Liu [19] and
developed in [21], [22].

It should be remarked that above techniques are either nonconstructive (i.e. they
are based on surjectivity result) or constructive but not effective (i.e. require a
priori knowledge of lower and upper solutions, or require additional or smoothing
terms in the problem).
In contrast to the existence theory, numerical methods to approximate effectively
the solutions to parabolic HVIs were not considered by many authors. In the book
of Haslinger, Miettinen and Panagiotopoulos [16] the convergence of solutions ob-
tained by the finite element approximation of the space variable and finite difference
approximation of the time variable is proved. However only the case of the linear
operator A and the multivalued source term (and not boundary conditions) is con-
sidered (see Remark 4.10 in [16]). In [15] the authors proved the convergence of the
finite difference scheme (with respect to both time and space variable) for the case
of multivalued source term (i.e. U = H in the sequel).
Our approach uses the so-called Rothe method (known also as time approxima-
tion method) and allows to extend any numerical method that is used to solve the
stationary, elliptic inclusions with the multivalued term given as the Clarke subdif-
ferential, to time dependent, parabolic problems. The key idea is the replacement
of time derivative with the backward difference scheme and solve the associated
elliptic problem in every time step to find the solution in the consecutive points of
the time mesh. It is proved that the results obtained by such approach approximate
the solution of the original problem.
On the other hand, the Rothe metod provides the proof of existence of solutions. In
contrast to other approaches this metod, as long as one can solve underlying elliptic
problems, does not require any smoothing or other additional regularizing terms in
the inclusion. Furthermore the presented approach allows to study the inclusions
with multivalued term given on the domain and on the domain boundary within the
unified framework in which the multifunction that appears in the problem is defined
on an arbitrary reflexive Banach space, which satisfies the appropriate assumption
(H(U) in the sequel). This assumption is proved to generalize the case of inclusions
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with multivalued boundary conditions and the ones with multivalued source term
(see Section 3 and examples of problem settings in Section 8).
The Rothe method for parabolic nonlinear PDEs with pseudomonotone operators
is described in the monograph of Roubiček [35], where also the results for the
monotone multivalued problems are presented. In the context of parabolic HVIs
the variant of the Rothe method was used to show existence of solutions to problems
with hysteresis in [24] and [26], but there only the case of linear operator A and
f ∈ L2(0, T ;L2(Ω)) (which excludes nonhomogeneous Neumann conditions) was
considered and besides only the case of the multivalued and nonmonotone term
source term was analyzed. In the recent work of Peng and Liu [32], which appeared
independently of this paper, the Rothe approach was used to obtain the existence
result for the generalization of parabolic type HVI, which consists in the maximal
monotone nonlinearity in the term with the first time derivative.
In Section 2 some basic definitions are recalled. Section 3 presents the generalization
of the Lions-Aubin Compactness Lemma that justifies the usage of the assumption
H(U) in the sequel. Problem setup and the assumptions are presented in Section
4. The auxiliary elliptic problems solved in every time step, which are the key
idea of the Rothe method, are formulated and analyzed in Section 5. Convergence
of piecewise linear and piecewise constant functions constructed basing on the so-
lutions of auxiliary problems as well as the fact that the limit solves the original
problem is proved in Section 6. Some stronger convergence and uniqueness results
are established in Section 7. Finally in Section 8 it is shown that the cases of
multivalued boundary condition and source term are the special cases of presented
general framework and a simple numerical example is delivered.

2. Preliminaries

In this section we recall several key definitions that will be used in the sequel.
For a locally Lipschitz functional j : X → R, whereX is a Banach space, generalized
directional derivative (in the sense of Clarke) at x ∈ X in the direction z ∈ X is
defined as

j0(x; z) = lim sup
y→x,λ→0+

j(y + λz)− j(y)

λ
.

Generalized gradient of j (in the sense of Clarke) is the multifunction ∂j : X → 2X
∗

defined by

∂j(x) = {ξ ∈ X∗ : j0(x; y) ≥ 〈ξ, y〉 for all y ∈ X},

where 〈·, ·〉 stands for the duality pairing between X and X∗. For the properties
and the calculus of the Clarke gradient see [10].
Recall that the multifunction A : X → 2X

∗
, where X is a real and reflexive Banach

space is pseudomonotone if

(i) A has values which are nonempty, weakly compact and convex,
(ii) A is usc from every finite dimensional subsepace of X into X∗ furnished

with weak topology,
(iii) if vn → v weakly in X and v∗n ∈ A(vn) is such that lim supn→∞〈v∗n, vn−v〉 ≤

0 then for every y ∈ X there exists u(y) ∈ A(v) such that 〈u(y), v − y〉 ≤
lim infn→∞〈v∗n, vn − y〉.

Note that sometimes it is useful to check the pseudomonotonicity of an operator
via the following sufficient condition (see Proposition 1.3.66 in [12] or Proposition
3.1 in [8]).
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Proposition 1. Let X be a real reflexive Banach space, and assume that A : X →
2X
∗

satisfies the following conditions

(i) for each v ∈ X we have that A(v) is a nonempty, closed and convex subset
of X∗.

(ii) A is bounded.
(iii) If vn → v weakly in X and v∗n → v∗ weakly in X∗ with v∗n ∈ A(vn) and if

lim supn→∞〈v∗n, vn − v〉 ≤ 0, then v∗ ∈ A(v) and 〈v∗n, vn〉 → 〈v∗, v〉.
Then the operator A is pseudomonotone.

We also recall (see for instance Proposition 1.3.68 [12]) that the sum of two pseu-
domonotone multifunctions is pseudomonotone.

3. Generalization of Lions-Aubin Lemma

For a Banach space X, 1 ≤ p ≤ ∞ and a finite time interval I = (0, T ) we consider
the standard spaces Lp(I;X). Furthermore we denote by BV (I;X) the space of
functions of bounded total variation on I. Let π denote any finite partition of I
by a family of disjoint subintervals {σi = (ai, bi)} such that Ī =

⋃n
i=1 σ̄i. Let F

denote the family of all such partitions. Then we define the total variation as

‖x‖BV (I;X) = sup
π∈F

{∑
σi∈π
‖x(bi)− x(ai)‖X

}
.

As a generalization of above definition for 1 ≤ q <∞ we can define a seminorm

‖x‖qBV q(I;X) = sup
π∈F

{∑
σi∈π
‖x(bi)− x(ai)‖qX

}
.

For Banach spaces X,Z such that X ⊂ Z we introduce a vector space

Mp,q(I;X,Z) = Lp(I;X) ∩BV q(I;Z).

Then Mp,q(I;X,Z) is also a Banach space for 1 ≤ p, q < ∞ with the norm given
by ‖ · ‖Lp(I;X) + ‖ · ‖BV q(I;Z).
Let us recall Theorem 1 of [36] (see also Theorem 1 of [34] and Proposition 2.1 of
[33]).

Theorem 1. Let 1 ≤ p < ∞ and X be a real Banach space. A subset G ⊂
Lp(0, T ;X) is relatively compact in a Banach space Lp(0, T ;X) provided the fol-
lowing two conditions hold

• for every 0 < t1 < t2 < T the set

G(t1, t2) :=

{∫ t2

t1

u(t) dt : u ∈ G
}

is relatively compact in X,
• G is strongly integrally equicontinuous i.e.

(1) lim
h→0

sup
u∈G

∫ T−h

0

‖u(t+ h)− u(t)‖pX dt = 0.

The following proposition is a consequence of Theorem 1.

Proposition 2. Let 1 ≤ p, q < ∞. Let X1 ⊂ X2 ⊂ X3 be real Banach spaces
such that X1 is reflexive, the embedding X1 ⊂ X2 is compact and the embedding
X2 ⊂ X3 is continuous. If a subset G ⊂ Mp,q(I;X1, X3) is bounded, then it is
relatively compact in Lp(I;X2).
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Proof. We apply Theorem 1 with X = X2. Let us fix 0 < t1 < t2 < T and let
v ∈ G(t1, t2). For u ∈ G we have

‖v‖X1
=

∥∥∥∥∫ t2

t1

u(t) dt

∥∥∥∥
X1

≤
∫ T

0

‖u(t)‖X1
dt ≤ T 1− 1

p ‖u‖Lp(I;X1).(2)

Thus G(t1, t2) is bounded in X1 and therefore relatively compact in X2.
It suffices to show the strong integral equicontinuity of G. Let supu∈G ‖u‖

p
Lp(I;X1) =

M . We will use the Ehrling Lemma (see for instance [35], Lemma 7.6). Let us fix ε >
0. There exists C > 0 such that for v ∈ X1 we have ‖v‖pX2

≤ ε
2pM ‖v‖

p
X1

+C‖v‖pX3
.

In particular, fixing h ∈ (0, T ), for u ∈ G and almost every t ∈ (0, T − h) we have
‖u(t+ h)− u(t)‖pX2

≤ ε
2pM ‖u(t+ h)− u(t)‖pX1

+C‖u(t+ h)− u(t)‖pX3
. Integrating

this inequality we get∫ T−h

0

‖u(t+ h)− u(t)‖pX2
dt ≤

≤ ε

2pM

∫ T−h

0

‖u(t+ h)− u(t)‖pX1
dt+ C

∫ T−h

0

‖u(t+ h)− u(t)‖pX3
dt ≤

≤ ε

2M

∫ T−h

0

‖u(t+ h)‖pX1
+ ‖u(t)‖pX1

dt+ C

∫ T−h

0

‖u(t+ h)− u(t)‖pX3
dt ≤

≤ ε+ C

∫ T−h

0

‖u(t+ h)− u(t)‖pX3
dt.(3)

Now let supu∈G ‖u‖
q
BV q(I;X3) = S. If p ≤ q, then by the Hölder inequality, we have

(4)

∫ T−h

0

‖u(t+ h)− u(t)‖pX3
dt ≤ T 1− pq

(∫ T−h

0

‖u(t+ h)− u(t)‖qX3
dt

) p
q

.

If in turn q < p, then

(5)

∫ T−h

0

‖u(t+ h)− u(t)‖pX3
dt ≤ S

p
q−1

∫ T−h

0

‖u(t+ h)− u(t)‖qX3
dt.

We estimate the last term in (4) and (5) from above (taking, if necessary, u(t) =
u(T ), if t > T )∫ T−h

0

‖u(t+ h)− u(t)‖qX3
dt ≤

dT/h−2e∑
i=0

∫ ih+h

ih

‖u(t+ h)− u(t)‖qX3
dt =

=

dT/h−2e∑
i=0

∫ h

0

‖u(t+ ih+ h)− u(t+ ih)‖qX3
dt =

=

∫ h

0

dT/h−2e∑
i=0

‖u(t+ ih+ h)− u(t+ ih)‖qX3
dt ≤ Sh.(6)

Thus the last term in (3) tends to 0 uniformly in u as h → 0 and, since ε was
arbitrary, we get the thesis. �

Remark 1. Note, that Theorem 3.2 in [1] is a consequence of above theorem.
Compare also the Corollary 7.9 in [35] where the case p = 1 is excluded and X3 is
assumed to have a predual space.
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4. Problem formulation and assumptions

Let V ⊂ H ⊂ V ∗ be an evolution triple, where V is a reflexive and separable
Banach space and H is a separable Hilbert space with the embeddings being con-
tinuous, dense and compact. Embedding between V and H will be denoted by i.
Furthermore let U be a reflexive Banach space on which the multivalued term will
be defined. We use the notation V = L2(0, T ;V ), H = L2(0, T ;H), U = L2(0, T ;U)
and W = {u ∈ V, u′ ∈ V∗}, where the derivative is understood in the sense of dis-
tibutions. Duality parings and norms for all the spaces will be denoted by the
appropriate subscripts, for the space V no subscript will be used. Scalar product
in H will be denoted by (·, ·) and norm in Rn by | · |. We consider the operator
A : V → V ∗ and the functional J : U → R such that the following assumptions
hold

H(A): (i) A is pseudomonotone,
(ii) A satisfies the growth condition ‖A(v)‖V ∗ ≤ a+ b‖v‖ for every v ∈ V

with a ≥ 0, b > 0,
(iii) A is coercive 〈A(v), v〉 ≥ α‖v‖2 − β‖v‖2H for every v ∈ V with α > 0

and β ≥ 0,
H(J): (i) J is locally Lipschitz,

(ii) ∂J satisfies the growth condition ‖ξ‖U∗ ≤ c(1 +‖u‖U ) for every u ∈ U
and ξ ∈ ∂J(u) with c > 0.

Moreover we assume that

H0: f ∈ V∗ and u0 ∈ H.

We also impose the assumption concerning the space U

H(U): There exists the linear, continuous and compact mapping ι : V → U such
that the associated Nemytskii mapping ῑ : M2,2(0, T ;V, V ∗) → U defined
by (ῑv)(t) = ι(v(t)) is also compact.

Finally we impose the last assumption

Haux: One of the following holds
A) There exists a linear and continuous mapping p : H → U such that for

v ∈ V we have p(i(v)) = ι(v).
B) The constants α and c satisfy the inequality α > c‖ι‖2L(V ;U).

C) For every u ∈ U we have J0(u;−u) ≤ d(1 + ‖u‖σU ) with d ≥ 0 and
1 ≤ σ < 2.

The problem under consideration is as follows

find u ∈ W such that u(0) = u0 and for a.e. t ∈ (0, T ) we have

u′(t) +Au(t) + ι∗∂J(ιu(t)) 3 f(t).(7)

The last inclusion is understood in the following sense

there exists η ∈ V∗ such that u′(t) +Au(t) + η(t) = f(t) for a.e. t ∈ (0, T )

and 〈η(t), v〉 ∈ 〈∂J(ιu(t)), ιv〉U∗×U for a.e. t ∈ (0, T ) and v ∈ V.(8)

Remark 2. The formulation (7) puts into a unified framework hemivariational
inequalities originating from the initial and boundary value problem with multival-
ued term defined on the problem domain (in this case we have multivalued source
term, and U = H, see [23, 25, 27]) and on the part ΓC of domain boundary ∂Ω
(this is the case if we have the multivalued, nonlinear and nonmonotone boundary
condition of Neumann-Robin type, U = L2(ΓC) or U = L2(ΓC ;Rn), see [28]). A
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detailed discussion as well as examples of problems which satisfy the assumptions
will be given in Section 8.
Remark 3. For the sake of simplicity of further argument the assumptions given
above are not the most general ones under which the results hold. Possible gener-
alizations include:

• The dependance of A and J on time variable. Time dependent operator
A for parabolic HVI is considered in [25] and the case of both A and J
depending on time is considered in [28] (see Remark 8.21 in [35] on the
Rothe method for the problem with the operator depending on time).
• Instead of pseudomonotonicity one could assume that A is a sum of two

operators, one of which is pseudomonotone and the second one is weakly
continuous. Such weak continuity allows to take into account the nonlinear
terms of lower order which are not of monotone type (see [13]).
• More general coercivity conditions on A can be assumed. For instance
〈Av, v〉 ≥ c‖v‖2 − a‖v‖ − γ(t) with c > 0, a ≥ 0 and γ ∈ L1(0, T ) cf. [27].
• The case when the space V is defined as Lp(0, T ;V ) with 2 < p <∞ can be

considered. Then we can assume more general growth conditions on A and
J . For instance in [27] it is assumed that ‖A(t, v)‖V ∗ ≤ β(t) + c1‖v‖p−1

and that for η ∈ ∂j(x, ξ) we have |η| ≤ c(1+ |ξ|p−1). Note that J is defined
typically as the integral functional J(u) =

∫
ω
j(x, u(x)) dx and assumptions

on the integrand j are given.

Remark 4. In this paper the abstract setting is considered. For a divergence
differential operator of Leray - Lions type on a Sobolev space pseudomonotnicity
is implied by the appropriate Leray - Lions type conditions (see, for instance, [3]
where conditions that guarantee pseudomonotonicity on Wm,p(Ω), 1 < p < ∞,
m ≥ 1 are considered).
We conclude this section with the Lemma on pseudomonotonicity of Nemytskii
operator with respect to the space M2,2(0, T ;V, V ∗). Note that the proof of this
lemma is analogous to the proof of Theorem 2 (b) in [3] (see also Proposition 1 from
[31] and Lemma 8.8 in [35] for similar results). The proof presented here closely
follows the lines of the proof of Lemma 8.8 of [35], but note that here no a priori
bound in L∞(0, T ;H) is needed and the assumption on the bound of 2-variation
which is used here is weaker then the bound on 1-variation as in [35].

Lemma 1. Let A : V → V ∗ satisfy H(A) and let A : V → V∗ be a Nemytskii
operator for A defined by (Au)(t) = A(u(t)). Then if, for a uniformly bounded
sequence {un} ⊂M2,2(0, T ;V, V ∗) we have lim supn→∞〈Aun, un−u〉V∗×V ≤ 0 and
un → u weakly in V, then Aun → Au weakly in V∗.

Proof. It is enough to show that the thesis holds for a subsequence. By the gen-
eralized Lions Aubin Compactness Lemma (see Proposition 2), for a subsequence
(still denoted by n) we have un → u strongly in H. Moreover, for yet another
subsequence un(t) → u(t) strongly in H for a.e. t ∈ (0, T ). We denote the set
of measure zero on which the convergence does not hold by N . Now let us define
ξn(t) = 〈Aun(t), un(t)− u(t)〉. We have

ξn(t) ≥ α‖un(t)‖2 − β‖un(t)‖2H − ‖u(t)‖(a+ b‖un(t)‖) ≥(9)

≥ α

2
‖un(t)‖2 − β‖un(t)‖2H − a‖u(t)‖ − b2

2α
‖u(t)‖2.

Now let C = {t ∈ [0, T ] : lim infn→∞ ξn(t) < 0}. This is the Lebesgue measur-
able subset of [0, T ]. Suppose that m(C) > 0, m being one dimensional Lebesgue
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measure. For every t ∈ C \N the sequence un(t) has a subsequence (still denoted
by n) which is bounded in V by (9) such that limn→∞〈Aun(t), un(t) − u(t)〉 < 0.
Again for a subsequence we have un(t)→ u(t) weakly in V , where the limit equals
u(t) since we can consider only t /∈ N . By the pseudomonotonicity of A we get
0 ≤ lim infn→∞〈Aun(t), un(t)−u(t)〉, which is a contradiction. So m(C) = 0, which
means that lim infn→∞ ξn(t) ≥ 0 a.e. on (0, T ). From the Fatou Lemma we have

β‖u‖2H ≤
∫ T

0

lim inf
n→∞

ξn(t) dt+ β‖u‖2H ≤
∫ T

0

lim inf
n→∞

(ξn(t) + β‖un(t)‖2H) dt ≤

≤ lim inf
n→∞

∫ T

0

ξn(t) + β‖un(t)‖2H dt ≤

≤ lim inf
n→∞

∫ T

0

ξn(t) dt+ β‖u‖2H ≤ lim sup
n→∞

∫ T

0

ξn(t) dt+ β‖u‖2H ≤ β‖u‖2H.

So
∫ T

0
ξn(t) dt→ 0 as n→∞. Now note that |ξn(t)| = ξn(t)+2ξ−n (t) and ξ−n (t)→ 0

for a.e. t ∈ (0, T ). Since, by (9), for a.e. t ∈ (0, T ) we have ξn(t)+β‖un(t)‖2H ≥ f(t)
with f ∈ L1(0, T ), then ξ−n (t)− β‖un(t)‖2H ≤ f−(t). Invoking Fatou Lemma again

we have lim supn→∞
∫ T

0
ξ−n (t) dt ≤ 0 and furthermore

∫ T
0
ξ−n (t) dt → 0 as n → ∞.

We deduce that ξn → 0 in L1(0, T ) and, for a subsequence (still denoted by the same
subscript), ξn(t) → 0 for a.e. t ∈ (0, T ). Since, for this subsequence, un(t) → u(t)
weakly in V , then by pseudomonotonicity of A it follows that Aun(t) → Au(t)
weakly in V ∗ and 〈Aun(t), un(t)〉 → 〈Au(t), u(t)〉. For any v ∈ V we have

〈Au, u− v〉V∗×V =

∫ T

0

〈Au(t), u(t)− v(t)〉 dt =

=

∫ T

0

lim
n→∞

〈Aun(t), un(t)− v(t)〉 dt =

= −β‖u‖2H +

∫ T

0

lim
n→∞

(〈Aun(t), un(t)− v(t)〉+ β‖un(t)‖2H) dt.

We can apply Fatou Lemma one last time to get

〈Au, u− v〉V∗×V ≤ lim inf
n→∞

∫ T

0

〈Aun(t), un(t)− v(t)〉 dt =

= lim inf
n→∞

(〈Aun, un − u〉V∗×V + 〈Aun, u− v〉V∗×V) ≤

≤ lim inf
n→∞

〈Aun, u− v〉V∗×V .(10)

Since v is arbitrary we obtain the thesis. �

5. The Rothe problem

In this section we will work with a sequence of time-steps τn → 0 such that each
time step τn > 0 and the value T/τn is an integer, which we denote by Nn. The
subscipt n will be omitted in the sequel in order to simplify the notation, so we will
write N, τ instead of Nn, τn.
We define the piecewise constant approximation of the function f ∈ V∗. For this
purpose we take the sequence of positive numbers ε(τ) → 0 and the sequence of
mollifiers ρε : R → R which belong to C∞(R) and are nonnegative, supported on
[−ε, ε] and

∫
R ρε(x) dx = 1. The function f is regularized according to the formula

fε(t) =

∫ T

0

ρε

(
t+ ε

T − 2t

T
− s
)
f(s) ds.
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Note that fε ∈ C1(0, T ;V ∗) (see [35], Lemma 7.2). The piecewise constant approx-
imation for f is given by

f̄τ (t) := fkτ = fε(τ)(kτ) for t ∈ ((k − 1)τ, kτ ], k ∈ {1, . . . , N}.

Following [35], Lemma 8.7, we have f̄τ → f in V∗ when τ → 0. Note (see Remark
8.15 in [35]) that the smoothing of f is not the only possible approach here. It is also

possible to take the Clément zero-order quasi interpolant fkτ = 1
τ

∫ kτ
(k−1)τ

f(θ) dθ.

We approximate the initial condition by elements of V . Let {u0τ} ⊂ V be a
sequence such that u0τ → u0 strongly in H and ‖u0τ‖ ≤ C/

√
τ for some constant

C > 0.
We define the following Rothe problem

find the sequence {ukτ}Nk=0 ⊂ V such that u0
τ = u0τ and(

ukτ − uk−1
τ

τ
, v

)
H

+ 〈Aukτ , v〉+ 〈∂J(ιukτ ), ιv〉U∗×U 3 〈fkτ , v〉(11)

for all v ∈ V and k = 1, . . . , N.

The above formula is known as the implicit or backward Euler scheme. Existence
of solutions to the Rothe problem follows from the following

Lemma 2. Under assumptions H(A), H(J), H0, H(U) and Haux there exists τ0 > 0
such that the problem (11) has a solution for τ ∈ (0, τ0).

Proof. We show that, given uk−1
τ ∈ V , we can find ukτ ∈ V such that (11) holds.

We need to show that the range of multifunction V 3 v → Lv = i∗iv
τ + Av +

ι∗∂J(ιv) ∈ 2V
∗

constitutes the whole space V ∗. We will use the surjectivity theorem
for pseudomonotone operators (see for instance Theorem 1.3.70 in [12]). We need

to show that L is coercive (in the sense that lim‖v‖→∞
infv∗∈Lv〈v∗,v〉

‖v‖ = ∞) and

pseudomonotone.
Claim 1. L is pseudomonotone. We verify this condition for all components of L
separately. For this purpose we use Proposition 1. The operator i∗i

τ satisfies the
conditions (i) − (iii) trivially. As for ι∗∂J(ιu) the condition (i) follows from the
fact that the Clarke subdifferential has nonempty, convex and (for reflexive space)
weakly compact values. The condition (ii) follows from the growth assumption on
∂J . In order to verify (iii) let us take vn → v weakly in V and ξn → ξ weakly in
V ∗ with ξn ∈ ι∗∂J(ιvn). Obviously ιvn → ιv strongly in U . Define ηn ∈ ∂J(ιvn)
such that ξn = ι∗ηn. By the growth condition H(J)(ii) it follows that, for a
subsequence still denoted by the same subscript, ηn → η weakly in U∗. By the
closedness of the graph of ∂J in U × U∗w topology (see [10], Proposition 2.1.5),
we get η ∈ ∂J(ιv). Obviously ξ = ι∗η and ξ ∈ ι∗∂J(ιv). Moreover 〈vn, ξn〉 =
〈ιvn, ηn〉U∗×U → 〈ιv, η〉U∗×U = 〈v, ξ〉, where by uniqueness convergence holds for
the whole sequence.
Claim 2. L is coercive. Assume that v∗ ∈ Lv. We estimate 〈v∗, v〉 from below.
For some η ∈ ∂J(ιv) we have

(12) 〈v∗, v〉 ≥ 1

τ
‖v‖2H + α‖v‖2 − β‖v‖2H + 〈η, ιv〉U∗×U .

We proceed for cases A), B), C) separately. For A) and B), by the growth condition

〈v∗, v〉 ≥
(

1

τ
− β

)
‖v‖2H + α‖v‖2 − c(1 + ‖ιv‖U )‖ιv‖U .
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In the case A) we have ‖ιv‖2U ≤ ‖p‖2L(H,U)‖v‖
2
H , so

〈v∗, v〉 ≥
(

1

τ
− β − c‖p‖2L(H,U)

)
‖v‖2H + α‖v‖2 − c‖ι‖L(V ;U)‖v‖.

We require τ0 = 1
β+c‖p‖L(H,U)

. In the case B) we get

〈v∗, v〉 ≥
(

1

τ
− β

)
‖v‖2H + (α− c‖ι‖2L(V ;U))‖v‖

2 − c‖ι‖L(V ;U)‖v‖.

To have coercivity we need to set τ0 = 1
β . Finally if C) holds, then we get

〈η, ιv〉U∗×U ≥ −J0(ιv;−ιv) ≥

≥ −d(1 + ‖ιv‖σU ) ≥ −d− ‖ι‖σL(V ;U)‖v‖
σ ≥ −d− α

2
‖v‖2 − C,

where C > 0 depends on α, σ and ‖ι‖L(V ;U). Combining the last estimate with (12)
we get

〈v∗, v〉 ≥
(

1

τ
− β

)
‖v‖2H +

α

2
‖v‖2 − d− C.

Again setting τ0 = 1
β we get the desired property. �

Next lemma establishes the estimates which are satisfied by the solutions of Rothe
problem.

Lemma 3. Under assumptions H(A), H(J), H0, H(U) and Haux there exists τ0 > 0
such that for all τ ∈ (0, τ0) the solutions of Rothe problem (11) satisfy

max
k=1,...,N

‖ukτ‖H ≤ const,(13)

N∑
k=1

‖ukτ − uk−1
τ ‖2H ≤ const,(14)

τ

N∑
k=1

‖ukτ‖2 ≤ const,(15)

with the constants independent on τ .

Proof. We take v = ukτ in (11), which gives for ε > 0 and k = 1, . . . , N

1

τ
‖ukτ‖2H + α‖ukτ‖2 + 〈ξkτ , ιukτ 〉U∗×U ≤

≤ β‖ukτ‖2H +
1

2ε
‖fkτ ‖2V ∗ +

ε

2
‖ukτ‖2 +

1

τ
(uk−1
τ , ukτ )

with ξkτ ∈ ∂J(ιukτ ). We use the relation ‖a‖2− (a, b) = ‖a‖2/2−‖b‖2/2+‖a−b‖2/2
to obtain (

1

2τ
− β

)
‖ukτ‖2H +

1

2τ
‖ukτ − uk−1

τ ‖2H +
(
α− ε

2

)
‖ukτ‖2 +(16)

+〈ξkτ , ιukτ 〉U∗×U ≤
1

2ε
‖fkτ ‖2V ∗ +

1

2τ
‖uk−1

τ ‖2H .

Recall that

〈ξkτ , ιukτ 〉U∗×U ≥


−C1 − c‖p‖2L(H,U)‖u

k
τ‖2H − α

2 ‖u
k
τ‖2 if A) holds,

(−c‖ι‖2L(U,V ) − δ)‖u
k
τ‖2 − C2 if B) holds,

−C3 − α
2 ‖u

k
τ‖2 if C) holds,
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where C1 > 0 depends on c, α, ‖ι‖L(V ;U), δ > 0 is arbitrary, C2 > 0 depends on
c, δ, ‖ι‖L(V ;U) and C3 > 0 depends on d, α, σ, ‖ι‖L(V ;U). From now on we proceed
separately for the cases A), B) and C). In the case A) we take ε = α

2 to get(
1

2τ
− β − c‖p‖2L(H,U)

)
‖ukτ‖2H +

1

2τ
‖ukτ − uk−1

τ ‖2H +(17)

+
α

4
‖ukτ‖2 ≤

1

α
‖fkτ ‖2V ∗ +

1

2τ
‖uk−1

τ ‖2H + C1.

Summing above inequalities for k = 1, . . . , n, where 1 ≤ n ≤ N , we have

‖unτ ‖2H +

n∑
k=1

‖ukτ − uk−1
τ ‖2H +

ατ

2

n∑
k=1

‖ukτ‖2 ≤(18)

≤ 2TC1 + 2τ(β + c‖p‖2L(H,U))

n∑
k=1

‖ukτ‖2H +
2‖f̄τ‖2V∗

α
+ ‖u0

τ‖2H .

Now if τ < 1/(4(β + c‖p‖2L(H,U))), by a discrete Gronwall inequality (see e.g. [35]

(1.68)-(1.69)), we have (13)-(15).
In the case B), for δ = ε = (α− c‖ι‖2L(U,V ))/2 we get(

1

2τ
− β

)
‖ukτ‖2H +

1

2τ
‖ukτ − uk−1

τ ‖2H +
α− c‖ι‖2L(U,V )

4
‖ukτ‖2 ≤(19)

≤ C4‖fkτ ‖2V ∗ +
1

2τ
‖uk−1

τ ‖2H + C5,

where C4 = 1
α−c‖ι‖2L(U,V )

and C5 > 0 depends on α, c, ‖ι‖2L(U,V ). In analogy to the

previous case we get (13)-(15) for τ < 1/β. Bounds in the case C) are obtained in
an analogous way. �

6. Convergence of the Rothe method

We define piecewise linear and piecewise constant interpolants uτ ∈ C([0, T ];V )
and ūτ ∈ L∞(0, T ;V ) by the formulae

uτ (t) =

(
t

τ
− k + 1

)
ukτ +

(
k − t

τ

)
uk−1
τ for t ∈ [(k − 1)τ, kτ ],

ūτ (t) = ukτ for a.e. t ∈ ((k − 1)τ, kτ ].

where k = 1, . . . , T/τ (we set ūτ (0) = u1
τ ).

The sequences {uτn}∞n=1 and {ūτn}∞n=1 are known as the Rothe sequences. Ob-
serve, that uτ has a distributional derivative u′τ ∈ L∞(0, T ;V ) given by u′τ (t) =
ukτ−u

k−1
τ

τ for almost every t ∈ ((k− 1)τ, kτ). So, since ukτ solves the Rothe problem,
we have for almost every t ∈ (0, T )

(u′τ (t), v)H + 〈Aūτ (t), v〉+ 〈ξτ (t), ιv〉U∗×U = 〈f̄τ (t), v〉 for v ∈ V,

with uτ (0) = u0τ and ξτ (t) = ξkτ ∈ ∂J(ιukτ ) = ∂J(ιūτ (t)) for t ∈ ((k − 1)τ, kτ ].
Defining the Nemytskii operator A : V → V∗ as (Av)(t) = A(v(t)), we have

(20) (u′τ , v)H + 〈Aūτ , v〉V∗×V + 〈ξτ , ῑv〉U∗×U = 〈f̄τ , v〉V∗×V for v ∈ V.

Lemma 4. Under assumptions H(A), H(J), H0, H(U) and Haux there exists τ0 > 0
such that for all τ ∈ (0, τ0), the piecewise constant and piecewise linear interpolants
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built on the solutions of the Rothe problem satisfy

‖ūτ‖V ≤ const,(21)

‖ūτ‖L∞(0,T ;H) ≤ const,(22)

‖uτ‖C(0,T ;H) ≤ const,(23)

‖uτ‖V ≤ const,(24)

‖u′τ‖V∗ ≤ const,(25)

‖Aūτ‖V∗ ≤ const,(26)

‖ξτ‖U∗ ≤ const,(27)

‖ūτ‖BV 2(0,T ;V ∗) ≤ const.(28)

with the constants independent on τ .

Proof. Estimates (21)-(23) follow directly from Lemma 3, since

‖ūτ‖2V = τ
∑N
i=1 ‖ukτ‖2, ‖ūτ‖L∞(0,T ;H) = maxk=1,...,N ‖ukτ‖H and

‖uτ‖C(0,T ;H) ≤ maxk=0,...,N ‖ukτ‖H .

The simple calculation shows us that ‖uτ‖2V ≤ τ
∑N
k=0 ‖ukτ‖2V . This, together with

the fact, that ‖u0
τ‖ ≤ C/

√
τ , by Lemma 3 gives (24).

To prove (25) let us consider the inclusion (20). We have

‖u′τ‖V∗ = sup
‖v‖V≤1

|(u′τ , v)H| =

= sup
‖v‖V≤1

∣∣∣∣∣〈f̄τ , v〉V∗×V − 〈Aūτ , v〉V∗×V −
∫ T

0

〈ξτ (t), ιv(t)〉U∗×U dt

∣∣∣∣∣ ≤
≤ ‖f̄τ‖V∗ +

√∫ T

0

‖Aūτ (t)‖2V ∗ dt+ ‖ι‖L(V ;U)

√∫ T

0

‖ξτ (t)‖2U∗ dt ≤

≤ ‖f̄τ‖V∗ +
√

2a2T + 2b2‖ūτ‖2V + ‖ι‖L(V ;U)

√
2c2T + 2c2‖ι‖2L(V ;U)‖ūτ‖

2
V .(29)

Desired bound is obtained by (21). Estimates that appear in (29) prove also (26)
and (27). It remains to prove (28). Let us assume that the seminorm BV 2(0, T ;V ∗)
of piecewise constant function ūτ is realized by some division 0 = t0 < t1 < . . . <
tk = T . Each tj is in some interval ((mj − 1)τ,mjτ ], so ūτ (tj) = u

mj
τ with m0 = 1

and mk = N and mi+1 > mi for i = 1, . . . , N − 1. Thus

‖ūτ‖2BV 2(0,T ;V ∗) =

k∑
j=1

‖umjτ − umj−1
τ ‖2V ∗ .

We use the inequality

‖umjτ − umj−1
τ ‖2V ∗ ≤ (mj −mj−1)

mj∑
i=mj−1+1

‖uiτ − ui−1
τ ‖2V ∗ .
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Thus

‖ūτ‖2BV 2(0,T ;V ∗) ≤
k∑
j=1

(mj −mj−1)

mj∑
i=mj−1+1

‖uiτ − ui−1
τ ‖2V ∗

 ≤
≤

 k∑
j=1

(mj −mj−1)

 N∑
i=1

‖uiτ − ui−1
τ ‖2V ∗ ≤ Nττ

N∑
i=1

∥∥∥∥uiτ − ui−1
τ

τ

∥∥∥∥2

V ∗
=

= T

∫ T

0

‖u′τ (t)‖2V ∗ dt.

The last term is bounded by (25), which ends the proof. �

Theorem 2. Under assumptions H(A), H(J), H0, H(U) and Haux the problem (7)
has a solution u. Furthermore if ūτ and uτ are piecewise constant and piecewise
linear interpolants built on the solutions of the Rothe problem, then, for a subse-
quence, uτ → u weakly in W and weakly−∗ in L∞(0, T ;H) and ūτ → u weakly in
V and weakly−∗ in L∞(0, T ;H).

Proof. From the bounds obtained in Lemma 4, possibly for a subsequence, we get

ūτ → u weakly in V and weakly−∗ in L∞(0, T ;H),(30)

uτ → u1 weakly in V and weakly−∗ in L∞(0, T ;H),(31)

u′τ → u2 weakly in V∗,(32)

Aūτ → η weakly in V∗,(33)

ξτ → ξ weakly in U∗.(34)

A standard argument shows that u′1 = u2. To show that u = u1 we observe that

(35) ‖ūτ − uτ‖2V∗ =

N∑
k=1

∫ kτ

(k−1)τ

(kτ − t)2

∥∥∥∥ukτ − uk−1
τ

τ

∥∥∥∥2

V ∗
dt =

τ2

3
‖u′τ‖2V∗ ,

which means that ūτ−uτ → 0 strongly in V∗ as τ → 0, and, in consequence u = u1.
It follows that uτ → u strongly in L2(0, T ;H) and weakly in C([0, T ];H). This also
implies that u0τ = uτ (0)→ u(0) weakly in H, so u(0) = u0.
A passage to the limit in (20) gives

u′ + η + ῑ∗ξ = f.

We observe that, by H(U), we have ῑūτ → ῑu strongly in U and, furthermore, for
a subsequence ιūτ (t) → ιu(t) strongly in U for a.e. t ∈ (0, T ). Moreover ξτ → ξ
weakly in L1(0, T ;U∗). Since ∂J : U → 2U

∗
has nonempty, closed and convex

values and is upper semicontinuous from U furnished with strong topology into U∗

furnished with weak topology (see [11], Proposition 5.6.10), by the Convergence
Theorem of Aubin and Cellina (see [2], Theorem 1, Section 1.4), we deduce that
ξ(t) ∈ ∂J(ιu(t)) for a.e. t ∈ (0, T ). In order to show that u satisfies the inclusion
(7), it suffices to prove that η = Au. To this end, let us estimate

lim sup
τ→0

〈Aūτ , ūτ − u〉V∗×V ≤ lim sup
τ→0

〈f̄τ , ūτ − u〉V∗×V −(36)

− lim inf
τ→0

〈u′τ , ūτ − u〉V∗×V − lim inf
τ→0

〈ξτ , ῑ(ūτ − u)〉U∗×U .

Since f̄τ → f strongly in V∗, by (30), we get limτ→0〈f̄τ , ūτ−u〉V∗×V = 0. Moreover,
since ῑūτ → ῑu strongly in U , by (34), we have limτ→0〈ξτ , ῑ(ūτ −u)〉U∗×U = 0. Now
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we observe that

〈u′τ , ūτ − u〉V∗×V = 〈u′τ , ūτ − uτ 〉V∗×V +

+
1

2
(‖uτ (T )− u(T )‖2H − ‖uτ (0)− u(0)‖2H) + 〈u′, uτ − u〉V∗×V ,

so, noting that 〈u′τ , ūτ − uτ 〉V∗×V ≥ 0, we obtain

lim inf
τ→0

〈u′τ , ūτ − u〉V∗×V ≥ 0.

Thus we have

lim sup
τ→0

〈Aūτ , ūτ − u〉V∗×V ≤ 0.

We are in a position to apply Lemma 1 which gives η = Au. Thus u solves (7). �

Remark 5. Note that we have also proved that any cluster point of uτ and ūτ ,
in the sense (30)-(32), solves the problem (7). It is not known, however, whether
there are solutions which are not limits of the interpolants built on the solutions of
Rothe problem.

7. Uniqueness and strong convergence

In this section we assume the strong monotonicity type relation for A and relaxed
monotonicity on J .

H(A)1 : assumptions H(A) hold and A satisfies the monotonicity type relation
〈Au − Av, u − v〉 ≥ m1‖u − v‖2 − m2‖u − v‖2H for every u, v ∈ V with
m1 ≥ 0 and m2 > 0,

H(A)2 : assumptions H(A) hold and the Nemytskii mapping A : V → V∗ is of class
(S+) with respect to the space M2,2(0, T ;V, V ∗), that is if un → u weakly
in V and un is bounded in M2,2(0, T ;V, V ∗) then lim supn→∞〈Aun, un −
u〉V∗×V ≤ 0 implies that un → u strongly in V,

H(J)1 : assumptions H(J) hold and J satisfies the relaxed monotonicity condition
〈ξ − η, u − v〉U×U∗ ≥ −m3‖u − v‖2U for every u, v ∈ V and ξ ∈ ∂J(u), η ∈
∂J(v) with m3 > 0,

Hconst : either Haux A) holds or m1 ≥ m3‖ι‖2L(V ;U).

Remark 6. The assumption H(A)1 for the divergence differential Leray-Lions
operator is guaranteed by appropriate Leray-Lions type conditions. For H(A)2 to
hold it suffices that the operator A is of class (S+), by an argument analogous to
Theorem 2(c) in [3].
Remark 7. The relaxed monotonicity condition H(J)1 (which is associated with
the semiconvexity of the functional J) was already used to prove the uniqueness of
solutions to the first order evolution parabolic hemivariational inequalities in [22]
and second order ones in [29].
Remark 8. Note that H(A)1 allows the case m1 = 0, but if the inequality in
Hconst holds, then it must be m1 > 0.

Theorem 3. Under assumptions H(A)1, H(J)1, H0, H(U), Haux and Hconst, the
solution to the problem (7) is unique.

Proof. Assume that u1, u2 are two distinct solutions to the problem (7). We have,
for v ∈ V and a.e. t ∈ [0, T ]

(37) 〈(u1 − u2)′(t), v〉+ 〈Au1(t)−Au2(t), v〉+ 〈ξ(t)− η(t), ιv〉U×U∗ = 0,
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where ξ(t) ∈ ∂J(ιu1(t)) and η(t) ∈ ∂J(ιu2(t)) for a.e. t ∈ (0, T ). Taking v =
u1(t)− u2(t), we obtain

1

2

d

dt
‖u1(t)− u2(t)‖2H + 〈Au1(t)−Au2(t), u1(t)− u2(t)〉+(38)

+〈ξ(t)− η(t), ιu1(t)− ιu2(t))〉U×U∗ = 0.

Application of H(A)1 and H(J)1 gives for a.e. t ∈ (0, T )

1

2

d

dt
‖u1(t)− u2(t)‖2H +m1‖u1(t)− u2(t)‖2 −(39)

−m2‖u1(t)− u2(t)‖2H −m3‖ι(u1(t)− u2(t))‖2U ≤ 0.

By Hconst we have either

(40)
1

2

d

dt
‖u1(t)− u2(t)‖2H ≤ m2‖u1(t)− u2(t)‖2H ,

or, in the case of Haux A),

(41)
1

2

d

dt
‖u1(t)− u2(t)‖2H ≤ (m2 + ‖p‖L(H;U))‖u1(t)− u2(t)‖2H ,

which, by the Gronwall lemma, gives the thesis. �

Remark 9. Under assumptions of Theorem 3, the convergences in Theorem 2 hold
for the whole sequences uτ and ūτ .
Remark 10. Note that under assumptions of Theorem 3 it is possible to obtain the
convergence rate of the semidiscrete solutions to the solution of original problem.
By Theorem 5 in the article [17], which is a follow-up of this work, the errors
‖u− uτ‖C([0,T ];H) and ‖u− ūτ‖V behave as O(τ1/2).

Theorem 4. Let assumptions H(A)1, H(J), H0, H(U), Haux hold and the sub-
sequences uτ , ūτ converge in the sense (30)-(32). Then uτ (t)→ u(t) strongly in H
for all t ∈ [0, T ]. If instead of H(A)1 we assume H(A)2, then ūτ → u strongly in
V.

Proof. Let uτ and ūτ be interpolants built on the solutions of the Rothe problem
and let u be the solution to (7) obtained in Theorem 2. For v ∈ V and a.e. t ∈ (0, T )
we get

(42) 〈u′τ (t)−u′(t), v〉+〈Aūτ (t)−Au(t), v〉+〈ξτ (t)−η(t), ιv〉U∗×U = 〈f̄τ (t)−f(t), v〉,

where ξτ (t) ∈ ∂J(ιūτ (t)) and η(t) ∈ ∂J(ιu(t)) for a.e. t ∈ (0, T ). Choosing
v = ūτ (t)− u(t), we get

〈u′τ (t)− u′(t), ūτ (t)− uτ (t)〉+
1

2

d

dt
‖uτ (t)− u(t)‖2H +

+〈Aūτ (t)−Au(t), ūτ (t)− u(t)〉 ≤
≤ 〈f̄τ (t)− f(t), ūτ (t)− u(t)〉+ ‖ιūτ (t)− ιu(t)‖U‖ξτ (t)− η(t)‖U∗ .

Since 〈u′τ (t), ūτ (t) − uτ (t)〉 = ‖u′τ (t)‖2H(kτ − t) ≥ 0 for any t ∈ ((k − 1)τ, kτ) for
a.e. t ∈ (0, T ) we have

1

2

d

dt
‖uτ (t)− u(t)‖2H + 〈Aūτ (t)−Au(t), ūτ (t)− u(t)〉 ≤

≤ ‖ιūτ (t)− ιu(t)‖U‖ξτ (t)− η(t)‖U∗ +

+〈f̄τ (t)− f(t), ūτ (t)− u(t)〉+ 〈u′(t), ūτ (t)− uτ (t)〉.(43)
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Using H(A)1 and integrating the last inequality, for t ∈ [0, T ], we get

1

2
‖uτ (t)− u(t)‖2H ≤ m2

∫ t

0

‖uτ (s)− u(s)‖2H dt+

+
√

2c‖ῑ(ūτ − u)‖U (2T + ‖ῑūτ‖U + ‖ῑu‖U ) +

+‖f̄τ − f‖V∗(‖ūτ‖V + ‖u‖V) + 〈u′, ūτ − uτ 〉L2(0,t;V ∗)×L2(0,t;V ) +
1

2
‖u0τ − u0‖2H .

The Gronwall lemma gives the strong convergence of uτ (t) to u(t) in H for all
t ∈ [0, T ].
In order to obtain the strong convergence in V, let us integrate (43) over (0, T ). We
have

1

2
‖uτ (T )− u(T )‖2H + 〈Aūτ −Au, ūτ − u〉V∗×V ≤

≤
√

2c‖ῑ(ūτ − u)‖U (2T + ‖ῑūτ‖U + ‖ῑu‖U ) +

+‖f̄τ − f‖V∗(‖ūτ‖V + ‖u‖V) + 〈u′, ūτ − uτ 〉V∗×V +
1

2
‖u0τ − u0‖2H .

Passing to the limit, we get

lim sup
τ→0

〈Aūτ −Au, ūτ − u〉V∗×V ≤ 0.

The thesis is implied by H(A)2. �

Remark 11. If, in addition to assumptions of the Theorem 4, also H(J)1 and
Hconst hold, then, by Theorem 3, the whole sequences ūτ and uτ converge strongly
in V and pointwise strongly in H respectively.

8. Examples

In this section we provide examples of that problem setup which are particular
cases of the general problem considered previously. Moreover, we present a simple
numerical example.
Problem settings We assume that Ω ⊂ Rn is an open and bounded domain with
smooth boundary. The space V is either H1(Ω;Rm) with m ∈ N (possibly, but
not necessarily, m = n) or its closed subspace (which originates from homogeneous
Dirichlet boundary condition on ΓD ⊂ ∂Ω). Furthermore let H = L2(Ω;Rm). Then
the embedding i : V → H is continuous and compact. We consider two examples.

• Multivalued term is defined on Ω. We specify Λ ⊂ Ω to be an open
subset of nonzero measure and fix d ∈ N. Furthermore we assume that
M ∈ L∞(Λ;L(Rm;Rd)). Now U = L2(Λ;Rd). The mapping ι is defined
by (ιv)(x) =M(x)((iv)|Λ(x)). We observe that ι : V → U is linear, contin-
uous and compact. By Proposition 2, the embedding M2,2(0, T ;V, V ∗) ⊂
L2(0, T ;H) is compact, which implies H(U). Defining p : H → U by
(pv)(x) =M(x)(v|Λ(x)), we see that A) of Haux is satisfied. The solution
exists under assumptions H(A), H(J) and H0 (Theorem 2). Additional as-
sumptions H(A)1 and H(J)1 imply uniqueness of solution by Theorem 3
and strong convergence of uτ (t)→ u(t) in H for all t ∈ [0, T ]. Furthermore,
if H(A)2 holds, then the sequence ūτ converges strongly in V.
As the special case we can consider Λ = Ω, m = n = d and M(x) ≡ I
(identity) for all x ∈ Ω. Then we recover U = H, which gives existence
results in spirit of [27].
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• Multivalued term is defined on the boundary of Ω. We specify ΓC ⊂ ∂Ω
disjoint with ΓD. We take Z = Hδ(Ω;Rm) with δ ∈ ( 1

2 , 1). The con-
tinuous and compact embedding V → Z is denoted by ī and the trace
operator is given by γ̄ : Z → L2(ΓC ;Rm). Furthermore let d ∈ N and
M∈ L∞(ΓC ;L(Rm;Rd)). Now U = L2(ΓC ;Rd). The mapping ι is defined
by (ιv)(x) = M(x)((γ̄īv)(x)). The mapping ι : V → U is linear, contin-
uous and compact. The spaces V ⊂ Z ⊂ V ∗ satisfy the assumptions of
Proposition 2, so M2,2(0, T ;V, V ∗) is embedded in L2(0, T ;Z) compactly.
Therefore the assumption H(U) is satisfied. Since claim A) of Haux does
not hold in this case, in order to obtain the existence of solutions (Theo-
rem 2) we need to assume H(A), H(J), H0 and either B) or C) of Haux.
Furthermore, if H(A)1 and H(J)1 hold, then a subsequence of the Rothe
sequence uτ converges strongly pointwise in H (Theorem 4). If moreover
H(A)2 holds, then we also have the strong convergence of ūτ in V. If fur-
thermore the relation between m1 and m3 given by Hconst holds, then the
solution is unique (Theorem 3) and the whole Rothe sequences uτ and ūτ
converge strongly pointwise in H and strongly in V respectively.
In the case m = d = 1 and M(x) ≡ I we recover the results of [28]. If
m = n > 1 and ν is the unit outer normal versor on the boundary ∂Ω, then
two special cases are d = 1, M(x)(a) = ν(x) · a and d = m, M(x)(a) =
a − (ν(x) · a)ν(x). We recover the cases of the boundary conditions given
in normal and tangent directions, respectively.

Numerical example. Let us take Ω = (0, 1). The problem under consideration will
be

ut(x, t) = uxx(x, t) for (x, t) ∈ Ω× (0, T ),(44)

u(0, t) = 0 for t ∈ (0, T ),(45)

ux(1, t) ∈ −∂j(u(1, t)) for t ∈ (0, T ),(46)

u(x, 0) = u0(x) for x ∈ (0, 1).(47)

We set V = {v ∈ H1(0, 1) : v(0) = 0} and H = L2(0, 1). Taking tk = k∆t,
u(x, tk) := uk(x) and v ∈ V , the Rothe problem has the following form∫ 1

0

uk+1(x)− uk(x)

∆t
v(x) dx+

∫ 1

0

uk+1
x (x)vx(x) dx+ ∂j(uk+1(1))v(1) 3 0,

u0(x) = u0(x).(48)

The problem in each time step will be solved by the Galerkin scheme. Let Vn be
a subspace of V consisting of piecewise linear functions constructed on a uniform
mesh x0 = 0, . . . , xi = i∆x, . . . , xn = n∆x = 1 in (0, 1) such that dimVn = n. Let
furthermore uk(x) be approximated by

∑n
i=1 α

k
i vi, where {vi}ni=1 forms the base of

Vn given by the duality condition vj(xi) = δij . We assume that αkn is the value of

the solution at the last mesh point (x = 1). The values αk+1
i satisfy, for j = 1, . . . , n

n∑
i=1

αk+1
i

(
1

∆t

∫ 1

0

vi(x)vj(x) dx+

∫ 1

0

v′i(x)v′j(x) dx

)
−

−
n∑
i=1

αki
1

∆t

∫ 1

0

vi(x)vj(x) dx+ ∂j(αk+1
n )vj(1) 3 0.
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Calculating the integrals and denoting d = ∆t
∆x2 , for j = 2, . . . , n− 1, we obtain

(49) αk+1
j−1

(
1

6
− d
)

+ αk+1
j

(
2

3
+ 2d

)
+ αk+1

j+1

(
1

6
− d
)

= αkj−1

1

6
+ αkj

2

3
+ αkj+1

1

6
,

and for j = n, we have

(50) αk+1
n−1

(
1

6
− d
)

+ αk+1
n

(
1

3
+ d

)
+

∆t

∆x
∂j(αk+1

n ) 3 αkn−1

1

6
+ αkn

1

3
.

Finally for the left, Dirichlet, boundary point we have

(51) αk+1
1

(
2

3
+ 2d

)
+ αk+1

2

(
1

6
− d
)

= αk1
2

3
+ αk2

1

6
.

We consider two examples of the locally Lipschitz functionals j:

Figure 1. Examples of multifunctions used as nonmonotone and multival-

ued boundary conditions (46)

j1(r) =


0 for r ≤ 0
r2

2 for r ∈ (0, 1)
1
2 for r ≥ 1

j2(r) =


0 for r ≤ 1
1−(r−2)2

2 for r ∈ (1, 2)
1
2 for r ≥ 2.

Their subdifferentials in the sense of Clarke are given by

(52) ∂j1(r) =


0 for r ≤ 0 or r > 1

r for r ∈ (0, 1)

[0, 1] for r = 1

∂j2(r) =


0 for r < 1 or r ≥ 2

2− r for r ∈ (1, 2)

[0, 1] for r = 1.

The graphs of ∂j1 and ∂j2 are presented in Figure 1. Both potentials satisfy H(J).
The potential j1 does not satisfy H(J)1 since its subdifferential has a nonmonotone
jump. The potential j2 satisfies H(J)1 since its subdifferential has a monotone jump
and nonmonotonicity is Lipschitz. In the case of j1 the question of multiplicity of
solutions remains an open problem (however the numerical simulation below show
that it is more likely that there are multiple solutions) and in the case of j2, a single
solution is expected (at least as long as the inequality in Hconst holds).
In both cases we take u0(x) ≡ 2. The following scheme is used to find solutions of
(49)-(51). In every time step at most three solutions can be found:

• Assume that the element of ∂j(αk+1
n ) for which (50) holds is equal to 0 i.e.

we fall on the horizontal line in the graph of ∂j. Solve the system of n equa-
tions (49)-(51) and verify whether obtained αk+1

n falls in the corresponding
interval.

• Assume that the element of ∂j(αk+1
n ) for which (50) holds is on the oblique

line in the graph of ∂j. Solve the system of n equations (49)-(51) and verify
whether obtained αk+1

n is in the corresponding interval.
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Figure 2. Simulation for the potential j2. Plot of unique obtained solution

is drawn.

Figure 3. Simulation for the potential j1. Plots of two (respectively max-

imal and minimal one) of obtained many solutions are drawn.

• Assume that we fall on the vertical line in the graph of ∂j, i.e. αk+1
n = 1.

Solve the system of n− 1 equations (49) and (51). Then verify if ∂j(αk+1
n )

calculated from (50) falls in the interval [0, 1].
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The simulations were run for ∆t = 0.01 and ∆x = 0.01. For the case of j2 only
one numerical solution was obtained (i.e. in every time step only one of above
three cases occurred). The result is presented in Figure 2. For the case of j1 many
solutions were obtained (i.e. there were time steps in which more then one of above
three cases occurred). Figure 3 shows two solutions with respectively maximum
and minimum value of αkn chosen in each time step in which multiple solutions were
found.
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