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NUMERICAL ANALYSIS OF THE FRACTIONAL
SEVENTH-ORDER KDV EQUATION USING AN IMPLICIT
FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN

METHOD

LEILEI WEI, YINNIAN HE, AND YAN ZHANG

Abstract. In this paper an implicit fully discrete local discontinuous Galerkin (LDG) finite
element method is applied to solve the time-fractional seventh-order Korteweg-de Vries (sKdV)
equation, which is introduced by replacing the integer-order time derivatives with fractional deriva-
tives. We prove that our scheme is unconditional stable and L? error estimate for the linear case

1
with the convergence rate O(hF+! 4+ (At)? + (At) 3 h¥*32) through analysis. Extensive numerical
results are provided to demonstrate the performance of the present method.
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1. Introduction

Several researchers in fractional calculus mentioned that derivatives of noninte-
ger order are very effective for the description of many physical phenomena such
as damping laws, and diffusion process [18, 25]. Some fractional partial differ-
ential equations have been solved, such as time-fractional telegraph equation [1],
fractional Fokker-Planck equation [5], space-time fractional Schrédinger equation
[8, 26], fractional order two point boundary value problem [7], the fractional KdV
equation [16], fractional diffusion equation [17, 23], fractional derivative fluid model
[9], fractional KdV-Burgers-Kuramoto equation [21] and so on. Machado et al. [14]
introduced the recent history of fractional calculus, as for the detailed theory and
applications of fractional integrals and derivatives, we can refer to [11, 15, 20] and
the references therein. Solving such fractional partial differential by the robust and
accurate numerical methods has become popular with their frequent appearance in
applied science and engineering.

The KdV type of equations, which were first derived by Korteweg and de Vries
(1895) and used to describe weakly nonlinear shallow water waves, have emerged
as an important class of nonlinear evolution equation and are often used in pratical
applications. The seventh-order KdV (sKdV) equation was first introduced by
Pomeau et. al [19] in order to discuss the structural stability of the KdV equation
under singular perturbation. Some methods [6, 13] have been used to handle the
integer-order equations, however, to the best of our knowledge, the study of the
fractional sKdv equations has not been widespread. In this paper, we consider the
following generalized time-fractional sKdv equation

D?U(:L’,t) + g(u)x + U3y — Usy + Aury =0,

(1.1) u(z,0) = uo(x),
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where A is anonzero constant. 0 < « < 1 is a parameter describing the order of
the fractional time. We do not pay attention to boundary condition in this paper;
hence the solution is considered to be either periodic or compactly supported.

The time fractional derivative in the equation (1.1), uses the Caputo fractional
partial derivative of order «, defined as [18]

: 1 ; t du(z,s) ( ds)
1.2 D% I',t _ I'l—a) JO Os t—s)o
( ) t ( ) {aué:;;,t) Zf o = 1,

if 0 <a<l,

here I'(+) is the Gamma function.

The discontinuous Galerkin finite element method is a very attractive method for
partial differential equations because it is naturally formulated for any order of ac-
curacy in each element, flexible and efficient in terms of mesh and shape functions.
The purpose of the present paper is to solve and analyze time-fractional sKdV equa-
tion by introducing an implicit fully discrete local discontinuous Galerkin method.
This development is based on the extensive work on DG for problems founded in
classic calculus [10, 22, 24, 27]. We prove that our scheme is unconditionally stable
and give an error estimate for the linear case.

The remains of this paper are organized as follows. In the next section, we
introduce some basic notations and mathematical preliminaries. Then, in Section
3, we discuss the LDG scheme for the fractional equation (1.1), and prove that
the scheme is unconditionally stable, and the numerical solution is convergent.
Numerical experiments to illustrate the accuracy and capability of the method are
given in Section 4. Finally, in Section 5, concluding remarks are provided.

2. Notations and auxiliary results

2.1. Notations. First, the domain 2 is partitioned into elements = | ; 1j with
a spatial grid a=z1 <z3 < <Tyyl= b. I; = [:Ej_%,:cj+%], forj=1,---N.

The cell lengths Ax; = Tijp1—T; 1, 1<j<N,and h = max Ax;. The solution
<<

of the numerical scheme is denoted by u} which belongs to the finite element space
V,f:
VF={v:ve P*(I;),x€I;,j =1,2,---N},

Pk(Ij) denotes the set of all polynomials of degree at most k on I;.
For a function u}! € V;¥, We denote the limits at the points {zjp1} by

+

(uﬁ);_% and (u};)ﬁ% refer to the value of uj at z; 1 from the left cell I; and the

1
2

O
right cell I, 41, respectively. The jump (uﬁ);% - (uZ)]_Jr% by [up]; 1. The jump

will be zero for a continuous function.

2.2. Numerical flux. Consider a scalar conservation law given in differential form

(2.1) ¢+ 9()x =0,

where g(¢) is called the flux function. Numerically, g(¢) should be expressed by a
suitable choice at the interface. For discontinuous Galerkin spatial discretization,
g(¢) is approximated by the numerical form at the discontinuous point Tiy1 In

this paper, the flux g(¢~, ") will be used to denote the numerical flux, which is
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related to the discontinuous Galerkin spatial discretization. g(¢—,¢") is a mono-
tone numerical flux, which is dependent on the two values of the function ¢ at the
discontinuous point z; 1 and satisfies the following conditions:

(i) it is locally Lipschitz continuous, so it is bounded when ¢* are in a bounded
interval;

(ii) it is consistent with the flux g(¢), i.e., (¢, ) = g(¢);

(iii) it is a nondecreasing function of its first argument, and a nonincreasing
function of its second argument.

2.3. Projections. In order to give a proof of error estimates, two projections will
be used for one dimension case [a, b], which denoted by P and P*, i.e., for each 7,

(2.2) / (Pw(z) — w(z))v(z) = 0,Yo € P*(1;),

I;

/ (PTw(z) —w(z))v(z) = 0,Yo € P*1(T;),
(2.3) 1;

and
/ (P w(z) —w(z))v(z) =0,Vv € Pk_l(Ij),
(2.4) I;
P*w(zj}%) =w(@;p 1)
Using standard approximation theory, the projections satisfy the following in-
equality [2, 3]
(2.5) e[| + Rl oo + A [lwf]
+

k+1
m < CRFTL

where w® = Pw — w or w® = P*w — w. 75, denotes the set of boundary points of
all elements I;. From here on, let C' denote a positive constant depending on u
and its derivatives but independent of h, which may have a different value in each
occurrence, and let || - ||p denote L? norm in D. If D = ), we drop D.

3. Fully discrete LDG scheme

In the following, we shall introduce the numerical scheme for the solution of
equation (1.1). Let At = T/M be the time mesh-size and M a positive integer,
t, =nlAt,n=0,1,---, M be mesh point. An approximation to the time fractional
derivative (1.2) can be obtained by a simple quadrature formula [12]

(3.1) Dlu(z, tn) = IE(A;)_:) Zbiu(z’tn%) ;’;L(l',tnfifl) ),
=0

where b; = (i + 1)17% — il=% 4"(z) < C(At)2~%, C is dependent on u, T, a.
We know
1=by>by >by>-+->by,>0,b, = 0(n— 00),

(82) Zn:(bi,l — b)) + by = 1.

i=1
First we rewrite the equation (1.1) as a first-order one

D?U*I’g(u)z*qufsz%‘)\zz =0,z—-w; =0,w— 5, =0,

(33) s=1:=0,7 ¢, =0, —p: =0,¢" —px =0,p—u, =0.
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For convenience, we introduce the following notations

N

(3.4) C(w,w;n) = / wnedr — Z((@n*)ﬂ% — (CAWIJF)];%)-

Q =

An implicit fully discrete LDG scheme is defined as follows: Find uy, 23, wi, sp,
R ahs iy (i) € Vi, such that Yo, p, v, é, 0,€,n,0 € V¥,

/Qqudx — BC(Q(“Z)7@§ v) — BC((q1)", @; v)
+ BC(s}t, sj5v) — BAC(21, 2} 0)

n—1
= Z(bi_l - bi)/ ul"vdx + bn_l/ uhvdzr,
i=1 Q

Q
(3.5) /Q zhpdz + C(wjl, wis p) = 0, /Q wipdz + C(sy, 55 ¢) =0,

/ sz + O, 7T 6) = 0, / rode + Clgh ai @) = 0,
Q Q

/qZ«de+C(pZ75§;§)=07/panI+C(UZ7@;n)=0,
Q Q
/ (a)"0dz + C(p}, P 0) = 0,

Q

where § = (At)*T(2 — a). The “hat” terms in (3.5) in the cell boundary from
integration by parts are the so-called “numerical fluxes”. In order to ensure stability,
we can take the following choices simply

upp = (up) ™, (@) = (@n)") i = i) si = (s3) ook = (Ph) ™

GO B = o} rlf =i = (@) = af +7laf — Msf,

zh = (zp) " wp = (wi) ™ s = (sp) 7, = ()™

where 7 > 0. Two dissipation terms in the flux of ];;L\L and ];;L\L are added in order to
get an error estimate by controlling the boundary terms.

Remark 3.1. In order to obtain the stability result we introduce the term with
“”. You will find a contradiction if you don’t do so while choosing the directions
of flux terms.

The flux g((u}!)~, (u})*) is a monotone flux as described in (2.2). Examples of
monotone fluxes which are suitable for the local discontinuous Galerkin methods
can be found in [4]. For example, one could use the Lax-Friedriches flux, which is
given by

(37 g (w,wh) = %(g(w’) +g(w™) = do(w” —w7)), Ao = max|g'(w)|.

Now we state the main theoretic analysis.

Theorem 3.1. For periodic or compactly supported boundary conditions, Our
fully-discrete LDG scheme (8.5) with flux (3.6) is unconditionally stable, and the
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numerical solution satisfies

N
lail|® + 8 (o) + la]? + Alrp)?), 1+25TZ = Ash]?
(3.8) =

where T ia a positive constant.

Proof. Taking the test functions v = u}l,n = —B(q)* + Bsy — BAz}, ¢ = Bqi —
BAsp,0 = Bpp, & = —=fryy + Bhwy, ¢ = =Bpj + BAryp = BApy, ¢ = —BAgy in
scheme (3.5), and with the fluxes choice (3.6), we obtain

LB
up|* + BG (up) Z PR+ [ + A1),
N
+B7 ) lai — Asil® + [=rh + Mwpl?) g
j=1
N
(3.9) + B3 (W(up, (a)" s shs R h 2R R 03 44
j=1
_lI/(uZ’(ng)*a3272)277“;;72;;;1”27%?)]‘_%
+@(u2’(qg)*aSZ7PZ7TZ7ZZaw27qZ)j_%)

n—1
— (bim1 — bz)/ uzﬂ'udeern,l/ u%u}}daz,
, Q Q

where
N N
Glup) =— /QQ(UZ)(UZ)xdx + Z(@(?ﬁ?)‘);ﬁ —(G(up)*) - 1),
Wt (a)" s P i 2 wp g = —((af)") ™ ()™ + (@) ()™ + a((af))”

()T ()T = sp ()T —ag (s T — ()T T+ PR T + o)
FA ()T W)+ )T ()T + ) ()T = ppw) T — () )
+A(=(sp) 7 (g) ™ +spa) ™ +ap(sh) ),

O(up,(an)", s phsmhs 2h wi a) = —((ai) )~ (i)™ + (7)) (up)

+ (@) @)™ = (@) ) +ui(ap)) ™ — g (gh))t
F(sp) ()™ — (s ()t — sp(ul)” + sp(up)t — w(sp)” (st
)T OO RO — DR+ ) — TRt

A=) (@)™ + G+ 2 )T = 2 )+ (e = aizi) )
+ MR (wh)” = O i)t = () + PR i)t = wi(eh)” + wh (o))
+ A7) (@) + )@ T+ @) = ST+ g (sh) T — ah(sh) ).
If we take the fluxes (3.6), and after some manual calculation, we can easily
obtain

@(Uﬁa qZ? SZaPZa 7’2) =0.
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For the nonlinear term, Let G(u f g(u)du, and use a mean value theorem,
then we can obtain

(3.10) Gup) =Y (G'(n) = Plupl;—1 >0,

j=1

where 7 is a value between (u}')~ and (u}')*. By the monotonicity of flux function
g, we have the inequality (3.10).
Then based on the equation (3.9), we can get

ﬂ N
[ 52 12+ A[r)? )j—1
Jj=1
N
+BTZ — AspTP o [+ M) s

< Z(bi_l - bl)/ up " ujd + bn_l/ udupde
P Q Q

Ly : L.
<3 Z bi)llup ™| + ba—1flup | + glluhl\Q,
=1
that is
N
[upll® + 8> (Iop)? + lap]® + Alrpl®), -
j=1
N
2 2
(3.11) + 287 gp — Asp)” + [—rf + Mwp)?) s
j=1
n—1 .
<O (i = b)l[up ™ | + baal|uf ).
=1

We will prove the Theorem 3.1 by mathematical induction. When n = 1, by the
expression (3.11), we can obtain the following inequalities immediately

IIuh||2+BZ P+ Alra]?) -1
(3.12)
+2ﬂTZ = Asp)? + [=rh + Awp]?); s < [lup)?,

and [l || < [luj]l
Now, supposing the following inequality holds

(3.13) [uptll < llupll,m = 2,3, K,
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and let n = K + 1 in the inequality (3.11), we can obtain

||uh+1||2+ﬁz KR 4 g AR,
N
+287 Y [ = A 4 [ )
j=1
K
<O ((bims = b uf ) + b )2
i=1

Using the property (3.2) and assumption (3.13), we can obtain the following
inequality easily

K+1)2 K+1 K+1 K+1
[Juz, "l +ﬁz 4+ Al )
(3.14)
+ 2&2 L NI o [ )
Slluh||2-
The desired result is obtained. O

Next we state the error estimate of the scheme for the linear case.

Theorem 3.2. Let u(x,t,) be the exact solution of the problem (1.1), uj be
the numerical solution of the fully discrete LDG scheme (3.5), then there exists a
positive constant C, such that the following error estimate holds

lu, tn) — uf|| < O 4 (A1)? + (A8 FRF3),

Proof. Without loss of generality, we consider the linear time-fractional sKdV equa-
tion

(3.15) Diu(z,t) + ug + usy — Usy + uzg = 0.

It is easy to verify that the exact solution of the above PDE (3.15) satisfies

/Qu(x,tn)vdx — BC(u(x, ty), u(x, ty);v) — BC(G" (z,tn), ¢ (2, tn); V)
(3.16) + ﬂC(S(l‘, tn)a S(ﬂ'), tn); ’U) - ﬂ)\C(Z(IL’, tn)v Z(:L'a tn); ’U)

n—1
= Z(bi_l — bl)/ uzfivdx + bn_l/ u,Olvdx,
i=1 Q2 Q@
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z(x,tn)pdr + C(w(z, tn), w(z, tn); p) =0,

S~

w(z, tn)Ydr + C(s(z, tn), s(x, tn); 1) = 0,

s(z,tn)¢dr + C(r(x, tn), r(2,tn); ¢) = 0,

—

2

p(z, tn)ndr + C(u(z, ty), u(z,tn);n) = 0,

r(z, tn)edx + Clq(z,tn), q +TZ T, tn) — As(w,tn)] (@], - 0,

1
2

q(z,tp)édx + C(p(z, tn),p )+ TZ [Mw(z,t,) —r(z,t,)][€];- 0,

1
2

g (x,t,)0dx + C(p(x,ty), p(x,tn); 0) = 0.

We introduce the following notations

er =u(x,t,) —up =P7el — (P u(x, t,) — u(x, t,)),
eg- = ¢ (z,tn) — (q1)" = Pege — (Pq" (@, 1n) — q" (2, tn)),
ey = s(x,ty) — sp = Pel — (Ps(z,tn) — s(x,tn))

el = z(x,t,) — zp = Pel — (Pz(z,t,) — z(x, L))

(317) er =w(xz,ty,) —wy = Pel — (Pw(x, t,) — w(z, ty))

ep = p(x,tn) =Py = Pey — (Pp(x,tn) — p(z, tn)),

e =r(z,tn) —ry = Pel — (Pr(z,tn) —r(z,tn)),

eg = q(@,tn) — i = Pey — (Pq(z,tn) — q(z,tn)).

Subtracting (3.5) from (3.16), and using the fluxes (3.6), we can obtain the error
equation

/Q emudi — BO(eN, (1) ;) — BC(el  (€1)F;v) + BC(l, (€)1 v)
— BAC(En, (7)) + / e pdi + C(en, () )
Q
+ / enpd + O, (7)) + / gz + (e, (1) 6)
Q Q
o1 + /Q eMdz + O, ()5 0) + /Q endz + Ce, (1) 6)
4 / enndi + C(en, (e1) 5 m) + / en.6dz + C(e", (1))
Q Q

— (bi_l—bi)/ e udx — by, 1/6 vdac—i—ﬁ/ x)vdx
: Q Q
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Using the notation in (3.17), the error equation (3.18) can be written as

(3.19)
/P_eZvdm — BC(P ey, (P ew) ;v) — BC(Peys, (Peg*)+; v)
Q

+ BC(PeZ, (Pel)tv) — BAC(PeZ, (Pel)T;v)

/’PezpderC(’Pew,(’Pew ) /’Pewd)dx+0(7>es,(7>e )5 )
/ Pelgdz + C(Pel, (Pel) 56 / Pelpda + C(Pe, (Pel) ;)
/ Pejeda + C(Pey, (Pel) 3¢ / Pefndz + C(P™el, (Pel) 5m)

+ / Pep0dz + C(Pey, (Pep)™;0) + 7 Z ([Peg — MPeg]le] + [APey, — Pef][f])j_%

:i bi—1 — bi) /Pizlvdaﬂrbn 1/’Pevdx—ﬁ/ z)vdx
,izzl(bz 1— )/9(7’ W, tns) — u(z, tns))vds — bp_1 /Q('Pfu(w,to)fu(x,to))vdx

+ /Q(P*u(:v,tn) —u(z, tn))vdx — BC(P u(x, tn) —ul(x, tn), (P ul(x, tn) — u(x,tn)) ;v)
— BC(PG" (2, tn) — ¢" (2, tn), (Pq" (x, tn) — q" (2, 4)) "5 0) + BC(Ps(x,tn) — 5(x, tn),
(Ps(z,tn) — (2, tn))T;0) — BAC(Pz(x, tn) — 2(x, tn), (Pz(z, tn) — 2(z, ) T3 0)

+ /Q(Pz(x, tn) — 2(x,tn))pda + C(Pw(x, t,) — w(x, tn), (Pw(x, tn) — w(z,ta))"; p)

+ /Q(Pw(x, £0) — w(z, tn) oz + C(Ps(,tn) — (2,00, (Ps(z, 1) — s(zs 1)) :1)

+ /Q(Ps(m,tn) — 5(2,tn))¢dz + C(Pr(z,tn) — (7, tn), (Pr(z,tn) — r(z,tn)) "5 0)

+ /9(7’7“(177 tn) = r(x,tn))pde + C(Pq(z, tn) — q(x, tn), (Pa(w, tn) — q(z,ta)) "5 ¢)

+ /Q(PQ(% tn) = q(x,tn))sdz + C(Pp(2,tn) — p(z,tn), (Pp(x,tn) — p(x,1n)) " ;§)

+ /Q(Pp(m, tn) — p(x,tn))nde + C(P~ u(m, tn) — ulz,tn), (P~ u(x, tn) — u(z,tn)) ;1)

+ /Q(’Pq*(iﬂ,tn) - q*(x7tn)0dx + C('Pp(l’,tn) 7p(:ﬂ,tn), (Pp(xvt") 7p($7t"))+;9)

+7 Z([Pq(% tn) = gz, tn) = A(Ps(z,tn) — s(z, tx))][¢]

+ M(Pw(z,tn) —w(z,tn)) — (Pr(z,tn) — r(z, ta))][E]), -

1
2

For convenience, we denote the left-hand and right-hand terms in (3.19) by LHT
and RHT, respectively. Let the test functions v = P~ey,n = —SPey. + fPey —
BAPeZ,p = BPey — BAPey,0 = BPey,§ = —[Pe; + BAPey, ¢ = —fPe, +
BAPer,p = BA\Pey,¢p = —BAPey in (3.19) with the fluxes (3.6). For the left-
hand term LHT of (3.19), with the analogue argument for the equality (3.11), we
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have
N
LHT > ||Pel||> + b > ([P=ep)? + [Pep) + [Pel) + A[Pep)?), s
- u 9 u D q T JI—3
j=1
(3.20) N
+ BTy [Pey — APel]? + [~ Pej + APep]?);_1
j=1

Now, we consider the right-hand term RHT of (3.19). Using the properties (2.2)
and (2.3), further noticing the fact that ¢ < e¢? + ﬁgﬁ, we get,

(3.21)
n—1
RHT < (;(b —1 = b)IPTen T 4 baa [P e ) + %I\P’eZI\Q
N n—1
+Be(24+0)) [P~ St (Y (i1 = b) [P ul@, tn—i) — u(, tn )|
j=1 i=1
+bn71H7”u(x to) — ul@, to)|| + [|P~u(z, tn) — ulz, t,)|| + By (@)I])?
N
Z (Pq*(x,tn) — ¢ (z,tn) gz ((Pp(z,tyn) (x,tn))"’)?_%
= =
B < RS
+ Zg;((?s(x,t n) = s ta) )2, —EJ; (Pa(@,tn) = 2(,t2) )]s
ﬂ)\ N N
+ o 2 ((Pw, tn) —wla t))7)3_y + B3+ 1) Y _[Pepls_,
j=1 j=1
ﬁ)\ N N
+ 0 ;((Ps(atn) = s(2,10)) )5y + mezl[?e:;]?_%
Jj= Jj=

N
(Pr(z,tn) = r(z,t))7); 4 +260e Y [Pl 4

j=1

+
ol

~
Il
—

N
((Pa(.ta) — ale, 1))y +36e > [Per — XPel?_,

+
ol

J=1 j=1
6 N N

+ ;((Pp@, tn) = p(z,1a))7)5_ 4 + 3¢ Z;[—Pe? +APe]T_y
J= J=

(([Pg(@, tn) = gz, tn)]* + A[Ps(x, tn) — s(@, ta)]) ;-

<
Il
—_
ol

_|_
&l

(APw(@, tn) = w(z, tn)]* + [Pr(z, ta) — r(z,t)]*), 1.

<
Il
—
=

+
ol

Choosing a small enough ¢ such that the terms in (3.21) can be controlled by
the corresponding ones in (3.20), and using (3.20), (3.21) and the property (2.5) ,
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there exists a positive constant C' such that
n—1

Pen||? <2 bi1 — b)) [P el | + bu_1||P~el|)?
(3.22) | | (;( 1= i)l | 1 )

+ C(R 4 (AD)? 4 (A) S hFT2)2,

Now we prove the error estimate by mathematical induction. When n = 1, the
equation (3.22) becomes

[P=el|? < 2|P=e|% + C(h* + (A1) + (At)FRF3)2.
It is easy to see that ||P~el|| < Ch**+1, then we deduce
[P~el| < C(R**! + (A1) + (AT hFF3).
Next we suppose the following inequality holds
(3.23) [P=el|| < C(R*H! + (A1)? + (AH)ThPT2), m =2,3,- - K.
When n = K + 1, from the equation (3.22), we deduce

K
IP~en 1% < 203 (bima = 0i)IP e | + b [P~ el 1)
i=1

+ C(R*T 4 (A1)? + (AL S RFT32)2,

Noticing the property (3.2), and using the assumption (3.23), we can get the
following result immediately

[P=eE+1| < OB 4 (AL)? + (At) S RFT2).

Then Theorem 3.2 follows from the triangle inequality and the standard approx-
imation result (2.5). O

4. Numerical examples

In this section, we offer some numerical examples to illustrate the accuracy and
capability of the method. For this purpose, we calculate the numerical results of
the exact solutions (for the cases where exact solutions are available). We mainly
focus on the spatial accuracy, so a small time step is used such that errors from the
temporal approximation is negligible.

Example 4.1. In this example we show an accuracy test for the nonhomoge-
neous linear time-fractional sKdV equation in [0, 27] x [0, 1]

(4.1) Diu(z,t) + ug + usy — Usg — 2urg = f(a,t),
and the forcing term
2t2—oz
f(z,t) :m sinz + t% cos z,

then the exact solution is u = t?sinz. Choosing 7 = 0.5 in numerical experiment,
and fixing the time step At = 1/1000. In Table 1 we list the L? and L* errors and
the numerical orders of accuracy at time T' = 1 for different «, and from that we
can see the order of convergence using piecewise P? elements gives a uniform third
order of accuracy in both norms.

Example 4.2. We show an accuracy test for the nonlinear time-fractional sKdV
equation

(4.2) DY u(z,t) + uug + usy — use + ure = f(x, ).
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TABLE 1. The error and order of convergence of the scheme (3.5)
for the linear time-fractional sKdV equation (4.1) using piecewise
P? clements.

N L2-error order L°-error order

5 | 1.627915353246706E-002 - 2.958432094950025E-002 -
10 | 2.101079671943452E-003 | 2.95 | 3.871267797717737E-003 | 2.93
a=0.1|15]6.291098602417318E-004 | 2.97 | 1.202036665154643E-003 | 2.88
20 | 2.668549716851078E-004 | 2.98 | 5.148238366143310E-004 | 2.95

5 | 1.627324721589849E-002 - 2.963000193552157E-002 -
10 | 2.103578295177149E-003 | 2.95 | 3.828415221396320E-003 | 2.95
a=0.3 |15 6.336021836479708E-004 | 2.96 | 1.165652130645539E-003 | 2.93
20 | 2.760545793091325E-004 | 2.89 | 4.750817692477094E-004 | 3.12

5 | 1.625798660761131E-002 - 2.977653317982076E-002 -

10 | 2.100869882521485E-003 | 2.95 | 3.883060959286588E-003 | 2.94
a=0.5| 15| 6.293239638002948E-004 | 2.97 | 1.207122483855794E-003 | 2.88
20 | 2.674131017988163E-004 | 2.97 | 5.194149367315215E-004 | 2.93

We take the exact solution u(x,t) = t? cosz, then the forcing term

2t27a

f(z,t) “TB_a)

cosT — %t‘i sin(2x) + 3t*sin z,

The solution is computed with a periodic boundary condition in [0, 27] using P?
elements. Let 7 = 0.1. In Figure 1, we show the errors in L?-norm and L'-norm
attains third order of accuracy for piecewise P? polynomials for three values of a:
0.2, 0.4 and 0.6. The numerical results are consistent with our theoretical results in
Theorem 3.2. In Figure 2, we show the the variation of the error with alpha when
N =30,T=1.

5. Conclusion

In this paper, an implicit fully discrete local discontinuous Galerkin (LDG) finite
element method is presented for solving the time-fractional sKdV equation. The
stability and error analysis for the linear case is performed. The numerical exper-
iments confirm the validity of the method and indicate that the scheme is a good
tool to solve such equations. The method and analytical technique can also be ex-
tended to other kinds of time-fractional equations and higher-dimensional problems
easily.
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