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Abstract. In this paper, we focus on an a posteriori residual-based error estimator for the T/Ω
magnetodynamic harmonic formulation of the Maxwell system. Similarly to the A/ϕ formulation
[7], the weak continuous and discrete formulations are established, and the well-posedness of
both of them is addressed. Some useful analytical tools are derived. Among them, an ad-hoc
Helmholtz decomposition for the T/Ω case is derived, which allows to pertinently split the error.
Consequently, an a posteriori error estimator is obtained, which is proven to be reliable and locally
efficient. Finally, numerical tests confirm the theoretical results.
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method.

1. Introduction

Let us consider the electromagnetic fields, modeled by the well-known Maxwell
system :

(1) curlE = −∂B
∂t
,

(2) curlH =
∂D

∂t
+ J,

where E is the electrical field, H the magnetic field, B the magnetic flux density,
J the current flux density (or eddy current) and D the displacement flux densi-
ty. Equation (1) is classically called Maxwell-Faraday equation and equation (2)
Maxwell-Ampère one. In the low frequency regime, the quasistatic approximation
can be applied, which consists in neglecting the temporal variation of the displace-
ment flux density with respect to the current density [12], such that the propagation
phenomena are not taken into account. Consequently, equation (2) becomes :

(3) curlH = J.

Here, the current density J can be decomposed in two terms such that J = Js+Jec.
Js is a known distribution current density generally generated by a coil, and Jec

represents the eddy current. Both equations (1) and (3) are linked by the material
constitutive laws :

(4) B = µH,

(5) Jec = σE,

where µ stands for the magnetic permeability and σ for the electrical conductivity
of the material. Figure 1 displays the domains configuration we are interested
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in. We consider an open connected domain D ⊂ R
3
, with a Lipschitz boundary

Γ = ∂D. We define an open simply connected conductor domain Dc ⊂ D and
we note Γc = ∂Dc its boundary which is supposed to be Lipschitz and such that
Γc ∩ Γ = ∅. In Dc, the electrical conductivity σ is not equal to zero so that eddy
currents can be created. Finally we define De = D\Dc as the part of D where the
electrical conductivity σ is equal to zero. Boundary conditions associated with the
system (1)-(3) are given by:

(6) B.n = 0 on Γ,

(7) Jec.n = 0 on Γc.

We intend to solve this problem by using the potential formulations often used for

Figure 1. Domains configuration.

electromagnetic problems. A similar work was already done for the so-called A/ϕ
formulation [7]. Another recent paper was concerned with the A/ϕ formulation [3]
but in a different framework, having at last the potential vector A as an unique
unknown, and considering the case where µ is constant. Here, we consider the T/Ω
formulation which is first described. Since div Js = 0 in D, there exists a source
magnetic field Hs such that [9]:

curlHs = Js in D,

and since the conductor domain Dc is simply connected, as div Jec = 0, there exists
a source magnetic field T such that:

curlT = Jec in Dc.

From (3), a magnetic scalar potential Ω can be introduced so that the magnetic
field H can be written by:

(8) H =





Hs +T−∇Ω in Dc,

Hs −∇Ω in De.

From (4), (5) and (8), equation (1) becomes:

(9) curl

(
1

σ
curlT

)
+
∂

∂t
(µ (T−∇Ω)) = − ∂

∂t
(µHs) in Dc.

Consequently, we also have

(10) div (µ (T−∇Ω)) = −div (µHs) in Dc.
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Moreover since divB = 0 in D, we get

(11) div (−µ∇Ω) = −div (µHs) in De.

The content of the paper is as follows. Section 2 establishes the weak formulation
of the continuous and discrete problems, and the well-posedness of both of them is
proven. In Section 3, we derive an ad-hoc Helmholtz decomposition of the error in
the conductor domain Dc. Section 3 is devoted to several analytical tools needed
in the following of the paper. In Section 4, the reliability and the efficiency of
the derived estimator are established. Finally, some numerical tests are treated in
Section 5 to evaluate the estimator capabilities.

2. Weak formulation and discretization of the problem

2.1. Weak Formulation. From (9), (10) and (11), the T/Ω formulation of the
magnetodynamic problem can be written:

(12)





curl

(
1

σ
curlT

)
+
∂

∂t
(µ (T−∇Ω)) = − ∂

∂t
(µHs) in Dc,

div (µ (T−∇Ω)) = −div (µHs) in Dc,

div (−µ∇Ω) = −div (µHs) in De.

We suppose that µ ∈ L∞(D) and that there exists µmin ∈ R
∗
+ such that µ > µmin

on D. We also assume that σ ∈ L∞(D), that there exists σmin ∈ R
∗
+ such that

σ > σmin on Dc, and we recall that σ|De
≡ 0. Taking the associated boundary

conditions (6) and (7) into account, the harmonic formulation of the system (12)
is given by: Find (T,Ω) ∈ V such that for all (T′,Ω′) ∈ V , we have

(13)





∫

Dc

1

σ
curlT · curlT′ +

∫

Dc

jωµ (T−∇Ω) ·T′ =

∫

Dc

−jωµHs ·T′,

−
∫

Dc

µ (T−∇Ω) · ∇Ω′ +

∫

De

µ∇Ω · ∇Ω′ =

∫

D

µHs · ∇Ω′,

where j2 = −1 and V = X0(Dc)× H̃1(D) with:

X(Dc) = H0(curl, Dc) =
{
T ∈ L2(Dc); curlT ∈ L2(Dc) and T× n = 0 on Γc

}
,

X0(Dc) =

{
T ∈ X(Dc);

∫

Dc

T .∇ξ dx = 0, ∀ξ ∈ H1
0 (Dc)

}
,

H̃1(D) =

{
Ω ∈ H1(D);

∫

D

Ω = 0

}
.

In the following, on a given domain D, the L2(D) norm will be denoted by || · ||D,
and the corresponding L2(D) inner product by (·, ·)D. The usual norm and semi-
norm of H1(D) will be denoted by || · ||1,D and | · |1,D respectively. Now, X(Dc) is
equipped with its usual norm :

‖T‖2X(Dc)
= ‖T‖2L2(Dc)

+ ‖ curlT‖2L2(Dc)
,

and the natural norm ||.||V associated with the Hilbert space V is given by :

‖(T,Ω)‖2V = ||T||2X(Dc)
+ |Ω|21,D.
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It can be directly obtained that an equivalent variational formulation to (13) is
given by : Find (T,Ω) ∈ V solution of

(14) a((T,Ω), (T′,Ω′)) = l((T′,Ω′)), ∀(T′,Ω′) ∈ V,

where a and l are respectively the following bilinear and linear forms defined by:

a((T,Ω), (T′,Ω′)) =

∫

Dc

1

σ
curlT · curlT′ +

∫

Dc

jωµ(T−∇Ω) · (T′ −∇Ω′) +

∫

De

jωµ∇Ω · ∇Ω′,

l((T′,Ω′)) = −
∫

Dc

jωµHs · (T′ −∇Ω′) +

∫

De

jωµHs · ∇Ω′.

2.2. Well-posedness of the problem.

Lemma 2.1. The bilinear form
√
2e−j π

4 a is coercive on V , namely there exists
C > 0 such that:

∣∣√2e−j π
4 a((T,Ω), (T,Ω))

∣∣ ≥ C
∥∥(T,Ω)

∥∥2
V
.

Proof. First, let us notice that:

ℜ
[√

2e−j π
4 a ((T,Ω), (T,Ω))

]
=

∫

Dc

1

σ

∣∣ curlT
∣∣2+

∫

Dc

ωµ
∣∣T−∇Ω

∣∣2+
∫

De

ωµ
∣∣∇Ω

∣∣2.

Our aim is to prove that there exists C > 0 such that for all (T,Ω) ∈ V ,
∫

Dc

1

σ

∣∣ curlT
∣∣2 +

∫

Dc

ωµ
∣∣T−∇Ω

∣∣2 +
∫

De

ωµ
∣∣∇Ω

∣∣2 ≥ C
∥∥(T,Ω)

∥∥2
V
.

This is done by an usual contradiction argument and using the fact that for T ∈
X0(Dc), the Friedrichs-Poincaré inequality ‖T‖L2(Dc) ≤ C‖ curlT‖L2(Dc) holds
(see [11]). We refer to [7] for a similar proof in the A/ϕ formulation case. �

Theorem 2.2. The weak formulation (14) admits a unique solution (T,Ω) ∈ V .

Proof. The sesquilinear form |
√
2e−j π

4 a| is obviously continuous on V × V and
coercive on V by Lemma 2.1. So Lax-Milgram’s lemma ensures existence and
uniqueness of a solution (T′,Ω′) ∈ V to (14). �

Lemma 2.3. Let (T′,Ω′) ∈ V be the unique solution of (14). Then for all
(T′,Ω′) ∈ X(Dc)×H1(D), we have :

a ((T,Ω), (T′,Ω′)) = l ((T′,Ω′)) .

Proof. Since T′ ∈ X(Dc), we can decompose it using the following Helmholtz
decomposition [11, p. 66]:

T′ = Ψ+∇τ,
where Ψ ∈ X0(Dc) and τ ∈ H1

0 (Dc). It is known that for any function Ω′ ∈ H1(D),

we can find Ω̂′ ∈ H̃1(D) such that ∇Ω̂′ = ∇Ω′ by the definition:

Ω̂′ = Ω′ − 1

|D|

∫

D

Ω′.
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We write

a((T,Ω), (T′,Ω′)) = a((T,Ω), (Ψ +∇τ,Ω′))

=

∫

Dc

1

σ
curlT · curlΨ +

∫

Dc

jωµ(T−∇Ω) · (Ψ −∇(Ω̂′ − τ)) +

∫

De

jωµ∇Ω · ∇Ω̂′

=

∫

Dc

1

σ
curlT · curlΨ +

∫

Dc

jωµ(T−∇Ω) · (Ψ −∇Ω̃′) +

∫

De

jωµ∇Ω · ∇Ω̃′,

where we define Ω̃′ ∈ H̃1(D) by

Ω̃′ =





Ω̂′ − τ +
1

|D|

∫

Dc

τ in Dc,

Ω̂′ +
1

|D|

∫

Dc

τ in De.

Therefore we conclude that:

(15) a((T,Ω), (Ψ +∇τ,Ω′)) = a((T,Ω), (Ψ, Ω̃′)).

Similarly it is clear that

l((T′,Ω′)) = l((Ψ +∇τ,Ω′))

= −
∫

Dc

jωµHs · (Ψ −∇Ω̃′) +

∫

De

jωµHs · ∇Ω̃′

= l((Ψ, Ω̃′)).

Taking into account that Ψ ∈ X0(Dc) and Ω̃′ ∈ H̃1(D), from (14), we get

(16) a((T,Ω), (Ψ, Ω̃′)) = l((Ψ, Ω̃′)).

From (15) and (16) we conclude that

a((T,Ω), (T′,Ω′)) = l((T′,Ω′)).

�

2.2.1. Discrete formulation. Now, the boundaries Γc and Γ are supposed to be
polyhedral such that the domain D can be discretized by a conforming mesh Th

made of tetrahedra, each element T of Th belonging either to Dc or De. The faces
of Th are denoted by F and its edges by E. Let us denote by hT the diameter
of T and ρT the diameter of its largest inscribed ball. We suppose that for any
element T , the ratio hT /ρT is bounded by a constant α > 0 independant of T and
of the mesh size h = max

T∈Th

hT . The set of faces (resp. edges and nodes) of the

triangulation is denoted F (resp. E and N ), and we denote hF the diameter of the
face F . The set of internal faces (resp. internal edges and internal nodes) to D is
denoted Fint (resp. Eint and Nint). The coefficients µ and σ arising in (12) are
moreover supposed to be constant on each tetrahedron of the mesh, and we will
note µT = µ|T and σT = σ|T for all T ∈ Th.

The approximation space Vh is defined by Vh = X0
h × Θ̃h, where :

Xh(Dc) = X(Dc) ∩ ND1(Dc,Th) =
{
Th ∈ X(Dc);Th|T ∈ ND1(T ), ∀ T ∈ Th

}
,
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ND1(T ) =

{
Th :

T −→ C3

x −→ a+ b× x
, a,b ∈ C

3

}
,

Θh =
{
Ωh ∈ H1(D); Ωh|T ∈ P1(T ) ∀ T ∈ Th

}
,

Θ0
h =

{
ξh ∈ H1

0 (Dc); ξh|T ∈ P1(T ) ∀ T ∈ Th

}
,

X0
h(Dc) =

{
Th ∈ Xh(Dc); (Th,∇ξh)Dc = 0 ∀ ξh ∈ Θ0

h

}
,

Θ̃h =
{
Ωh ∈ H̃1(D); Ωh|T ∈ P1(T ) ∀ T ∈ Th

}
.

Now, the discretized weak formulation associated with (14) consists in finding
(Th,Ωh) ∈ Vh such that for all (T′

h,Ω
′
h) ∈ Vh, we have :

(17) a((Th,Ωh), (T
′
h,Ω

′
h)) = l((T′

h,Ω
′
h)).

Theorem 2.4. The weak formulation (17) admits a unique solution (Th,Ωh) ∈ Vh.

Proof. The proof is in any point similar to the one of Theorem 2.2 for the continuous
case. The main point relies in proving the coercivity of a on Vh, which can be done
by using the discrete Poincaré-Friedrichs inequality ||Th|| ≤ C|| curlTh|| for all
Th ∈ X0

h(Dc), with C > 0 independent of h, see [11, p. 185]. �

Remark 2.5. Let us notice that, because of the discrete Gauge condition arising
in the definition of X0

h, Vh is not included in V , so that the approximation is not a
conforming one.

Lemma 2.6. For all (T′
h,Ω

′
h) ∈ Xh(Dc)×Θh, we have:

a((Th,Ωh), (T
′
h,Ω

′
h)) = l((T′

h,Ω
′
h)).

Proof. : Since T′
h ∈ Xh(Dc), this time we can use the discrete Helmholtz decom-

position [8, p. 272]:

T′
h = Ψh +∇τh with Ψh ∈ X0

h(Dc) and τh ∈ Θ0
h.

The proof is then very similar to the one for the continuous case, see Lemma 2.3. �

A direct consequence of Lemmas 2.3 and 2.6 is the following orthogonality prop-
erty, despite the fact that the approximation is not a conforming one :

Lemma 2.7. For all (T′
h,Ω

′
h) ∈ Xh(Dc)×Θh

a((T−Th,Ω− Ωh), (T
′
h,Ω

′
h)) = 0.

3. Helmholtz decomposition

In the following, the notations a . b and a ∼ b mean the existence of positive
constants C1 and C2 which are independent of the quantities a and b under consid-
eration as well as of the mesh size h, the coefficients µ, σ and of the frequency ω,
such that a ≤ C2b and C1b ≤ a ≤ C2b, respectively.
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Helmholtz decomposition. Compared to the work on the A/ϕ formulation [7],
one suitable Helmholtz decomposition has to be found for the T/Ω formulation.
Let us define the errors on T and Ω by:

(18) eT = T−Th ∈ H0(curl, Dc),

(19) eΩ = Ω− Ωh ∈ H̃1(D).

Let XN (Dc) denote the space:

XN (Dc) = {u ∈ H(curl, Dc) ∩H(div , Dc),u× n = 0 on Γc}
equipped with the norm:

∥∥u
∥∥2
XN (Dc)

=
∥∥u
∥∥2
L2(Dc)

+
∥∥divu

∥∥2
L2(Dc)

+
∥∥ curlu

∥∥2
L2(Dc)

.

Theorem 3.1. The error eT −∇eΩ admits the following Helmholtz decomposition
in the conductor domain Dc:

eT −∇eΩ = Ψ+∇Φ +∇(ψ − eΩ),

where Ψ ∈ H1(Dc) ∩XN (Dc), Φ ∈ H1
0 (Dc) and ψ ∈ H1

0 (Dc), with
∥∥Ψ
∥∥2
H1(Dc)

+
∥∥∇Φ

∥∥2
L2(Dc)

+
∥∥∇(ψ − eΩ)

∥∥2
L2(Dc)

.
∥∥eT −∇eΩ

∥∥2
L2(Dc)

+
∥∥∇eΩ

∥∥2
L2(De)

+
∥∥ curl eT

∥∥2
L2(Dc)

.

Proof. Let us define

(20) ẽΩ = eΩ − 1

|De|

∫

De

eΩ.

Since eΩ ∈ H̃1(D), we have eΩ ∈ H1(Dc) and eΩ ∈ H1(De), which leads to

ẽΩ ∈ H1(Dc) and ẽΩ ∈ H̃1(De).
First of all, let us define ψ ∈ H1

0 (Dc) such that
{

div∇ψ = div eT in Dc,
ψ = 0 on Γc.

The definition w = eT −∇ψ yields

(21) curlw = curleT in Dc.

Clearly, w ∈ XN(Dc). From (20) we get

eT −∇eΩ = eT −∇ẽΩ

= w+∇(ψ − ẽΩ).

From [1] we know that the embedding of XN (Dc) into L
2(Dc)

3 is compact, so that
∥∥w
∥∥2
XN (Dc)

.
∥∥divw

∥∥2
L2(Dc)

+
∥∥ curlw

∥∥2
L2(Dc)

.

Since divw = 0, we have

(22)
∥∥w
∥∥2
XN (Dc)

.
∥∥ curlw

∥∥2
L2(Dc)

.

By (21), we can conclude that:

(23)
∥∥w
∥∥2
L2(Dc)

≤
∥∥w
∥∥2
XN (Dc)

.
∥∥ curleT

∥∥2
L2(Dc)

,
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and
(24)
∥∥eT −∇ẽΩ

∥∥2
L2(Dc)

=

∫

Dc

(w+∇ψ −∇ẽΩ) · (w+∇ψ −∇ẽΩ)

=

∫

Dc

|w|2 +
∫

Dc

|∇(ψ − ẽΩ)|2 + 2

∫

Dc

w · ∇(ψ − ẽΩ).

Using Green’s formula
∫

Dc

w · ∇(ψ − ẽΩ) =

∫

Γc

w · n · (ψ − ẽΩ)−
∫

Dc

divw · (ψ − ẽΩ)

= −
∫

Γc

w · n · ẽΩ since divw = 0 and ψ|Γc = 0

.
∥∥w · n

∥∥
H−1/2(Γc)

·
∥∥ẽΩ

∥∥
H1/2(Γc)

.

Applying the trace theorem, we have:
∥∥ẽΩ

∥∥
H1/2(Γc)

.
∥∥ẽΩ

∥∥
H1(De)

,

and Theorem 2.5 in [8, p. 27] leads to:
∥∥w · n

∥∥
H−1/2(Γc)

. ‖w‖H(div,Dc) = ‖w‖L2(Dc) .

From (23), we get
∥∥w · n

∥∥
H−1/2(Γc)

.
∥∥ curl eT

∥∥
L2(Dc)

,

so that ∫

Dc

w · ∇(ψ − ẽΩ) .
∥∥ curl eT

∥∥2
L2(Dc)

+
∥∥ẽΩ

∥∥2
H1(De)

.

Taking into account (24), we get:
∥∥w
∥∥2
L2(Dc)

+
∥∥∇(ψ−ẽΩ)

∥∥2
L2(Dc)

.
∥∥eT−∇ẽΩ

∥∥2
L2(Dc)

+
∥∥ẽΩ

∥∥2
H1(De)

+
∥∥ curleT

∥∥2
L2(Dc)

.

Since ẽΩ ∈ H̃1(De), Poincaré’s inequality
∥∥ẽΩ

∥∥2
H1(De)

.
∥∥∇ẽΩ

∥∥2
L2(De)

holds. Hence

we have:
(25)∥∥w
∥∥2
L2(Dc)

+
∥∥∇(ψ−eΩ)

∥∥2
L2(Dc)

.
∥∥eT−∇eΩ

∥∥2
L2(Dc)

+
∥∥∇eΩ

∥∥2
L2(De)

+
∥∥ curleT

∥∥2
L2(Dc)

.

Finally from [5], we get

XN (Dc) = XN(Dc) ∩H1(Dc)
3 +∇H1

0 (Dc),

which implies that

w = Ψ+∇Φ,

where Ψ ∈ H1(Dc)
3 ∩XN (Dc) and Φ ∈ H1

0 (Dc), with:

(26)
∥∥Ψ
∥∥
H1(Dc)

+
∥∥∇Φ

∥∥
L2(Dc)

.
∥∥w
∥∥
XN (Dc)

.

(25), (26) associated with (21) and (22) conclude the proof. �

Applying a change with variables, we can have the following corollary:
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Corollary 3.2. The error eT −∇eΩ admits the following decomposition in Dc:

eT −∇eΩ = Ψ+∇Φ̃ +∇êΩ,
where Ψ ∈ H1(Dc) ∩XN (Dc), Φ̃ ∈ H1

0 (D) and êΩ ∈ H1(D). Moreover,
∥∥Ψ
∥∥2
H1(Dc)

+
∥∥∇Φ̃

∥∥2
L2(D)

+
∥∥∇êΩ

∥∥2
L2(D)

.
∥∥eT−∇eΩ

∥∥2
L2(Dc)

+
∥∥∇eΩ

∥∥2
L2(De)

+
∥∥ curl eT

∥∥2
L2(Dc)

.

Proof. Using the notation of Theorem 3.1, let us define Φ̃ by:

(27) Φ̃ =

{
Φ in Dc,
0 in De.

Since Φ ∈ H1
0 (Dc), we have that Φ̃ ∈ H1

0 (D) and ‖∇Φ̃‖L2(D) = ‖∇Φ‖L2(Dc).
Let us also define êΩ by:

(28) êΩ =

{
ψ − eΩ in Dc,
−eΩ in De.

Since ψ ∈ H1
0 (Dc) and eΩ ∈ H̃1(D), clearly êΩ ∈ H1(D) and
∥∥∇êΩ

∥∥2
L2(D)

=
∥∥∇(ψ − eΩ)

∥∥2
L2(Dc)

+
∥∥∇eΩ

∥∥2
L2(De)

.

�

4. Analytical tools

For completeness, this section defines and recalls some usual analytical tools used
in the following of the paper to make it self-contained.

4.1. Standard Clément interpolation operator. For our further analysis, we
need an interpolation operator that maps a function from H1

0 (D) to Θ0
h(D) ={

ξh ∈ H1(D); ξh|T ∈ P1(T ) ∀ T ∈ Th ∩D
}
, as well as an interpolation operator

that maps a function from H1(D) to Θh. Hence Lagrange interpolation is un-
suitable, but Clément like interpolant is more appropriate. Recall that the nodal
basis functions ϕx ∈ Θ0

h associated with a node x is uniquely determined by the
condition :

ϕx(y) = δx,y, ∀y ∈ N .

Moreover, for any x ∈ N , we define Dx as the set of tetrahedra containing the node
x.

Definition 4.1. We define the Clément interpolation operator I0Cl : H1
0 (D) →

Θ0
h(D) by :

I0Clv =
∑

x∈Nint

1

|Dx|
( ∫

Dx

v
)
ϕx,

where Dx is the set of tetrahedra containing the node x.

Definition 4.2. We define the Clément interpolation operator ICl : H
1(D) → Θh

by :

IClv =
∑

x∈N∩D

1

|Dx ∩D|
( ∫

Dx∩D

v
)
ϕx,

Then, we can state the following usual interpolation estimates :
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Lemma 4.3. For any v0 ∈ H1
0 (D) and v ∈ H1(D) it holds :

∑

T∈Th

h−2
T ||v0 − I0Clv

0||2T . ||∇v0||2L2(D),(29)

∑

F∈Fint

h−1
F ||v0 − I0Clv

0||2F . ||∇v0||2L2(D),(30)

∑

T∈Th,T⊂D

h−2
T ||v − IClv||2T . ||∇v||2L2(D),(31)

∑

F∈F ,F⊂D

h−1
F ||v − IClv||2F . ||∇v||2L2(D).(32)

Proof. See [4]. �

4.2. Vectorial Clément-type interpolation operator. Since our problem also
involves functions in X(Dc), we further need a Clément-type interpolant mapping
a (vector) function in X(Dc) to Xh(Dc). This operator was introduced in [6] in an
anisotropic context (for an isotropic version, see [2]), we recall it here. It is defined
with the help of the basis functions wE ∈ Xh, E ∈ E , defined by the condition :

∫

E′

wE .TE′ = δE,E’, ∀E′ ∈ E ,

where TE means the unit vector directed along E. Let us define PH1(Dc) as the
set of functions which are piecewise H1 on the domain Dc, as well as ∇P the so
called ”broken gradient” associated with this decomposition.

Definition 4.4. For any edge E ∈ E fix one of its adjacent faces that we call
FE ∈ F . Then define the Clément type interpolation operator PCl : [PH

1(Dc)] ∩
X(Dc) → Xh(Dc) by :

PClv =
∑

E∈E

( ∫

FE

(v× nFE ) · fFE

E

)
wE ,

where the (vector) functions f
FE

E′ are determined by the condition :
∫

FE

(wE′ × nFE ) · fFE

E′′ = δE′,E′′ , ∀E′, E′′ ∈ E ∪ ∂FE .

Then, we can state the following usual interpolation estimates :

Lemma 4.5. For all v ∈ [PH1(Dc)] ∩X(Dc), we have :
∑

T∈Th

h−2
T ||v− PClv||2T . ||∇P v||2,(33)

∑

F∈F

h−1
F ||v− PClv||2F . ||∇P v||2.(34)

Proof. See [2]. �

5. A posteriori error estimation

5.1. Definition of the residual. For all (T′,Ω′) ∈ X(Dc)×H1(D), the residual
is defined by :

(35) r((T′,Ω′)) = l((T′,Ω′))− a((Th,Ωh), (T
′,Ω′))
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Lemma 5.1. Let us recall that eT and eΩ are respectively defined by (18) and (19).
Then we have:
(36)

ℜ
[√

2e−j π
4 r ((eT, eΩ))

]
=

∫

Dc

1

σ

∣∣ curl eT
∣∣2 +

∫

Dc

ωµ
∣∣eT −∇eΩ

∣∣2 +
∫

De

ωµ
∣∣∇eΩ

∣∣2

Now, we are interested in deriving an a posteriori error estimator in order to con-
trol the error defined as the right-hand-side of (36). Consequently, we are reduced

to bound from above the quantity
∣∣∣r ((eT, eΩ))

∣∣∣.

5.2. Definition of the estimators. Let us consider T a given tetrahadron of the
triangulation. Hh is defined on T by:

Hh =





Hs +Th −∇Ωh if T ⊂ Dc,

Hs −∇Ωh if T ⊂ De.

Let F be a common face of the tetrahedra T1 and T2, we define the normal jump
of the quantity v through the face F by:

[
v · n

]
F
= vT1

· nT1
+ vT2

· nT2

and the tangential jump of the quantity v through the face F by:
[
v× n

]
F
= vT1

× nT1
+ vT2

× nT2
,

where, nTi stands for the outward unit normal of Ti on F (i=1,2). In the case
where F is on the boundary Γ, we set: vT2

= 0.
In the case where F is on the internal boundary Γc, T1 ⊂ Dc and T2 ⊂ De, as

Th does not exist in De, we define:
[
n× 1

σ
curlTh

]
F
= nT1

× 1

σT1

curlThT1
.

Definition 5.2. The local error estimator on the tetrahedron T is defined by:

• 1st case: T ⊂ Dc

η2T = η2T ;1 + η2T ;2 +
∑

F⊂∂T

(η2F ;1 + η2F ;2),

• 2nd case: T ⊂ De

η2T = η2T ;2 +
∑

F⊂∂T

η2F ;2,

with

ηT ;1 = hT

∥∥∥∥− curl(
1

σ
curlTh)− jωµHh

∥∥∥∥
T

,

ηT ;2 = hT
∥∥div (jωµHh)

∥∥
T
= 0,

ηF ;1 = h
1/2
F

∥∥∥∥
[
n× 1

σ
curlTh

]
F

∥∥∥∥
F

,

ηF ;2 = h
1/2
F ω

∥∥∥
[
n · µHh

]
F

∥∥∥
F
.
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Moreover, the global error estimator is defined by:

η2 =
∑

T∈T

η2T .

Remark 5.3. Despite the fact that ηT ;2 = 0 because of the low order finite element
spaces used here, we let them for the sake of completeness, having in mind that
their contributions have to be taken into account for higher degree discretizations.

5.3. Reliability.

Theorem 5.4. We have :
(∫

Dc

1

σ

∣∣ curl eT
∣∣2 +

∫

Dc

ωµ
∣∣eT −∇eΩ

∣∣2 +
∫

De

ωµ
∣∣∇eΩ

∣∣2
)1/2

. Cup η,

with

Cup = max





1

ω1/2 min
T∈D

µ
1/2
T

, max
T∈Dc

σ
1/2
T



 .

Proof. Proof is similar to the ones given in the A/ϕ formulation [7], but with the
new Helmholtz decomposition given in section 3.

By (35), we have

r((eT, eΩ)) = l((eT, eΩ))− a((Th,Ωh), (eT, eΩ))

= −
∫

Dc

jωµHs · (eT −∇eΩ) +
∫

De

jωµHs · ∇eΩ

−
∫

Dc

1

σ
curlTh · curl eT −

∫

Dc

jωµ(Th −∇Ωh) · (eT −∇eΩ)

−
∫

De

jωµ∇Ωh · ∇eΩ.

Taking into account (20) and the fact that curl∇ẽΩ = 0, we have

r((eT, eΩ)) = −
∫

Dc

jωµHs · (eT −∇ẽΩ) +
∫

De

jωµHs · ∇eΩ

−
∫

Dc

1

σ
curlTh · curl(eT −∇ẽΩ)

−
∫

Dc

jωµ(Th −∇Ωh) · (eT −∇ẽΩ)

−
∫

De

jωµ∇Ωh · ∇eΩ

Applying the Helmholtz decomposition in Corollary 3.2,

eT −∇ẽΩ = Ψ+∇Φ+∇(ψ − eΩ),

we get

r((eT, eΩ)) = −
∫

Dc

jωµHs · (Ψ +∇Φ +∇(ψ − eΩ))

+

∫

De

jωµHs · ∇eΩ −
∫

Dc

1

σ
curlTh · curlΨ

−
∫

Dc

jωµ(Th −∇Ωh) · (Ψ +∇Φ +∇(ψ − eΩ))

−
∫

De

jωµ∇Ωh · ∇eΩ
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From (27) and (28), we get:

|r((eT, eΩ))| =

∣∣∣∣−
∫

Dc

jωµHs ·Ψ−
∫

D

jωµHs · ∇Φ̃ −
∫

D

jωµHs · ∇êΩ

−
∫

Dc

1

σ
curlTh · curlΨ−

∫

Dc

jωµ(Th −∇Ωh) ·Ψ

−
∫

Dc

jωµ(Th −∇Ωh) · ∇Φ̃−
∫

Dc

jωµ(Th −∇Ωh) · ∇êΩ

+

∫

De

jωµ∇Ωh · ∇êΩ +

∫

De

jωµ∇Ωh · ∇Φ̃

∣∣∣∣

Introducing the three Clément interpolation operators PCl, ICl and Ĩ0Cl, the or-
thogonality property from lemma 2.7 leads to:

|r((eT, eΩ))| =

∣∣∣∣−
∫

Dc

jωµHs ·Ψ− PCl Ψ−
∫

D

jωµHs · ∇(Φ̃− Ĩ0Cl Φ̃)

−
∫

D

jωµHs · ∇(êΩ − ICl êΩ)−
∫

Dc

1

σ
curlTh · curl(Ψ − PCl Ψ)

−
∫

Dc

jωµ(Th −∇Ωh) ·Ψ− PCl Ψ

−
∫

Dc

jωµ(Th −∇Ωh) · ∇(Φ̃− Ĩ0Cl Φ̃)

−
∫

Dc

jωµ(Th −∇Ωh) · ∇(êΩ − ICl êΩ)

+

∫

De

jωµ∇Ωh · ∇(êΩ − ICl êΩ) +

∫

De

jωµ∇Ωh · ∇(Φ̃− Ĩ0Cl Φ̃)

∣∣∣∣

Using Green’s formula on each tetrahedron and the continuous as well as discrete
Cauchy-Schwarz inequality, we obtain:

|r((eT, eΩ))|

.

( ∑

T∈Th∩Dc

η2T ;1

)1/2( ∑

T∈Th∩Dc

h−2
T ‖Ψ− PCl Ψ‖2T

)1/2

+

( ∑

T∈Th

η2T ;2

)1/2( ∑

T∈Th

h−2
T

∥∥∥Φ̃− Ĩ0Cl Φ̃
∥∥∥
2

T

)1/2

+

( ∑

T∈Th

η2T ;2

)1/2( ∑

T∈Th

h−2
T ‖êΩ − ICl êΩ‖2F

)1/2

+

( ∑

F∈F∩Dc

η2F ;1

)1/2( ∑

F∈F∩Dc

h−1
F ‖Ψ− PCl Ψ‖2F

)1/2

+

(∑

F∈F

η2F ;2

)1/2(∑

F∈F

h−1
F

∥∥∥Φ̃− Ĩ0Cl Φ̃
∥∥∥
2

F

)1/2

+

(∑

F∈F

η2F ;2

)1/2(∑

F∈F

h−1
F ‖êΩ − ICl êΩ‖2F

)1/2

Now, we deduce from inequalities (29) to (34) that :
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|r((eT, eΩ))|

.

( ∑

T∈Th∩Dc

η2T ;1

)1/2 ∥∥Ψ
∥∥
H1(Dc)

+

( ∑

T∈Th

η2T ;2

)1/2 ∥∥∇Φ̃
∥∥
L2(D)

+

( ∑

T∈Th

η2T ;2

)1/2 ∥∥∇êΩ
∥∥
L2(D)

+

( ∑

F∈F∩Dc

η2F ;1

)1/2 ∥∥Ψ
∥∥
H1(Dc)

+

(∑

F∈F

η2F ;2

)1/2 ∥∥∇Φ̃
∥∥
L2(D)

+

(∑

F∈F

η2F ;2

)1/2 ∥∥∇êΩ
∥∥
L2(D)

Theorem 3.2 yields:
∥∥Ψ
∥∥2
H1(Dc)

+
∥∥∇Φ̃

∥∥2
L2(D)

+
∥∥∇êΩ

∥∥2
L2(D)

.
∥∥eT −∇eΩ

∥∥2
L2(Dc)

+
∥∥∇eΩ

∥∥2
L2(De)

+
∥∥ curl eT

∥∥2
L2(Dc)

.
∥∥ω

1/2µ1/2

ω1/2µ1/2
(eT −∇eΩ)

∥∥2
L2(Dc)

+
∥∥ω

1/2µ1/2

ω1/2µ1/2
∇eΩ

∥∥2
L2(De)

+
∥∥σ

1/2

σ1/2
curl eT

∥∥2
L2(Dc)

.
1

ω min
T∈Dc

µT

∥∥ω1/2µ1/2(eT −∇eΩ)
∥∥2
L2(Dc)

+
1

ω min
T∈De

µT

∥∥ω1/2µ1/2∇eΩ
∥∥2
L2(De)

+ max
T∈Dc

σT
∥∥ 1

σ1/2
curleT

∥∥2
L2(Dc)

. Cup

(∫

Dc

1

σ

∣∣ curleT
∣∣2 +

∫

Dc

ωµ
∣∣eT −∇eΩ

∣∣2 +
∫

De

ωµ
∣∣∇eΩ

∣∣2
)1/2

where Cup = max





1

ω1/2 min
T∈D

µ
1/2
T

, max
T∈Dc

σ
1/2
T



 . �

5.4. Efficiency. Now, in order to derive the efficiency of our estimator, we have to
bound each part of the estimator by the local error. Reiterating, proofs are based
on the same kind of arguments than the ones given in A/ϕ formulation [7]. Due to
this reason, these proofs can not be recalled here.

Theorem 5.5. Let us define PT =
⋃

T ′∩T 6=∅

T ′, we have the efficiency of our esti-

mator:

ηT . CT,down(
∥∥∥σ−1/2 curl eT

∥∥∥
2

PT

+
∥∥∥ω1/2µ1/2(eT −∇eΩ)

∥∥∥
2

PT

+
∥∥∥ω1/2µ1/2∇eΩ

∥∥∥
2

PT

)1/2 + h.o.t,

with

CT,down = max
T ′∈PT

{
ω1/2µ

1/2
T ′ ,

1

σ
1/2
T ′

}
.

Proof. We have to bound each part of the estimator by a local error which is done
with the so-called bubble functions and inverse inequalities. We refer to [7] for the
details about the A/ϕ formulation. �

6. Numerical validation

In this section, a physical test is considered [10]. The computation model consists
of a coil between two symmetrical conductors shown in Figure 2 for five different
refined meshes. Here, we set µ = 4π 10−7 H/m and σ = 3.28 107Ω/m in the
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conductors. When a current is imposed in the coil, the eddy current Jec = curlT
is generated in the two conductor plates.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4 (e) Mesh 5

Figure 2. Domain and Mesh of the Problem.

To begin with, the value of the estimator η is displayed as a function of the
maximum diameter of the tetrahedra h corresponding to each mesh (see Figure 3).
It shows a good behavior of the estimator compared with the theoretically expected
results since it converges well towards zero.

−1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6
−1

−0.5

0

0.5

Log(h)
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g(

E
st

im
at

or
)

Log(Estimator)

Figure 3. Estimator versus h.

Now, in Figure 4 a unique given mesh in chosen to perform the following tests.
Let us note that the part of the mesh in the upper conductor is finer that the part
of the mesh in the lower one.
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Figure 4. Domain and Mesh of the Problem.

As shown in Figure 5(a) and 5(b), the real and the imaginary parts of the
eddy current vector field at the frequency of 50 Hz lies in the down surface of the
upper conductor plate. The eddy current resembles the physically expected one
qualitatively.

(a) Real part. (b) Imaginary part.

Figure 5. Top view of the eddy current at 50 Hz in the down
surface of the upper conductor plate.

As numerically expected, the error in the lower plate is larger than the one above,
as shown by the local estimators ηT maps in Figure 6(a) and 6(b).

At the end of this section, we want to underline the skin-effect phenomenon on
the above conductor plate. In normal cases, the skin depth δ is well approximated
as [15, p.504]:

δ =

√
2

ωµσ
.

As shown in Figure 7(a), 7(b) and 7(c), the estimator allows to detect the areas
of the domain where the mesh needs to be refined in order to track this skin-effect
phenomenon.
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0.000211491

0.000158642

0.000105794

5.29450e-05

9.62847e-08

ESTIMATEUR_DYNAMIQUE_REAL 0, -

(a) Upper plate

0.0176072

0.0132195

0.00883188

0.00444423

5.65668e-05

ESTIMATEUR_DYNAMIQUE_REAL 0, -

(b) Lower plate

Figure 6. Local estimator ηT maps in the two conductor plates
at frequency 50 Hz.

0.000211491

0.000158642

0.000105794

5.29450e-05

9.62847e-08

ESTIMATEUR_DYNAMIQUE_REAL 0, -

(a) 50 Hz.

0.00369202

0.00276904

0.00184605

0.000923065

8.03685e-08

ESTIMATEUR_DYNAMIQUE_REAL 0, -

(b) 500 Hz.

0.0656678

0.0492509

0.0328340

0.0164171

1.90604e-07

ESTIMATEUR_DYNAMIQUE_REAL 0, -

(c) 5000 Hz.

Figure 7. Local estimator ηT maps in the upper conductor plate.
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Possible extension

The referee of this paper suggested to treat the case where Dc is no more simply
connected, for which the variational formulation (14) is no more valid. For example,
in the case where Dc is a torus, the weak formulation of the problem is stated in
[13]. Unfortunately, we did not succeed in deriving the estimator in that case,
because Theorem 3.1 is no more applicable.
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