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AN OPTIMAL 9-POINT FINITE DIFFERENCE SCHEME

FOR THE HELMHOLTZ EQUATION WITH PML

ZHONGYING CHEN†, DONGSHENG CHENG†,WEI FENG† AND TINGTING WU ‡,†

Abstract. In this paper, we analyze the defect of the rotated 9-point finite difference scheme,
and present an optimal 9-point finite difference scheme for the Helmholtz equation with perfectly
matched layer (PML) in two dimensional domain. For this method, we give an error analysis
for the numerical wavenumber’s approximation of the exact wavenumber. Moreover, based on
minimizing the numerical dispersion, we propose global and refined choice strategies for choosing
optimal parameters of the 9-point finite difference scheme. Numerical experiments are given to

illustrate the improvement of the accuracy and the reduction of the numerical dispersion.
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1. Introduction

The Helmholtz equation

(1.1) −∆u− k2u = f,

governs wave propagations and scattering phenomena arising in many areas, for
example, in aeronautics, marine technology, geophysics and optical problems. In
practice, wave equation modeling in the frequency domain has many advantages
over time domain modeling. For example, for certain geometries, only a few frequen-
cy components are required to perform wave equation inversion and tomography.
Moreover, each frequency can be computed independently, which favors parallel
computing. Multiexperiment seismic data can also be simulated economically once
the impedance matrix is factored. In addition, modeling the effects of attenuation
is more flexible in the frequency domain than in the time domain, because in the
frequency domain we can directly input the attenuation coefficient as a function of
frequency.

To compute the solution of the above problem, due to finite memory of the com-
puter, absorbing boundary conditions are needed to truncate the infinite domain
into a finite domain, such as one-way approximation (cf. [6, 7, 10]), PML (cf.
[4, 5, 15, 26, 30, 31, 33]), and so on. In this paper, PML is used to truncate the
domain and absorb the outgoing waves. The technique of PML was proposed by
Bérenger in 1994 (see, [4]). PML has the astonishing property of generating almost
no reflection in theory at the interface between the interior medium (the interested
domain) and the artificial absorbing medium. The key idea of the PML technique
is to introduce an artificial layer with an attenuation parameter around the interior
area. The magnitude of the wave is attenuated in the layer while the phase of
the wave is conserved. After adding PML to the interior domain, we can impose
boundary conditions, like Dirichlet boundary condition, Robin boundary condition
and so on, on the outer boundary. Then we obtain a bounded boundary problem,
which is usually inverted but ill-conditioned. We refer the interested readers to the
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paper [30] for the solvability and the uniqueness for the Helmholtz equation with
PML.

For many years, finite difference methods (cf. [3, 11, 14, 16, 19, 24, 25, 26,
27, 32]) and finite element methods (cf. [1, 2, 8, 12, 17]) have been widely used
to discrete the Helmholtz equation (1.1). As is known to all, the solution of the
Helmholtz equation oscillates severely for large wavenumbers, and the quality of
the numerical results usually deteriorates as the wavenumber k increasing (cf. [1,
2, 8, 12, 17]). Hence, there is a growing interest in discretization methods where the
computational complexity increases only moderately with increasing wavenumber
(cf. [1, 12, 13, 19, 25]).

Finite-difference frequency-domain modeling for the generation of synthetic seis-
mograms and crosshole tomography has been an active field of research since the
1980s (see, [25]). Finite difference methods are easily implemented and its compu-
tational complexity is much less than that of finite element methods, although the
finite difference method’s accuracy is usually lower than that of the finite element
method. In addition, by optimizing the parameters in the finite difference formu-
las, we can easily minimize the numerical dispersion (see, [19, 25]). For accurate
modeling, the conventional 5-point finite difference scheme requires 10 gridpoints
per wavelength. Therefore, for the Helmholtz equation with large wavenumber-
s, the resulting matrix is very large and ill-conditioned. Usually, direct methods
do not perform well, and iterative methods with preconditioners are alterative (cf.
[9, 11, 32]). In 1996, Jo, Shin and Suh proposed the rotated 9-point finite dif-
ference scheme for the Helmholtz equation (see, [19]). The approach consists of
linearly combining the two discretizations of the second derivative operator on the
classical Cartesian coordinate system and the 45o rotated system. They also gave
a group of optimal parameters based on the normalized phase velocity. This op-
timal 9-point scheme reduces the number of gridpoints per wavelength to 5 while
preserving the accuracy of the conventional 5-point scheme with 10 gridpoints per
wavelength. Therefore, computer memory and CPU time are saved. In 1998, Shin
and Sohn extended the idea of the rotated 9-point scheme to the 25-point formula,
and they obtained a group of optimal parameters by the singular-value decomposi-
tion method (see, [25]). Furthermore, the 25-point formula reduces the number of
gridpoints per wavelength to 2. However, the resulting matrix’s bandwidth is much
wider than that of the 9-point scheme, and there are some difficulties when consid-
ering the absorbing conditions. To reduce the numerical error, higher-order finite
difference schemes (cf. [3, 26]) were also constructed and widely used. However,
to obtain higher-order accuracy, the higher-order schemes require the source term
to be smooth enough. Many the practical problems (cf. [22, 23]) are not the case.
On the other hand, though that the rotated difference scheme is a popular solver
for the Helmholtz equation, it is not a good choice for the Helmholtz equation with
PML. We shall illustrate this in detail in this paper.

This paper is organized as follows. In Section 2, we investigate the rotated 9-
point finite difference scheme and show that it is not pointwise consistent with the
Helmholtz equation with PML. In Section 3, we present a 9-point difference scheme
by using the approach suggested in [26], and prove that it is consistent with the
Helmholtz equation with PML and is a second order scheme. For this 9-point differ-
ence scheme, we then analyze the error between the numerical wavenumber and the
exact wavenumber, and propose global and refined choice strategies for choosing
optimal parameters of the scheme based on minimizing the numerical dispersion.
In Section 4, numerical experiments are given to demonstrate the efficiency of the
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scheme. We show that the scheme proposed in Section 3 improves the accuracy
and reduces the numerical dispersion significantly. Finally, Section 5 contains the
conclusions of this paper.

2. The Rotated 9-point Finite Difference Scheme for the Helmholtz E-

quation with PML

In this section, we investigate the rotated 9-point finite difference scheme for the
Helmholtz equation with PML.

We start with describing the Helmholtz equation with PML [26, 31]. Consider
the Helmholtz equation

∆u+ k2u = 0, in R
2,

where ∆ := ∂2/∂x2 + ∂2/∂y2 is the Laplacian, k is the wavenumber defined as
k := 2πf/v in which f and v represent the frequency and the velocity respectively,
and u is the unknown indicating the pressure of the wave field.

Applying PML technique to truncate the infinite domain into a bounded rect-
angular domain leads to the equation

∂

∂x

(

ey
ex

∂u

∂x

)

+
∂

∂y

(

ex
ey

∂u

∂y

)

+ exeyk
2u = 0,

where ex := 1 − iσx

ω
, ey := 1 − i

σy

ω
, in which ω := 2πf denotes the angular fre-

quency, σx and σy are usually chosen as a differentiable function only depending on
the variable x and y respectively for the end of reducing the numerical reflection.
Specially,

σx :=

{

2πa0f0

(

lx
LPML

)2

, inside PML,

0, outside PML,

where f0 is the dominant frequency of the source, LPML is the thickness of PML,
and lx is the distance from the point (x, y) inside PML and the interface between
the interior region and PML region. Moreover, a0 is a constant, and we choose
a0 = 1.79 according to the paper [33]. σy can be chosen similarly. Denote

A :=
ey
ex

, B :=
ex
ey

, and C := exey,

then we have

(2.1)
∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

B
∂u

∂y

)

+ Ck2u = 0.

Equation (2.1) can be seen as a general form of the Helmholtz equation (1.1) with
its corresponding PML, since in the interior domain, ex ≡ 1 and ey ≡ 1 lead to
A = B = C = 1. We call it the Helmholtz-PML equation. Here, we note that
Equation (2.1) is also valid for variable k(x, y) (see, [20, 21]).

We next study the rotated 9-point finite difference scheme (see, [19]). We
consider the network of grid points (xm, yn), where xm := x0 + (m − 1)h and
yn := y0 + (n− 1)h. Notice that the same step size h := ∆x = ∆y is used for both
variables x and y. Let um,n := u |x=xm,y=yn

represent the pressure of the wave
field at the location (xm, yn), and similarly let km,n := k |x=xm,y=yn

. The key idea
of the rotated 9-point scheme is to approximate ∆u by a second order centered
difference using both the 5-point 0o star and the 45o rotated star (see Figure 1(a)
and (b)):

∆u |x=xm,y=yn
≈ ∆hu |x=xm,y=yn

:= a∆h,0ou |x=xm,y=yn
(2.2)

+(1− a)∆h,45ou |x=xm,y=yn
,
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where

∆h,0ou |x=xm,y=yn
:=

1

h2
{um−1,n + um+1,n + um,n−1 + um,n+1 − 4um,n} ,

∆h,45ou |x=xm,y=yn
:=

1

2h2
{um−1,n+1+um+1,n−1+um−1,n−1+um+1,n+1−4um,n},

and a ∈ (0, 1] is a parameter.

x

y
y,

x,

45o

(a) (b)

Figure 1. (a) Conventional 0o five-point star, (b) 45o rotated star.

In order to approximate the term of zero order with 9 points, we let

Ih,0o
(

k2u
)

|x=xm,y=yn
:=

1

4

(

k2m−1,num−1,n + k2m+1,num+1,n

+k2m,n−1um,n−1 + k2m,n+1um,n+1

)

,

Ih,45o
(

k2u
)

|x=xm,y=yn
:=

1

4

(

k2m−1,n+1um−1,n+1 + k2m+1,n−1um+1,n−1

+k2m−1,n−1um−1,n−1 + k2m+1,n+1um+1,n+1

)

,

and approximate k2u |x=xm,y=yn
by a weighted average:

k2u |x=xm,y=yn
≈ Ih

(

k2u
)

|x=xm,y=yn
,

where

Ih
(

k2u
)

|x=xm,y=yn
:= ck2m,num,n + dIh,0o

(

k2u
)

|x=xm,y=yn
(2.3)

+eIh,45o
(

k2u
)

|x=xm,y=yn
,

in which c, d, e are parameters satisfying c+ d+ e = 1.
These yield the rotated 9-point difference approximation for the Helmholtz e-

quation as

(2.4) ∆hu |x=xm,y=yn
+Ih

(

k2u
)

|x=xm,y=yn
= 0.

Substituting (2.2) and (2.3) into equation (2.4) and replacing um+i,n+j with
Um+i,n+j (i, j ∈ Z2 := {−1, 0, 1}) give the rotated 9-point finite difference equation

(2.5)
R1Um−1,n−1 + R2Um,n−1 + R3Um+1,n−1

+ R4Um−1,n + R5Um,n + R6Um+1,n

+ R7Um−1,n+1 + R8Um,n+1 + R9Um+1,n+1 = 0,
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where the parameters are given by

R1 := 1−a
2h2 + e

4k
2
m−1,n−1, R2 := a

h2 + d
4k

2
m,n−1, R3 := 1−a

2h2 + e
4k

2
m+1,n−1,

R4 := a
h2 + d

4k
2
m−1,n, R5 := − 2(1+a)

h2 + ck2m,n, R6 := a
h2 + d

4k
2
m+1,n,

R7 := 1−a
2h2 + e

4k
2
m−1,n+1, R8 := a

h2 + d
4k

2
m,n+1, R9 := 1−a

2h2 + e
4k

2
m+1,n+1.

Note that Um,n is intended to approximate um,n, and the parameters a, c, d, e
should be chosen. It is clear that equation (2.5) is a second order difference scheme
of the Helmholtz equation (1.1) for arbitrary constants a, c, d and e, if a ∈ (0, 1]
and c, d, e satisfy the condition c+ d+ e = 1. The parameters can be optimized for
some purposes. Jo, Shin and Suh [19] provided a group of optimal parameters:

(2.6) a = 0.5461, d = 0.3752, e = −4.0000× 10−5.

The rotated 9-point finite difference equation (2.5) with parameters (2.6) is a good
scheme for the Helmholtz equation, its numerical dispersion is very small than that
of the conventional 5-point scheme (see, [19]).

To develop the rotated 9-point difference scheme for solving the Helmholtz-PML
equation (2.1), we let

Am+ i
2
,n+ j

2

:= A(x0 + (m− 1 + i
2 )∆x, y0 + (n− 1 + j

2 )∆y),

Bm+ i
2
,n+ j

2

:= B(x0 + (m− 1 + i
2 )∆x, y0 + (n− 1 + j

2 )∆y),

Cm,n := C(x0 + (m− 1)∆x, y0 + (n− 1)∆y),

for i, j ∈ Z3 : = {−2,−1, 0, 1, 2}. According to the construction of the rotated
9-point difference method we define

Lhu |x=xm,y=yn
:= aLh,0ou |x=xm,y=yn

+(1− a)Lh,45ou |x=xm,y=yn
,

where

Lh,0ou |x=xm,y=yn
(2.7)

:=
1

h

{(

Am+ 1

2
,n

um+1,n − um,n

h
−Am− 1

2
,n

um,n − um−1,n

h

)

+
(

Bm,n+ 1

2

um,n+1 − um,n

h
−Bm,n− 1

2

um,n − um,n−1

h

)}

,

Lh,45ou |x=xm,y=yn
(2.8)

:=
1√
2h

{(

Am+ 1

2
,n− 1

2

um+1,n−1 − um,n√
2h

−Am− 1

2
,n+ 1

2

um,n − um−1,n+1√
2h

)

+
(

Bm+ 1

2
,n+ 1

2

um+1,n+1 − um,n√
2h

−Bm− 1

2
,n− 1

2

um,n − um−1,n−1√
2h

)}

,

and approximate the first two terms of the left hand side of (2.1) as
[ ∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

B
∂u

∂y

)]

x=xm,y=yn

≈ Lhu |x=xm,y=yn
.

Moreover,
(

k2Cu
)

|x=xm,y=yn
is approximated by

Ĩh
(

k2u
)

|x=xm,y=yn
:= Ih(k2Cu) |x=xm,y=yn

.(2.9)

These yield the rotated 9-point difference approximation for the Helmholtz-PML
equation (2.1) as

(2.10) Lhu |x=xm,y=yn
+Ĩh

(

k2u
)

|x=xm,y=yn
= 0.

To analyze this difference approximation, we introduce the concept of consistency
(see, [28]).
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Definition 2.1. Suppose that the partial differential equation under consideration
is Lu = f and the corresponding finite difference approximation is Lm,nUm,n =
Fm,n where Fm,n denotes whatever approximation which has been made of the source
term f . Let (xm, yn) := (x0 + (m − 1)∆x, y0 + (n − 1)∆y). The finite difference
scheme Lm,nUm,n = Fm,n is pointwise consistent with the partial differential equa-
tion Lu = f at (x, y) if for any smooth function φ = φ(x, y),

(2.11) (Lφ − f) |x=xm,y=yn
−[Lm,nφ(xm, yn)− Fm,n] → 0

as ∆x,∆y → 0 and (xm, yn) → (x, y).

For the rotated 9-point finite difference approximation (2.10) of the Helmholtz-
PML equation (2.1), we have the following proposition.

Proposition 2.2. The rotated 9-point finite difference approximation (2.10) is not
pointwise consistent with the Helmholtz-PML equation (2.1).

Proof. Assume that xm ≤ x < xm+1 and yn ≤ y < yn+1. It follows from (2.7),
(2.8) and the Taylor theorem that

Lh,0ou |x=xm,y=yn
=

∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

B
∂u

∂y

)

+ µ1h
2 +O(h3),(2.12)

Lh,45ou |x=xm,y=yn
=

1

2

{( ∂

∂x
− ∂

∂y

)(

A
( ∂

∂x
− ∂

∂y

)

u
)

(2.13)

+
( ∂

∂x
+

∂

∂y

)(

B
( ∂

∂x
+

∂

∂y

)

u
)}

+ µ2h
2 +O(h3),

where

µ1 :=
1

24

{ ∂3

∂x3

(

A
∂u

∂x

)

+
∂

∂x

(

A
∂3u

∂x3

)

+
∂3

∂y3

(

B
∂u

∂y

)

+
∂

∂y

(

B
∂3u

∂y3

)}

,

µ2 :=
1

48

{( ∂

∂x
− ∂

∂y

)3(

A
( ∂

∂x
− ∂

∂y

)

u
)

+
( ∂

∂x
− ∂

∂y

)(

A
( ∂

∂x
− ∂

∂y

)3

u
)

+
( ∂

∂x
+

∂

∂y

)3(

B
( ∂

∂x
+

∂

∂y

)

u
)

+
( ∂

∂x
+

∂

∂y

)(

B
( ∂

∂x
+

∂

∂y

)3

u
)}

.

Similarly we have

(2.14) Ĩh
(

k2u
)

= k2Cu+ µ3h
2 +O(h4),

where

µ3 :=
1

4
(d+ 2e)

( ∂2

∂x2
(k2Cu) +

∂2

∂y2
(k2Cu)

)

.

Combining equations (2.12) − (2.14) yields that the left hand side of the rotated
9-point finite difference approximation (2.10) is equivalent to

a
[ ∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

B
∂u

∂y

)]

+
1− a

2

[ ∂

∂x

(

(A+B)
∂u

∂x

)

+
∂

∂y

(

(A+B)
∂u

∂y

)

+
∂

∂x

(

(B − A)
∂u

∂y

)

+
∂

∂y

(

(B −A)
∂u

∂x

)]

+ k2Cu+ ζh2 +O(h3),

where ζ := aµ1 + (1− a)µ2 + µ3.
In order to verify this proposition, we need to recall the construction of PML

in Section 2. From the PML’s formulation, we know that there exists some area
satisfying ey ≡ 1 and ex 6= 1. Hence, in such area there hold A = 1

ex
, B = ex and
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C = ex. Combining the above analysis for the rotated 9-point finite difference ap-
proximation (2.10), we have that in this area the left hand side of the approximation
(2.10) is equivalent to

a
[ ∂

∂x

( 1

ex

∂u

∂x

)

+
∂

∂y

(

ex
∂u

∂y

)]

+
1− a

2

[ ∂

∂x

(

(
1

ex
+ ex)

∂u

∂x

)

+
∂

∂y

(

(
1

ex
+ ex)

∂u

∂y

)

+

(

ex − 1

ex

)

( ∂2u

∂x∂y
+

∂2u

∂y∂x

)

+
∂

∂x

(

ex − 1

ex

)

∂u

∂y

]

+ k2exu+ ζh2 +O(h3).

As there exist the terms ∂2u
∂x∂y

+ ∂2u
∂y∂x

and ∂u
∂y

, we have the conclusion of this propo-

sition for the area which satisfy both ey ≡ 1 and ex 6= 1. Similar results can be
obtained almost everywhere in PML. Therefore, we come to the conclusion of this
proposition. �

The above proposition tells us that the rotated 9-point finite difference scheme
is not pointwise consistent with the Helmholtz-PML equation. As the convergence
of the finite difference scheme requires that the finite difference scheme should be
consistent with the Helmholtz-PML equation, the rotated 9-point finite difference
approximation to the Helmholtz-PML equation is not good enough.

3. An Optimal 9-point Finite Difference Scheme for the Helmholtz E-

quation with PML

In this section, we firstly propose a 9-point finite difference scheme which is
consistent with the Helmholtz-PML equation. We then analyze the error between
the numerical wavenumber and the exact wavenumber, and present global and
refined optimization rules for choosing the parameters of the finite difference scheme
such that the numerical dispersion is minimized well. Finally we generalize the
scheme to the case that different step sizes are used for different variables.

3.1. A Consistent 9-point Difference Scheme. To find a consistent 9-point
difference scheme for the Helmholtz equation with PML, we follow the approach
of constructing finite difference scheme in [26], which was used for the Helmholtz
equation with PML in a semi-infinite two-dimensional strip. Here, we note that,
compared with the rotated 9-point finite difference scheme, this method is more
easily extended to the case of different step sizes for different variables, and to the
case of the Helmholtz-PML equation in three dimension domain.

We let

Lh,xu |(m,n+j)(3.1)

:=
Am+ 1

2
,n+j(um+1,n+j − um,n+j)−Am− 1

2
,n+j(um,n+j − um−1,n+j)

h2
,

for j ∈ Z2, and define

L̃h,xu |x=xm,y=yn
:= bLh,xu |(m,n) +

1− b

2

(

Lh,xu |(m,n−1) +Lh,xu |(m,n+1)

)

,

where b ∈ (0, 1] is a constant. Then we approximate the first term of the left hand
side of (2.1) as

∂

∂x

(

A
∂u

∂x

)

|x=xm,y=yn
≈ L̃h,xu |x=xm,y=yn

.

We deal with the approximation of the second term in a similar way, that is,

∂

∂y

(

B
∂u

∂y

)

|x=xm,y=yn
≈ L̃h,yu |x=xm,y=yn

.
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Let L̃h := L̃h,x + L̃h,y. We obtain the following 9-point finite difference approx-
imation for the Helmholtz-PML equation (2.1)

(3.2) L̃hu |x=xm,y=yn
+Ĩh

(

k2u
)

|x=xm,y=yn
= 0.

The next proposition presents the convergence analysis for the 9-point difference
scheme (3.2).

Proposition 3.1. If b ∈ (0, 1] and c+ d+ e = 1, then the 9-point finite difference
approximation (3.2) is pointwise consistent with the Helmholtz-PML equation (2.1)
and is a second order scheme.

Proof. Assume that xm ≤ x < xm+1 and yn ≤ y < yn+1. It follows from the Taylor
theorem that

(3.3)
[ ∂

∂x

(

A
∂u

∂x

)]

|x=xm,y=yn
=

∂

∂x

(

A
∂u

∂x

)

+ ν1h
2 +O(h4),

and

(3.4)
[ ∂

∂y

(

B
∂u

∂y

)]

|x=xm,y=yn
=

∂

∂y

(

B
∂u

∂y

)

+ ν2h
2 +O(h4),

where

ν1 :=
1

24

[ ∂3

∂x3

(

A
∂u

∂x

)

+
∂

∂x

(

A
∂3u

∂x3

)

+ 12(1− b)
∂3

∂y2∂x

(

A
∂u

∂x

)]

,

ν2 :=
1

24

[ ∂3

∂y3

(

B
∂u

∂y

)

+
∂

∂y

(

B
∂3u

∂y3

)

+ 12(1− b)
∂3

∂x2∂y

(

B
∂u

∂y

)]

.

We recall the Taylor expansion of Ĩh
(

k2u
)

, which is given in the equation (2.14),
and then revisit the expression of the coefficient µ3 introduced in the middle of the
proof of Proposition 2.2. Therefore, together with equations (3.3) and (3.4), we
have that the left hand side of the 9-point finite difference approximation (3.2) is
equivalent to

(3.5)
∂

∂x

(

A
∂u

∂x

)

+
∂

∂y

(

B
∂u

∂y

)

+ k2Cu+ ηh2 +O(h4),

where η := ν1 + ν2 + µ3. From (3.5) and (2.1) we conclude the results of this
proposition. �

From the proposition above, we see that the 9-point finite difference scheme (3.2)
is a second order scheme for arbitrary constants b, c, d and e, under the conditions
b ∈ (0, 1] and c+ d+ e = 1. A further observation yields the following proposition.

Proposition 3.2. In the interior area, the rotated 9-point difference scheme (2.4)
and the 9-point difference scheme (3.2) are equivalent if a = 2b− 1.

Proof. In the interior area, A = B = C = 1, thus the 9-point difference scheme
(3.2) becomes

(3.6)
T1Um−1,n−1 + T2Um,n−1 + T3Um+1,n−1

+ T4Um−1,n + T5Um,n + T6Um+1,n

+ T7Um−1,n+1 + T8Um,n+1 + T9Um+1,n+1 = 0,

in which the coefficients are given by

T1 := 1−b
h2 + e

4k
2
m−1,n−1, T2 :=

2b−1
h2 + d

4k
2
m,n−1, T3 := 1−b

h2 + e
4k

2
m+1,n−1,

T4 := 2b−1
h2 + d

4k
2
m−1,n, T5 := − 4b

h2 + (1 − d− e)k2m,n, T6 := 2b−1
h2 + d

4k
2
m+1,n,

T7 := 1−b
h2 + e

4k
2
m−1,n+1, T8 :=

2b−1
h2 + d

4k
2
m,n+1, T9 := 1−b

h2 + e
4k

2
m+1,n+1.
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Comparing the parameters of (2.5) and (3.6) leads to the result of this proposition.
�

3.2. Choice Strategies for Optimal Parameters of the Finite Difference

Scheme. Since the solution of the Helmholtz equation is oscillating seriously for
large wavenumbers, to measure the property of a finite difference scheme, only the
convergence order is not enough. In fact, the accuracy of the numerical solution
deteriorates with increasing wavenumber k. The phenomenon is the so-called ‘pol-
lution effect’. As the result of the ‘pollution’, the wavenumber of the numerical
solution is different from the wavenumber of the exact solution, and this is what is
called ‘numerical dispersion’ (see, [17, 18]). Therefore, to minimize the ‘numerical
dispersion’ is to minimize the error between the numerical wavenumber and the
exact wavenumber. If the difference scheme has optimal convergence order, and
the parameters are chosen such that the scheme has minimal numerical dispersion
in the interior area, then we regard it as an optimal scheme for the Helmholtz-PML
equation (see, [24]).

To optimize the 9-point scheme (3.2), we first perform classical dispersion anal-
ysis by assuming a plane-wave solution of the form U(x, y) = e−ik(x cos θ+y sin θ),
where θ is the propagation angle from the y-axis. The following analysis is based
on the assumption that the wavenumber k is a positive constant. Moreover, let
v be the velocity of propagation, λ be the wavelength, and G be the number of
gridpoints per wavelength, that is, G = λ

h
. Since λ = 2πv

ω
and k = ω

v
, we have

kh = 2π
G
. Also, denote

P := cos(kh cos θ) = cos
(2π

G
cos θ

)

and Q := cos(kh sin θ) = cos
(2π

G
sin θ

)

.

We firstly presents the relationship between
(

kN
)2

and k2, where kN represents

the numerical wavenumber. Substituting Um,n := e−ik(xm cos θ+yn sin θ) into the

equation (3.6), dividing both sides by the factor e−ik(xm cos θ+yn sin θ) and finally
applying the Euler formula eix = cosx+ i sinx lead to the following equation

2Tc

(

cos(kh sin θ + kh cos θ) + cos(kh sin θ − kh cos θ)
)

(3.7)

+2Ts

(

cos(kh cos θ) + cos(kh sin θ)
)

+ To = 0,

where

Tc =
1− b

h2
+

e

4
k2, Ts =

2b− 1

h2
+

d

4
k2, To = − 4b

h2
+ (1 − d− e)k2.

By replacing the variable k in the parameters To, Ts, Tc with kN in equation (3.7),
we obtain that

kN =
1

h

√

4b+ 2(1− 2b)(P +Q) + 4(b− 1)PQ

(1− d− e) + d
2 (P +Q) + ePQ

.(3.8)

The next proposition presents the error between the numerical wavenumber kN and
the exact wavenumber k for the finite difference scheme (3.2).

Proposition 3.3. For the 9-point finite difference scheme (3.2), there holds

kN = k +

[

d

8
+

e

4
− 1

24
+ (

b

8
− 5

48
) sin2(2θ)

]

k3h2 +O(k4h3), kh → 0.(3.9)
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Proof. Let τ := kh. Therefore, both P and Q in equation (3.8) depend on τ and
θ, that is, P (τ) = cos(τ cos θ), Q(τ) = cos(τ sin θ). In addition, denote

f1(τ) = 4b+ 2(1− 2b) [P (τ) +Q(τ)] + 4(b− 1)P (τ)Q(τ),

f2(τ) = (1− d− e) +
d

2
[P (τ) +Q(τ)] + eP (τ)Q(τ).

Applying Taylor expansions for f1(τ) and
1

f2(τ)
at the point τ = 0, we have

f1(τ) = τ2 +
1

12

{

2(b− 1) + (1− 2b)
[

(cos θ)4 + (sin θ)4
]

(3.10)

+8(b− 1)(cos θ sin θ)2
}

τ4 +O(τ5),

1

f2(τ)
= 1 +

(

d

4
+

e

2

)

τ2 +O(τ3).(3.11)

In addition, from the equation (3.8), we have

(

kNh
)2

=
f1(τ)

f2(τ)
.

Together with equations (3.10) and (3.11), we obtain

(

kN
)2

= k2 +

[

d

4
+

e

2
− 1

12
+ (

b

4
− 5

24
) sin2(2θ)

]

k4h2 +O(k5h3), kh → 0.

Based on the above equation, applying the Taylor expansion of the function
√
1 + τ

at the point τ = 0 yields the conclusion of this proposition. �

The above proposition indicates that kN approximates k in a second order. More-
over, the term associated with k3h2 presents the pollution effect, which depends
on the wavenumber k, the parameters of the finite difference formula (3.2) and the
wave’s propagation angle θ from the y-axis.

We next present the relationship of the numerical wavenumber kN and the exact
wavenumber k. Since h = 2π

Gk
, we conclude that

(3.12)
kN

k
=

G

2π

√

4b+ 2(1− 2b)(P +Q) + 4(b− 1)PQ

(1− d− e) + d
2 (P +Q) + ePQ

.

Finally, we choose optimal parameters b, d and e by minimizing the numerical
dispersion. To do this, we set

(3.13) J(b, d, e;G, θ) :=
G

2π

√

4b+ 2(1− 2b)(P +Q) + 4(b− 1)PQ

(1− d− e) + d
2 (P +Q) + ePQ

− 1

for (b, d, e) ∈ (0, 1] × R
2 and (G, θ) ∈ IG × Iθ, where IG and Iθ are two intervals.

In general, one can choose Iθ := [0, π
2 ] and IG := [Gmin, Gmax] = [4, 400] (see,

[25]). We remark that the interval
[

0, π2
]

can be replaced by
[

0, π4
]

because of the
symmetry, and Gmin ≥ 2 based on the Nyquist sampling limit (see, [25]).

It follows from (3.12) that minimizing the error between the numerical wavenum-
ber kN and the exact wavenumber k is equivalent to minimizing the norm ‖J(b, d, e; ·, ·)‖∞,IG×Iθ ,
which can be formulated as the following rule for the choice of parameters b, d and
e.

Rule 3.4. (Global choice strategy)
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Given intervals Iθ := [0, π2 ] and IG := [4, 400], choose (b, d, e) ∈ (0, 1]× R
2 such

that

(3.14) (b, d, e) = arg min{‖J(b, d, e; ·, ·)‖∞,IG×Iθ : (b, d, e) ∈ (0, 1]× R
2},

which means (b, d, e) is a point in (0, 1]×R
2 to minimize the norm ‖J(b, d, e; ·, ·)‖∞,IG×Iθ .

We next remark on the dispersion equation (3.12) by using the physical meaning
of the phase velocity and the group velocity. We consider 1-D scalar wave equation
(see, [29])

utt − v2uxx = 0,

in which v is a positive constant. This equation admits solutions of the form

(3.15) u(x, t) = ei(ωt−kx),

where ω and k satisfy the relation

(3.16) ω2 = v2k2,

which is called the dispersion relation for the differential equation. Now, it is
obvious that (3.15) propagates rightward with t at the speed

(3.17) Vph =
ω

k
,

which is called the phase velocity. Energy associated with wavenumber k moves
asymptotically at the group velocity (cf. [29])

(3.18) Vgr =
∂ω

∂k
.

Therefore, in a homogeneous, isotropic continuum, there is no dispersion for the
exact solution. Waves travel at the phase velocity Vph = ω

k
= v, and energy

propagates at the group velocity Vgr = ∂ω
∂k

= v. Note that k = 2π
Gh

. If we regard

the numerical phase velocity and group velocity as V N
ph := ωN

k
and V N

gr := ∂ωN

∂k

respectively, then we have that

(3.19)
V N
ph

v
=

kN

k
,

and

V N
gr

v
=

∂ωN

∂k

v
=

∂(kNv)
∂k

v
=

∂kN

∂k
.

They are the so-called normalized numerical phase velocity and group velocity
respectively (see, [19, 25]). Moreover, by simple computation,

V N
gr

v
=

v

V N
ph

G

4π

E

[(1− d− e) + d
2 (P +Q) + ePQ]2

,

where

E := − [2(1− 2b)R+ 4(b− 1)W ]L+H

(

d

2
R+ eW

)

,

L := (1 − d− e) +
d

2
(P +Q) + ePQ,

H := 4b+ 2(1− 2b)(P +Q) + 4(b− 1)PQ,

R := cos θ sin(
2π

G
cos θ) + sin θ sin(

2π

G
sin θ),

W := cos θ sin(
2π

G
cos θ) cos(

2π

G
sin θ) + sin θ cos(

2π

G
cos θ) sin(

2π

G
sin θ).
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According to the above discussion we have the following remark.

Remark 3.5. If we define the numerical angular frequency and the numerical phase

velocity by ωN := kNv and V N
ph := ωN

k
respectively, then there holds (3.19), which

implies that minimizing the error between the numerical wavenumber kN and the
exact wavenumber k is equivalent to minimizing the error between normalized nu-

merical phase velocity
V N
ph

v
and one.

To implement Rule 3.4, we solve (3.14) numerically by using the least-squares
method. To do this, we first set J(b, d, e;G, θ) = 0, which yields the equation

G2

4π2

4b+ 2(1− 2b)(P +Q) + 4(b− 1)PQ

(1− d− e) + d
2 (P +Q) + ePQ

= 1.

Thus, we have that

2G2(1− P −Q+ PQ)b+ π2(2− P −Q)d+ 2π2(1 − PQ)e(3.20)

= 2π2 +G2(2PQ− P −Q).

Note that P andQ are functions ofG and θ. We choose θ = θm = (m−1)π
4(l−1) ∈ Iθ, m =

1, 2, . . . , l, and 1
G

= 1
Gn

= 1
Gmax

+(n− 1)
1

Gmin
− 1

Gmax

r−1 ∈ [ 1
Gmax

, 1
Gmin

], n = 1, 2, . . . , r.

Then, equation (3.20) leads to the linear system

(3.21)



























S1
1,1 S2

1,1 S3
1,1

...
...

...
S1
1,r S2

1,r S3
1,r

...
...

...
S1
m,n S2

m,n S3
m,n

...
...

...
S1
l,r S2

l,r S3
l,r































b
d
e



 =



























S4
1,1
...

S4
1,r
...

S4
m,n

...
S4
l,r



























,

where

S1
m,n := 2G2

n

[

1− cos
( 2π

Gn

cos θm

)

− cos
( 2π

Gn

sin θm

)

+cos
( 2π

Gn

cos θm

)

cos
( 2π

Gn

sin θm

)]

,

S2
m,n := π2

[

2− cos
( 2π

Gn

cos θm

)

− cos
( 2π

Gn

sin θm

)

]

,

S3
m,n := 2π2

[

1− cos
( 2π

Gn

cos θm

)

cos
( 2π

Gn

sin θm

)

]

,

S4
m,n := 2π2 +G2

n

[

2 cos
( 2π

Gn

cos θm

)

cos
( 2π

Gn

sin θm

)

− cos
( 2π

Gn

cos θm

)

− cos
( 2π

Gn

sin θm

)]

.

The coefficient matrix of (3.21) has l× r rows and 3 columns, thus it is an over-
determined system. Following the paper [25], by choosing l = 10, r = 100, and
using the least-squares method to solve (3.21), we obtain the optimal parameters
for difference scheme (3.2):

(3.22) b = 0.7926, d = 0.3768, e = −0.0064.
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We call the difference scheme (3.2) with parameters (3.22) as the global optimal
9-point scheme for the Helmholtz-PML equation (or simply the global 9p).

We remark that the above method was used in [25] for choosing optimal pa-
rameters of the 25-point finite difference scheme, while the rotated 9-point finite
difference scheme proposed in [19] used the L2-norm of the residual, that is

∫∫

[V N
ph

v
− 1

]2

dGdθ.

In practical computation, parameters provided in (3.22) seems much better than
that obtained by using the L2-norm, especially for large wavenumbers.

We observe that optimal parameters obtained by Rule 3.4 are roughly chosen.
Only one group of parameters is obtained and used to the computation for different
frequencies, velocities and step sizes. This may yield much numerical dispersion for
large wavenumbers and variable k(x, y) (see examples in Section 4). To reduce the
numerical dispersion and improve the accuracy of the difference scheme, we propose
the following rule.

Rule 3.6. (Refined choice strategy)
Step 1. Estimate the interval IG := [Gmin, Gmax].
Step 2. Choose (b, d, e) ∈ (0, 1]× R

2 such that

(3.23) (b, d, e) = arg min{‖J(b, d, e; ·, ·)‖∞,IG×Iθ : (b, d, e) ∈ (0, 1]× R
2}.

In general, we can estimate IG by using a priori information before choosing
parameters. For example, if the frequency f ∈ [fmin, fmax] and the velocity v ∈
[vmin, vmax] then for a given step size h we have Gmin := vmin

hfmax

and Gmax := vmax

hfmin

.

As a result, we shall obtain a group of appropriate parameters for the difference
scheme, which is much better than that obtained from the global choice strategy
Rule 3.4.

In the following table, we present some groups of refined optimal parameters.

Table 1. Refined optimal parameters

IG [2.5,3] [3,4] [4,5] [5,6] [6,8] [8,10] [10,400]
b 0.6803 0.7427 0.7840 0.8020 0.8133 0.8219 0.8271
d 0.4444 0.4088 0.3832 0.3712 0.3637 0.3578 0.3540
e 0.0008 -0.0036 -0.0060 -0.0072 -0.0075 -0.0078 -0.0080

Figure 2 shows the normalized phase and group velocity curves for the rotated
9-point difference scheme (2.5) with parameters (2.6) (denoted, in short, by rotat-
ed 9p), the 9-point difference scheme (3.2) with global optimal parameters (3.22)
(global 9p) and above refined optimal parameters (refined 9p), respectively. In
each picture of Figure 2, we plot five curves: one is for y = 1, the other four are
normalized phase velocity curves or normalized group velocity curves for different
propagation angles from the y-axis which include 0o, 15o, 30o and 45o. We can
see that the global 9p has some improvement compared with the rotated 9p, while
the refined 9p has much less numerical dispersion than both the rotated 9p and
the global 9p. In Figure 2 (b)-(d)-(f), the improvement seems not very clearly,
because the optimal parameters are obtained by minimizing the error between the
normalized phase velocity and 1, not based on the normalized group velocity (cf.
[25]). In addition, as we adopt different optimal parameters for different intervals
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IG, the lines for the refined 9p are not smooth enough (see, Figure 2 (e)-(f)). In
the next section, numerical experiments will present to compare the accuracies of
these schemes.
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Figure 2. (a) Normalized phase velocity curve for the rotated
9p, (b) Normalized group velocity curve for the rotated 9p, (c)
Normalized phase velocity curve for the global 9p, (d) Normalized
group velocity curve for the global 9p, (e) Normalized phase veloc-
ity curve for the refined 9p, (f) Normalized group velocity curve
for the refined 9p.

3.3. A Generalization. In practical applications, we usually need to use different
step sizes ∆x and ∆y for variables x and y respectively. In this subsection, we



AN OPTIMAL 9-POINT FD FOR THE HELMHOLTZ EQUATION WITH PML 403

generalize the 9-point scheme (3.2) to this case and show how to optimize the
corresponding parameters.

We denote

L∆x,xu |(m,n+j)(3.24)

:=
Am+ 1

2
,n+j(um+1,n+j − um,n+j)−Am− 1

2
,n+j(um,n+j − um−1,n+j)

(∆x)
2 ,

for j ∈ Z2, and define

L̃∆x,xu |x=xm,y=yn
:= bL∆x,xu |(m,n) +

1− b

2

(

L∆x,xu |(m,n−1) +L∆x,xu |(m,n+1)

)

,

where b ∈ (0, 1] is a constant. Then the first term of the left hand side of (2.1) is
approximated as

∂

∂x

(

A
∂u

∂x

)

|x=xm,y=yn
≈ L̃∆x,xu |x=xm,y=yn

.

The approximation of the second term is dealt with in a similar way, that is,

∂

∂y

(

B
∂u

∂y

)

|x=xm,y=yn
≈ L̃∆y,yu |x=xm,y=yn

.

Let L̃∆x,∆y := L̃∆x,x + L̃∆y,y. We obtain the following 9-point finite difference
approximation for the Helmholtz-PML equation (2.1)

(3.25) L̃∆x,∆yu |x=xm,y=yn
+Ĩh

(

k2u
)

|x=xm,y=yn
= 0.

Remark 3.7. If c + d + e = 1, then the 9-point finite difference approximation
(3.25) is consistent with Helmholtz-PML equation (2.1).

When ∆x = h, ∆y = γh (γ is a positive constant), performing classical disper-
sion analysis to the finite difference method (3.25) yields

(3.26) kN =
1

h

√

W̃

L̃
,

where

W̃ := 2b
(

1 + 1
γ2

)

+ 2
[

1− b
(

1 + 1
γ2

)]

P̃ + 2
(

1−b
γ2 − b

)

Q̃+ 2(b− 1)
(

1 + 1
γ2

)

P̃ Q̃,

L̃ := (1− d− e) + d
2

(

P̃ + Q̃
)

+ eP̃ Q̃,

in which

P̃ := cos (γkh cos θ) = cos

(

γ
2π

G
cos θ

)

, Q̃ := cos (kh sin θ) = cos

(

2π

G
sin θ

)

.

As h = 2π
Gk

, we conclude that

(3.27)
kN

k
=

G

2π

√

W̃

L̃
.

Similarly as before, we choose optimal parameters b, d and e by minimizing the
numerical dispersion. To do this, we define the functional

(3.28) Jγ(b, d, e;G, θ) :=
G

2π

√

W̃

L̃
− 1.

It follows from (3.27) that minimizing the error between the numerical wavenum-
ber kN and the exact wavenumber k is equivalent to minimizing the norm ‖Jγ(b, d, e; ·, ·)‖∞,IG,Iθ .
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The corresponding refined choice strategy can be obtained by replacing ‖J(b, d, e; ·, ·)‖∞,IG×Iθ

in Rule 3.6 with ‖Jγ(b, d, e; ·, ·)‖∞,IG×Iθ .

Rule 3.8. (Refined choice strategy II)
Step 1. Estimate the interval IG := [Gmin, Gmax].
Step 2. Choose (b, d, e) ∈ (0, 1]× R

2 such that

(3.29) (b, d, e) = arg min{‖Jγ(b, d, e; ·, ·)‖∞,IG×Iθ : (b, d, e) ∈ (0, 1]× R
2}.

To implement Rule 3.8, we set Jγ(b, d, e;G, θ) = 0 to obtain the equation

G2

(

1 +
1

γ2

)

(

1− P̃ − Q̃+ P̃ Q̃
)

b + π2
(

2− P̃ − Q̃
)

d+ 2π2
(

1− P̃ Q̃
)

e(3.30)

= 2π2 +G2

[(

1 +
1

γ2

)

P̃ Q̃ − P̃ − 1

γ2
Q̃

]

.

Dealing with the equation (3.30) as we did with the equation (3.20) yields the
refined optimal parameters for the finite difference scheme (3.25).

For the convenience of analysis, we also present the normalized numerical phase
velocity and group velocity here. The normalized numerical phase velocity is

(3.31)
V N
ph

v
=

kN

k
,

and the normalized numerical group velocity is

(3.32)
V N
gr

v
=

v

V N
ph

G

4π

K̃

L̃2
,

where

K̃ := H̃L̃− W̃

[

e
(

ẼQ̃+ P̃ F̃
)

+
d

2

(

Ẽ + F̃
)

]

,

in which

H̃ := 2(b− 1)
(

1 + 1
γ2

)(

ẼQ̃ + P̃ F̃
)

+ 2
[

1− b
(

1 + 1
γ2

)]

Ẽ + 2
(

1−b
γ2 − b

)

F̃ ,

Ẽ := −γ cos θ sin
(

γ 2π
G

cos θ
)

, F̃ := − sin θ sin
(

2π
G

sin θ
)

.

4. Numerical Experiments

In this section, we present two numerical experiments to illustrate the efficiency
of the schemes described in the last section. All the experiments are performed
with Matlab 7v on an Intel Xeon (8-core) with 3.33GHz and 96Gb RAM.

4.1. An Numerical Example for the Helmholtz Equation. Consider the
Helmholtz equation

(4.1) −∆u− k2u = 0, in Ω : = (0, 1)× (0, 1),

with boundary conditions

(4.2) iku+
∂u

∂n
= g, on Γ : = ∂Ω.

The function g depends on the parameter θ and is given by

g(x) =















i(k − k2)e
ik1x1 , if x ∈ Γ1 : = (0, 1)× (0, 0),

i(k + k1)e
i(k1+k2x2), if x ∈ Γ2 : = (1, 1)× (0, 1),

i(k + k2)e
i(k1x1+k2), if x ∈ Γ3 : = (1, 0)× (1, 1),

i(k − k1)e
ik2x2 , if x ∈ Γ4 : = (0, 0)× (1, 0),
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with (k1, k2) = k(cos θ, sin θ). The exact solution of this problem is

u(x) : = ei(k1x1+k2x2).

This problem was used for measuring the efficiency of numerical methods in [1].
We use it to measure the accuracy for four different schemes, including the con-
ventional 5-point scheme (5p), the rotated 9p, the global 9p and the refined 9p.
The error is measured in C-norm, which is defined as: for any complex vector
z = [z1, z2, . . . , zM ],

‖z‖C := max
1≤j≤M

|zj|,

where |zj | is the complex modulus of zj . The parameters in Table 1 are used as
refined optimal parameters.

Tables 2, 3 and 4 show the error in the C-norm for different schemes with different
gridpointsN per line for the case θ = π

4 with k = 30, 200 and 500 respectively. From
these tables we see that there are significant improvements of the accuracy one by
one, and all of the four schemes are second order formulas. Among three 9-point
schemes, the refined 9p improves the accuracy most prominently, especially for
large wavenumbers. The refined 9p only needs half of the number of gridpoints
to obtain the same accuracy of the rotated 9p. Specifically, from Table 3 we see
that when k = 200, the accuracy of the refined 9p for N = 129 is comparable
to that of the rotated 9p for N = 257, which means that the accuracy of the
refined 9p with 4 gridpoints per wavelength is comparable with that of the rotated
9p with 8 gridpoints per wavelength. In addition, from Table 4 we also find that
when k = 500, the accuracy of the refined 9p with 6 gridpoints per wavelength is
comparable with that of the rotated 9p with 13 gridpoints per wavelength.

Table 2. The error in the C-norm for k = 30

N 33 65 129 257 513
5p 0.9743 0.2325 0.0569 0.0142 0.0035

rotated 9p 0.1537 0.0391 0.0098 0.0025 0.0006
global 9p 0.1274 0.0330 0.0083 0.0021 0.0005
refined 9p 0.1186 0.0291 0.0073 0.0018 4.5131e-04

Table 3. The error in the C-norm for k = 200

N 129 257 513 1025
5p 3.7186 2.9475 1.1732 0.2964

rotated 9p 1.0258 0.4747 0.1298 0.0331
global 9p 0.5679 0.2154 0.0698 0.0186
refined 9p 0.4845 0.0861 0.0216 0.0057

Figure 3 gives an intuitive comparison between the rotated 9p, the global 9p and
the refined 9p. It is easy to see that for large wavenumber k, the improvement of
the refined 9p over other two schemes is very obvious.

Further comparison among the rotated 9p, the global 9p and the refined 9p is
given in Figure 4. Figure 4 (a) presents the error in C-norm of three schemes for
the case kh = 1, and Figure 4 (b) shows the case kh = 0.5. The wavenumber k in
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Table 4. The error in the C-norm for k = 500

N 513 601 701 801 901 1025
5p 3.0194 3.0026 2.8025 2.7876 2.7878 2.8472

rotated 9p 1.6202 1.2790 0.9934 0.7810 0.6353 0.4965
global 9p 0.5798 0.5395 0.4476 0.3767 0.3122 0.2526
refined 9p 0.1393 0.1554 0.0730 0.0550 0.0429 0.0344

h

550 600 650 700 750 800 850 900 950 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
er

ro
r 

in
 C

−
no

rm

Number of unknowns per line

 

 
k=500,  rotated 9p
k=500,  global 9p
k=500,  refined 9p

Figure 3. Error in C-norm for k=500.
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Figure 4. Error in C-norm for k ∈ [1, 500] and θ = π
4 : (a) kh = 1;

(b) kh = 0.5.

the two plots varies form 1 to 500, and θ is chosen to be π
4 . Seen from these two

pictures, the accuracy of the refined 9p is much higher than that of the global 9p,
and it deteriorates much slowly if kh is chosen to be a constant.

All of the experiments above are done with θ = π
4 . We finally test the dependence

on θ of the schemes. Figures 5 (a) and (b) show the corresponding results for kh = 1
and kh = 0.5 with k = 500 respectively, where θ varies among [0, π/2]. It is clear
that, among these three 9-point schemes, the refined 9p’s dependence on the wave
direction θ is the least and its accuracy is the highest.
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Figure 5. Error in the C-norm for k = 500 and θ ∈ [0, π2 ]: (a)
kh = 1; (b) kh = 0.5.

Now, we come to our conclusion that the refined 9p is the best scheme, compared
to the rotated 9p and the global 9p, and the advantage is more obvious for large
wavenumbers.

4.2. Concave Model. To validate the refined optimal 9-point finite difference
scheme’s availability for the case of variational wavenumbers, which often results
from heterogeneous medium, we consider a concave velocity model shown in Figure
6 (a). The domain is [0m, 2000m] × [0m, 2000m] and there are three velocities:
from the top, v := 1500m/s, 2000m/s and 2500m/s. A point source δ(x − xs, y −
ys)R(ω, f0) is located at the point (xs, ys) = (1000m, 800m), where R(ω, f0) is the
Ricker wavelet with

R(t, f0) = (1 − 2π2f2
0 t

2) exp(−π2f2
0 t

2),

whose dominant frequency is f0 = 25Hz. The grid size is 10m, the time sampling
is 8ms and the highest frequency we compute is 60Hz.

Before computation, we give some remark for the refined optimal parameters.
For the concave model, we obtain the refined optimal parameters by two steps. To
do computation with the frequency f , we first need to compute Gmin = vmin

fh
and

Gmax = vmax

fh
. Then, for the interval IG = [Gmin, Gmax], we obtain the optimal

parameters for the interior area with Rule 3.6. For other areas, we just use the
same optimal parameters as that of the interior area.

For 201× 201 mesh points, we generate snapshots for the wavefield by the rotat-
ed 9p and the refined 9p. The monofrequency wavefield (real part) for f = 25Hz
obtained by the refined 9p is present in Figure 6 (b). It is easy to see that PML’s
absorbtion of the outgoing waves is efficient, and almost no boundary reflections
exist. Additionally, the upward incident waves, the downward incident waves and
transmissive waves are all clear. In the middle velocity layer, the incident waves
are interfered with the reflected waves returned from the middle velocity layer’s
interfaces, and this phenomena obeys Snell’s law. In Figure 6 (c), we show snap-
shot for the time being 400ms generated by the rotated 9p, and Figure 6 (d) shows
the corresponding snapshot generated by the refined 9p. Snapshots are given to
show the locations of wavefronts at some specific time. The wavefront is the phase



408 Z. CHEN, D. CHENG, W. FENG AND T. WU

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000
200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) (b)

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

200 

400 

600 

800 

1000

1200

1400

1600

1800

2000

−3

−2

−1

0

1

2

3

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

200 

400 

600 

800 

1000

1200

1400

1600

1800

2000

−3

−2

−1

0

1

2

3

(c) (d)

 

 

700 800 900 1000 1100 1200 1300 1400

100

200

300

400

500

600 −2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 

700 800 900 1000 1100 1200 1300 1400

100

200

300

400

500

600
−2

−1.5

−1

−0.5

0

0.5

1

1.5

(e) (f)

Figure 6. (a) Concave model, (b) The real part of the solution
for f = 25Hz obtained by the refined 9p, (c) Snapshot generated
by the rotated 9p at the time t=400ms, (d) Snapshot generated by
the refined 9p at the time t=400ms, (e) Local enlargement for (c),
(f) Local enlargement for (d).

velocity surface of wave propagation, and its shape depends on the velocity’s distri-
bution. Comparing Figure 6 (c) with Figure 6 (d), we find that they all display the
wavefront distortion as the velocity varies, but Figure 6 (d) is much clearer than
Figure 6 (c). To see clearly, Figure 6 (e) and Figure 6 (f) present local enlargement
for Figure 6 (c) and Figure 6 (d), respectively. From the last two pictures in Figure
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6, some unphysical oscillations in the background, such as in depth 200m, can be
found in the former, but these do not exist in the latter. Therefore, the efficiency
of the refined 9p is confirmed.

5. Conclusions

We summarize and comment on the numerical results. We had proved that
the rotated 9-point finite difference scheme is not pointwise consistent with the
Helmholtz-PML equation, though it is a popular scheme for the Helmholtz equation.
Then, we presented a consistent 9-point difference scheme for the Helmholtz-PML
equation. For this method, we gave an error analysis for the numerical wavenum-
ber’s approximation of the exact wavenumber, and proposed global and refined
choice strategies for choosing optimal parameters based on minimizing the numer-
ical dispersion. Finally, numerical experiments were presented to confirm that the
refined 9p is a good choice for the Helmholtz-PML equation, compared with the
rotated 9p and the global 9p, as the refined 9p possesses the highest accuracy and
the smallest numerical dispersion, especially for large wavenumbers.
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