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APPLICATION OF AN ENERGY-MINIMIZING ALGEBRAIC

MULTIGRID METHOD FOR SUBSURFACE WATER

SIMULATIONS
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SHUO ZHANG, AND ZHIYANG ZHOU

Abstract. Efficient methods for solving linear algebraic equations are crucial to creating fast

and accurate numerical simulations in many applications. In this paper, an algebraic multigrid

(AMG) method, which combines the classical coarsening scheme by [19] with an energy-minimizing
interpolation algorithm by [26], is employed and tested for subsurface water simulations. Based

on numerical tests using real field data, our results suggest that the energy-minimizing algebraic
multigrid method is efficient and, more importantly, very robust.

Key words. subsurface water simulation, multigrid, algebraic multigrid, energy-minimizing
interpolation.

1. Introduction

Various mathematical models have been proposed to simulate the flow of water,
sediment, chemicals, nutrients, and microbial organisms within watersheds, as well
as to quantify the impact of human activities in the course. In these models, systems
of partial differential equations (PDEs) are used to describe one or several physical
processes of the subsurface water flow. As it is often impossible to obtain exact
solutions, we turn to numerical simulations to help us understand the complicated
physics underlying such processes.

Various discretization methods for PDEs (see [17, 7]) can be applied to reduce
the continuous differential equations to finite dimensional sparse linear systems.
There are many possible algorithms for solving sparse linear systems (see [20]) that
arise from discretizations of PDEs, among which is the geometric multigrid (GMG)
method. When applicable, GMG is generally considered one of the most efficient
techniques (e.g., [1, 6, 25, 22] and [11]).

However, since GMG requires an explicit hierarchy of the underlying grids and its
implementation is problem dependent, its applicability is limited in practice. The
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algebraic multigrid (AMG) method, on the other hand, requires minimal geometric
information about the underlying problem and can sometimes be employed as a
“black-box” solver for a range of problems. The classical AMG method ([3] and
[18]) has been shown to be effective for a range of problems (cf. [19, 21] and [10]).

Since the early 1980s, considerable effort has been devoted to enlarging the
applicability of AMG. Many different types of algebraic multigrid methods have
been developed. In the interest of making implementation easier, [23, 13] and [16]
all proposed aggregation-type AMG methods. The energy-minimizing interpola-
tion approach ([24, 26]) constructs coarse-grid spaces by computation to enhance
stability and approximation. Other examples of AMG methods include element in-
terpolation based AMG (or AMGe) by [5, 12] and [8], element agglomeration based
AMG by [14], and compatible relaxation based techniques (see [2, 9, 15] and [4]).
Each has advantages for solving certain problems.

There are several well-established free and commercial software packages for
algebraic multigrid methods. However, we have found that the problems inhering in
subsurface water simulations are still extremely challenging in practice; see Section 2
for details. The main difficulties lie in heterogeneity and anisotropic coefficients
with large jumps. For some of the packages we tested, it was necessary to tune
their parameters for every single test problem in order to make the iterative solvers
converge to a satisfactory tolerance.

In this paper, we employ an energy-minimizing AMG method to address a sub-
surface water simulation problem. This method utilizes the Ruge–Stüben strategy
to choose coarse-grid variables and to establish the interpolation operator on each
level, it uses an energy-minimizing (EM) approach. The main idea of EM inter-
polation was proposed by [24] and later explored by [26]. We use the algorithm
given by [26]. Two essential components for the convergence of multigrid meth-
ods, namely stability and approximation, are taken into account when constructing
coarse-grid spaces; and, numerical experiments show that this AMG method, re-
ferred to as EMAMG, is robust with respect to the parameters of the subsurface
water simulation test problems under consideration here.

We compare EMAMG with the well-known classical AMG method—using the
Ruge–Stüben strategy to choose coarse-grid variables and the direct interpolation
for constructing grid transfer operators. The classical AMG method can be found in
references including [18, 21], and [22]. Numerical experiments in the present paper
show that, in our implementation, the EMAMG method outperforms the AMG
based on the classical interpolation (or RSAMG in short) for discrete problems
arising from subsurface flow modeling. Hence, EMAMG is a competitive alternative
to RSAMG.

The remainder of the paper is organized as follows. A model for simulating sub-
surface water problems is described in Section 2. The two types of AMG methods
(RSAMG and EMAMG) under consideration are introduced in Section 3. Numer-
ical experiments for RSAMG and EMAMG are presented in Section 4. Finally,
some concluding remarks and observations based on our experiments are given in
Section 5.

2. A model problem for subsurface water systems

Many subsurface models have been established to describe the contaminant
transportation through saturated–unsaturated porous media. WASH123D is one
such model based on the first principles (see [27]). We take an important equa-
tion from WASH123D as the test problem and it is labeled as SD-5. SD-5 is a
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three-dimensional problem on a subdomain of the first draft of the South Florida
Regional Engineering Model for Ecosystem Restoration (REMER). It covers most
of the land area south of the Tamiami Trail in South Florida, which is bounded by
the Tamiami canal and the C4 canal in the north, and by the shores of the Gulf of
Mexico, Florida Bay, and Biscayne Bay (Fig. 1).

Figure 1. Illustration of the domain of SD-5.

In WASH123D, the governing equation of subsurface density dependent flow
through saturated–unsaturated porous media can be derived based on the mass
conservation of water; i.e.,

(1)


ρ
ρ0
F ∂h
∂t = −∇ · ( ρρ0V) + ρ∗

ρ0
q

V = −K · (ρ0ρ ∇h+∇z),

where the first equation is from the mass conservation and the second is Darcy’s
law for porous media. Here is a list of the most important variables:

• ρ is the density of the water [M/L3];
• ρ0 is the referenced density of the water [M/L3];
• h is the referenced pressure head [L];
• ρ∗ is the density of the source water;
• q is the source and/or sink [L3/t/L3];
• V is the Darcy velocity [L/t];
• K is the hydraulic conductivity tensor [L/t];
• z is the potential head [L];
• F = α′ θene

+ β′θe + ne
dS
dh is the water capacity [1/L];

• α′ is the modified compressibility of the medium [1/L];
• β′ is the modified compressibility of the water [1/L];
• θe is the effective moisture content [L3/L3];
• ne is the effective porosity [L3/L3];
• S is the degree of saturation.
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The initial condition of h is equipped on the region of interest R, and different
types of boundary conditions on boundary B of R have been considered (see [27]
for details).

Figure 2. A sample mesh of the SD-5 computational domain.

The governing equation is discretized by the finite element method. The non-
linearity of the system is treated using Picard iteration, and the generated set of
linearized equations can be solved with the methods described in the next section.
We use the backward finite difference method to approximate the temporal deriv-
ative term ∂h

∂t in (1) and the finite element method in space. The referenced head
in (1) is approximated by

(2) h ≈ h̃ =

n∑
j=1

hj(t)Nj(x, y, z)

where hj and Nj are the amplitude of h and the base function, respectively, at
nodal point j and n is the total number of nodes. Once the residual has been
defined and the weighted residual forced to zero, (1) is approximated as

(3)

[∫
R

NiFNjdR

]
dhj
dt

+

[∫
R

(∇Ni) ·K · (∇Nj)dR
]
hj =∫

R

NiqdR−
∫
R

(∇Ni) ·K · ∇zdR+

∫
B

n ·K · ∇(h+ z)NidB.

Furthermore, (3) can then be written in matrix form:

(4) [M] · {h}
t+∆t − {h}t

∆t
+ [S] · {h}t+∆t = {Q}+ {G}+ {B}.

The matrices, [M] and [S], and vectors, {G}, {Q}, and {B}, are the mass matrix,
the stiffness matrix, the gravity vector, the source/sink vector, and the boundary
term vector, respectively, evaluated using the estimate of {h}t from the previous
iteration. The mass matrix [M] and the stiffness matrix [S] are defined as

Mij =
∑
e∈Me

∫
Re

Ne
αFN

e
βdR and Sij =

∑
e∈Me

∫
Re

(∇Ne
α) ·K · (∇Ne

β)dR,
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where Re is the region of element e, Me is the set of elements that each has a local
side α − β coinciding with the global side i − j, and Ne

α is the α − th local base
function of element e. The three load vectors {Q}, {G}, and {B} are defined as

(5) Qi =
∑
e∈Me

∫
Re

Ne
α q dR, Gi = −

∑
e∈Me

∫
Re

(∇Ne
α) ·K · ∇z dR,

(6) Bi = −
∑
e∈Nse

∫
Be

Ne
α n · [−K · ∇(h+ z)]dB,

where Nse is the set of boundary segments that each has a local node coinciding
with the global node i and where Be is the length of boundary segment e.

Then (4) can be reduced to a linear system of equations where the unknown
vector is {h}t+∆t, and can be represented as follows:

(7) [A]{h} = {L}+ {B} =: {R}

where [A] is the assembled coefficient matrix, {h} is the unknown vector to be
computed and represents the values of the discretized pressure field at the new
time level, {L} is the load vector resulting from initial conditions and all types
of sources/sinks, {B} is the load vector contributed by the boundary conditions
including the global boundary and the media-interface boundaries, and {R} is the
final righthand-side vector.

For simplicity, we will write the above linear system (7) as

(8) Ax = b.

In this paper, a sequence of symmetric positive definite (SPD) linear systems (se-
lected because they are difficult to solve) from SD-5 are used to test the computa-
tional efficiency of the solvers. These problems arise from finite element discretiza-
tion of (1) on different meshes; see Fig. 2 for a sample mesh. Some basic algebraic
properties of the test problems are summarized in Table 1, where “n” is the number
of unknowns, “nnz” is the number of nonzeros in the coefficient matrix, “DDR” is
the ratio between the number of diagonally dominant rows and the total number
of rows, and “NMR” is the percentage of rows that contain positive off-diagonal
entries.

Table 1. Basic properties of the five test matrices.

System n nnz nnz/n symmetry DDR NMR
1 59409 1075411 18.10 Yes 3.71% 96.73%
2 93423 1743045 18.66 Yes 4.52% 95.91%
3 178353 3433171 19.25 Yes 4.12% 95.91%
4 717486 13875608 19.34 Yes 1.63% 98.52%
5 2124108 42568402 20.00 Yes 1.08% 98.92%

None of the five coefficient matrices is an M-matrices, nor are any of them di-
agonally dominant. If we apply the diagonal preconditioned conjugate gradient
method to solving these problems, the iteration numbers will be more than 15, 000
for each of the five problems. As noted, we also chose software packages that contain
many different types of AMG methods, such as hypre, ML, and SAMG; however,
we failed to find a robust solver (or set of parameters) for all the test problems
under investigation.
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3. An energy-minimizing algebraic multigrid method

Algebraic multigrid methods consist of two phases: the SETUP phase, which
generates the multi-level coarse-grid problems and the intergrid transfer operators,
and the SOLVE phase, during which the smoothing and coarse-grid correction
proceed recursively.

The goal of the SETUP phase is to construct the intergrid transfer operator P ,
which is a prolongation operator from the coarse level to the fine level, and the
coarse grid problem is then constructed. A general process for constructing P from
nc coarse grid points to n fine grid points is described by the following generic
two-level algorithm:

• Choose a set of nc coarse grid points (coarse variables);
• Choose a sparsity pattern of the prolongation P ∈ Rn×nc ;
• Define the weights of the interpolation (i.e., the entries of P ).

The next level operator can be given by Ac = PTAP ∈ Rnc×nc , where PT is the
transpose of P . For multi-level methods, the process can be repeated recursively,
and the coarse grid problems are constructed level by level. In this section, the
SETUP phase of the classical and energy-minimizing interpolations is described for
completeness.

3.1. Coarsening. The purpose of the coarsening step is to choose the set of coarse
degrees of freedom (C/F splitting) and build a sparsity pattern for the prolongation
operator. In this paper, for historical reason, we do not distinguish “coarse-grid
point” from “coarse degree of freedom.” The coarse-grid points are selected using
the maximal independent subset idea, thereby ensuring that the problem scale is
significantly reduced on the basis of accurate approximation properties. We apply
the coarsening strategy from [19] to choose coarse grid points. This is equivalent
to splitting the set of degrees of freedom (set of DOFs, denoted here by N) as a
union of two non-overlapping sets: a set of coarse-grid DOFs (denoted by C) and
a set of fine-grid DOFs (denoted by F ). We then have N = C ∪ F and C ∩ F = ∅.

Given a full set of points, the concepts of strong dependence and strong influence
are essential to the selection of coarse-grid points. For a given point i, its neigh-
borhood is denoted by Ni = {j ∈ N : j 6= i, aij 6= 0}, and the set of points that i
strongly depends on or strongly connected to is defined as

Si :=

{
∅ if |

∑n
l=1 ail| ≥ θ2|aii|

{j ∈ Ni : −aij > θ1 maxk 6=i(−aik)} otherwise,

for given parameters 0 < θ1 6 1 and 0 < θ2 < 1. The set of DOFs that are strongly
influenced by i is, in turn, denoted by

STi := {j : i ∈ Sj}.

Remark 1. The two parameters θ1 and θ2 are connected to the concept of strong
dependence. Different values of θ1 and θ2 can imply different effects of the whole
multigrid iterator. See the numerical experiments in Section 4 for more discussion.

The criteria given by [19] for C/F splitting can be described as follows:

C1: For each i ∈ F , each point j ∈ Si should either be in C, or strongly
connected to at least one point in Ci(= C ∩ Si).

C2: C should be a maximal subset of all points wherein no two C-points are
strongly connected.

These two goals, C1 and C2, could be contradictory. Hence, we enforce C1 only
and treat C2 as a guideline. The final algorithm consists of two passes: The
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first pass is to divide the DOFs into coarse-grid variables and fine-grid variables
under the guidance of C2, and the second is to enforce C1, by possibly adding
more coarse-grid variables. In the rest of this paper, we will use |S| to denote the
cardinality or number of the entries of a finite set S.

Algorithm 1. (First Pass) Initialization: C = ∅, F = ∅, U = N .

1. Compute λi = |STi | for all i ∈ N .
2. Pick an i ∈ U with maximal λi. Set C = C ∪ {i} and U = U \ {i}.
3. For all j ∈ STi ∩ U , perform (1) and (2):

(1) Set F = F ∪ {j} and U = U \ {j}.
(2) For all l ∈ Sj ∩ U , set λl = λl + 1.

4. For all j ∈ Si ∩ U , set λj = λj − 1.
5. If U = ∅, stop; otherwise, go to Step 2.

Algorithm 2. (Second Pass) Initialization: T = ∅.
1. If T ⊇ F , stop; otherwise, pick i ∈ F \ T and T = T ∪ {i}.
2. Set Ci = Si ∩ C, Ds

i = Si ∩ F , and C̃i = ∅.
3. For each j ∈ Ds

i , do
If Sj ∩ Ci = ∅, then

– If C̃i = ∅, set C̃i = {j}, Ci = Ci ∪ {j}.
– If C̃i 6= ∅, set C = C ∪ {i}, F = F \ {i} and go to Step 1.

4. Set C = C ∪ C̃i, F = F \ C̃i, and go to Step 1.

By the two algorithms above, for any point i ∈ F , we can define the set of
interpolatory variables

(9) Pi = C ∩ Si
that will be used to form the interpolation. Indeed, such a set Pi is a byproduct of
the C/F splitting. The sparsity pattern of P is then determined. Pi,j 6= 0 if the ith

fine-grid variable coincides with the jth coarse-grid variable or the jth coarse-grid
variable belongs to the set Pi as a fine-grid variable.

3.2. Direct interpolation. Direct interpolation is one way to define the weights
of the interpolation. We take a two-level case as an example to introduce the idea
of direct interpolation. Define the full rank interpolation P of the form

(10) ei = (Pec)i :=

{
eci if i ∈ C∑
k∈Pi

wike
c
k if i ∈ F,

where ec is the coarse-level error and the weights wik are to be determined.
The basic idea of determining the interpolation weights is straightforward. After

the process of relaxation, the algebraically smooth error, e, is assumed to satisfy

(11) aiiei +
∑
j∈Ni

aijej ≈ 0 ∀i ∈ F.

For many problems, the largest off-diagonal entries are negative, and the aforemen-
tioned method works well. Indeed, the definition of strong dependency above is
motivated by the properties of M-matrices. For some algebraically smooth errors,
it can be observed that

1∑
k∈Pi

aik

∑
k∈Pi

aikek ≈
1∑

j∈Ni
aij

∑
j∈Ni

aijej .
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Heuristically, we have an approximate local explicit interpolation formula:

wik = −αiaik/aii, with αi =

∑
j∈Ni

aij∑
k∈Pi

aik
.

If there are positive off-diagonal entries, a similar argument can be applied as
long as such entries are relatively small—positive couplings are ignored (simply con-
sidered weak). However, if the coefficient matrix contains relatively large positive
off-diagonal entries, the above approach should be generalized by considering both
positive and negative couplings, which leads to interpolation formulas containing
both “positive weights” and “negative weights.”

In this case, the set Pi contains two parts: Pi = P+
i ∪ P

−
i , such that aij > 0, if

j ∈ P+
i and aij < 0 if j ∈ P−i . For the direct interpolation, the weights are taken

to be

(12) wik =

{
−αiaik/aii if k ∈ P−i
−βiaik/aii if k ∈ P+

i ,

with

αi =

∑
j∈Ni

a−ij∑
k∈Pi

a−ik
and βi =

∑
j∈Ni

a+
ij∑

k∈Pi
a+
ik

,

where a±ij are the positive and negative parts of aij . The sets P+
i and P−i are

generated separately by the same procedures. If P+
i = ∅, (12) is modified by

setting βi = 0 and adding all positive entries, if any, to the diagonal.

3.3. Energy-minimizing interpolation. In this subsection, we introduce an-
other way to define the weights of the interpolation (cf. [24, 26].) We assume that
the coarse-grid selection is conducted as in Section 3.1 and that C/F splitting with
nc coarse-grid points and interpolatory sets are given.

Algorithm 3 (Energy-minimizing interpolation). We define the interpolation by

(1) For k = 1, . . . , nc, find A−1
k , where

Ak := (eik1
, . . . , eiknk

)TA(eik1
, . . . , eiknk

);

(2) For k = 1, . . . , nc, compute

Tk := (eik1
, . . . , eiknk

)A−1
k (eik1

, . . . , eiknk
)T ;

(3) Let 1 be the vector with all entries as 1. Calculate

g := (

nc∑
k=1

Tk)−11;

(4) For k = 1, . . . , nc, calculate pk := Tkg.

In the algorithm above, we use the following notation:

• A ∈ Rn×n: the coefficient matrix of the fine grid;
• Sc = {1, 2, . . . , nc}: the label of the nodes in the coarse grid;
• ei: the ith column of the identity matrix I ∈ Rn×n;
• {ik1, ik2, . . . , iknk

}: the label number in the fine grid of the nodes associated
with the kth node in the coarse grid, where nk is the number of the fine-grid
nodes associated with the kth coarse-grid node.

In the end, the matrix P := [p1, p2, . . . , pnc
] is set to be the interpolation matrix

from coarse nodes to fine nodes.
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Remark 2. One major concern for the energy-minimizing basis is the compu-
tational cost for its construction; more specifically, the question is whether it is
possible to economically compute g in Step (3). The answer to the question is
positive because the operator

∑nc

k=1 Tk is either well conditioned or can easily be
preconditioned by local operations. We refer to [26] for details.

3.4. Algebraic multigrid algorithm. As mentioned before, an AMG method
consists of a SETUP phase and a SOLVE phase. These two phases are summarized
in the two algorithms below.

Algorithm 4 (SETUP phase). Let l = 1. Given the finest matrix Al .

1. Coarsening:
a) Carry out coarse-grid selection with the Ruge–Stüben strategy;
b) Generate prolongation matrix P l

l+1;

c) Generate coarser-level matrix Al+1 = (P l
l+1)TAlP

l
l+1;

d) Let l = l + 1.
2. Repeat Step 1 until the DOFs at level l are small enough or l is big enough.

Remark 3. Using Algorithm 4, the SETUP phase generates multi-level matrices

Al+1 = (P l
l+1)TAlP

l
l+1, l = 1, . . . , L− 1,

where L is the coarsest level. Furthermore, for step b) in Algorithm 4, we can
employ either the direct interpolation in Section 3.2, the energy-minimization in-
terpolation in Section 3.3, or another interpolation scheme.

Once the SETUP is complete, the SOLVE phase proceeds, during which iterators
Bl are defined level by level. On each level, the action of Bl is a combination of
smoothings and coarse-grid corrections. We will use the simplest possible method,
i.e., the standard multigrid V-cycle with the pointwise Gauss–Seidel (GS) smoother.
We denote the GS smoother on level l by Rl .

Given any vector zl , el = Blzl (the action of the MG V-cycle and the W-cycle
SOLVE phase) can be defined recursively as follows:

Algorithm 5. (V-cycle SOLVE phase) For a given zl , el is obtained by

1) If l = L, then solve the equation ALeL = zL exactly and return.
2) If l < L, then

A) pre-smoothing:

el = Rlzl , rl = zl −Alel ;

B) coarse-grid correction
a) restriction:

rl+1 = (P l
l+1)T rl ;

b) coarse-grid relaxation:

el+1 = Bl+1rl+1;

c) prolongation:

ecl = P l
l+1el+1, rl = rl −Ale

c
l ;

C) post-smoothing:

el = el + ecl +Rlrl , zl = zl −Alel.

3) l = l + 1 and go to 1).
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Remark 4. For a W-cycle, we only need to modify Step b) by forming the residual
and applying Bl+1 one more time.

Remark 5. Note that there are many possible choices for the SOLVE phase; how-
ever, we will not discuss them here as the main focus of this paper is using the
energy-minimizing interpolation to improve the performance of the SETUP phase.

4. Numerical experiments

To make a comparison, we implement six multi-level solvers and test them on
the discrete problem (8) using the real data from SD-5:

(1) RSAMG: This solver employs an AMG V-cycle/W-cycle iterator for the
SOLVE phase, and the SETUP phase uses the Ruge–Stüben strategy.

(2) EMAMG: This solver employs an AMG V-cycle/W-cycle iterator for the
SOLVE phase, and the SETUP phase uses the energy-minimizing strategy
as in the previous section.

(3) RSCG: This solver uses a preconditioned conjugate gradient method with
one RSAMG V-cycle/W-cycle iterator as a preconditioner.

(4) EMCG: This solver uses a preconditioned conjugate gradient method with
one EMAMG V-cycle/W-cycle iterator as a preconditioner.

(5) RSBCGs: This solver uses a preconditioned BiCGstab method with one
RSAMG V-cycle/W-cycle iterator as a preconditioner.

(6) EMBCGs: This solver uses a preconditioned BiCGstab method with one
EMAMG V-cycle/W-cycle iterator as a preconditioner.

All our numerical experiments are performed on a computer with Intel Xeon E5530
2.4GHz CPU and 24GB 1067MHz DDR3 RAM. All the numerical tests are per-
formed using our in-house linear solver package, FASP (see http://www.multigrid.
org).

For the SETUP phase, three of the above methods, (1), (3) and (5), employ
the classical Ruge–Stüben strategy, and the other three, (2), (4) and (6), employ
the energy-minimizing algorithm described in the previous section. The coarsening
process will stop if the number of DOFs on the coarse level is smaller than 500.
In each V- or W-cycle, one Gauss-Seidel (GS) or Symmetric Gauss-Seidel (SGS)
sweep with C/F ordering is employed for both pre- and post-smoothings. The
matrix equations on the coarsest grid are solved exactly. The initial guess is always
zero and the stopping criteria is that the relative residual in the Euclidean norm is
less than 10−8.

We first compare the performance of RSAMG and EMAMG for a small test
problem, System 1. The results in Tables 2 and 3 show that, in our implementation,
EMAMG is robust for a range of thresholds, θ1 ∈ [0.4, 0.9] and θ2 ∈ [0.5, 0.9], and
the EMAMG outperforms the RSAMG. Moreover, the operator complexity, i.e.,
the ratio of the total number of non-zero entries of matrices on all levels and the
number of non-zero entries of the matrix on the finest level, is robust with respect
to θ1 and θ2 as well (Tables 4 and 5). Therefore, the total cost of each cycle of the
SOLVE phase is robust with respect to the parameters. We also notice that the
number of levels of the hierarchical structure is robust with respect to θ1 and θ2 for
both the RSAMG and EMAMG SETUPs: both end up with 8 levels independent
of θ1 and θ2.

In all our subsequent tests, described next, we fix θ1 = 0.6 and θ2 = 0.9. The
number of levels in the hierarchical structures are recorded in Table 6. The outer
iteration of the AMG SOLVE phase can be either the V-cycle or the W-cycle, and
the smoother on the fine grid can be the Gauss-Seidel iteration or the symmetric
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Table 2. Number of iterations using RSAMG (V+GS) on Sys-
tem 1 for different parameters θ1 and θ2

θ2
θ1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4 3766 1321 1281 1287 1124 1126 1284

0.5 3745 1222 1198 1202 1220 1202 1202

0.6 3687 1250 1214 1209 1255 1255 1216

0.7 3685 1311 1285 1213 1225 1255 1284

0.8 3673 1302 1214 1285 1284 1224 1284

0.9 3670 1311 1224 1215 1285 1230 1216

Table 3. Number of iterations using EMAMG (V+GS) on Sys-
tem 1 for different parameters θ1 and θ2

θ2
θ1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4 1704 1688 1708 1690 1709 1709 1709

0.5 188 47 45 39 36 47 58

0.6 352 61 50 30 32 47 56

0.7 364 46 40 34 31 59 66

0.8 491 43 38 29 30 55 62

0.9 412 66 39 36 29 48 60

Table 4. Operator complexity using RSAMG on System 1 for
different parameters θ1 and θ2

θ2
θ1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4 2.04 1.92 1.88 1.84 1.82 1.79 1.75

0.5 2.05 1.93 1.88 1.85 1.82 1.80 1.76

0.6 2.05 1.93 1.88 1.85 1.82 1.80 1.76

0.7 2.06 1.92 1.87 1.84 1.82 1.80 1.76

0.8 2.05 1.92 1.87 1.84 1.82 1.80 1.76

0.9 2.04 1.92 1.87 1.85 1.82 1.80 1.76

Gauss-Seidel iteration. The results are recorded in Tables 7–14. In the tables,
the choices of the outer multilevel iteration and smoother are labeled as “V+GS,”
“W+GS,” “V+SGS” and “W+SGS” for V-cylce with GS smoother, W-cycle with
GS smoother, V-cycle with SGS smoother, and W-cycle with SGS smoother, re-
spectively. In each case, we record the number of outer iterations and the time used
and compare them with respect to RSAMG and EMAMG. According to our experi-
ments, the solvers based on EMAMG perform better than those based on RSAMG;
the SETUP phase of EMAMG is more time-consuming than that of RSAMG, but
the total CPU time of the EMAMG-based solvers is shorter, and the EMAMG-
based solvers are more robust with respect to the problem size.

5. Concluding Remarks

In this paper, we applied an energy-minimizing AMG method to a subsurface
water simulation. We presented a brief introduction to an AMG method—the
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Table 5. Operator complexity using EMAMG on System 1 for
different parameters θ1 and θ2

θ2
θ1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4 2.05 1.92 1.88 1.85 1.82 1.79 1.75

0.5 2.05 1.93 1.88 1.85 1.82 1.80 1.76

0.6 2.06 1.92 1.88 1.85 1.82 1.80 1.76

0.7 2.06 1.93 1.87 1.84 1.82 1.79 1.76

0.8 2.06 1.92 1.87 1.84 1.82 1.80 1.76

0.9 2.05 1.92 1.87 1.84 1.82 1.80 1.76

Table 6. Number of levels for Systems 1—5 (In the coarsening
processes, we fix θ1 = 0.6 and θ2 = 0.9)

System 1 2 3 4 5
RS coarsening 8 8 9 11 12
EM coarsening 8 7 9 10 12

Table 7. Number of iterations using RSAMG and EMAMG (V+GS)

System
Number of iterations

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 1215 36 60 15 34 7

2 1771 35 101 14 70 6

3 3287 34 115 15 83 7

4 276 32 52 13 28 6

5 375 61 43 20 23 10

Table 8. Total CPU time using RSAMG and EMAMG methods (V+GS)

System
Total CPU time (seconds)

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 21.20 0.87 1.11 0.49 1.34 0.52

2 47.36 1.33 2.82 0.77 3.99 0.75

3 169.43 2.56 8.26 1.54 9.51 1.64

4 79.99 9.69 16.19 7.04 13.72 6.27

5 363.36 70.77 41.92 36.44 46.66 39.45

energy-minimizing AMG method, and performed numerical experiments to illus-
trate the performance of the method. Here are some of our observations:

(1) When applied to the subsurface flow simulation problems from real appli-
cations, we found that, as a standalone iterative solver, EMAMG is quite
robust with respect to the problem size.

(2) When accelerated by the Krylov methods, the robustness of RSAMG im-
proves; however, it still did not match the performance of EMAMG for the
test problems under consideration.

(3) Both the coarsening strategy (Ruge–Stüben method) and the interpola-
tion scheme (energy-minimizing interpolation) play important roles in the
convergence of the AMG method.
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Table 9. Number of iterations using RSAMG and EMAMG with (V+SGS)

System
Number of iterations

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 810 33 50 12 28 6

2 3342 30 81 13 60 6

3 5406 29 107 13 68 7

4 458 24 40 11 22 5

5 453 62 44 18 25 9

Table 10. Total CPU time using RSAMG and EMAMG methods (V+SGS)

System
Total CPU time (seconds)

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 18.60 0.99 1.29 0.51 1.78 0.56

2 119.40 1.45 3.13 0.85 4.84 0.90

3 414.29 2.87 8.43 1.74 10.98 1.99

4 131.03 10.00 13.28 6.52 15.57 6.98

5 610.99 89.25 60.56 34.78 73.13 37.68

Table 11. Number of iterations using RSAMG and EMAMG (W+GS)

System
Number of iterations

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 794 33 48 13 30 8

2 1715 25 87 12 63 5

3 3210 23 110 10 62 5

4 264 20 41 11 25 5

5 237 66 34 18 17 9

Table 12. Total CPU time using RSAMG and EMAMG methods (W+GS)

System
Total CPU time (seconds)

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 158.25 6.61 9.61 2.69 12.28 3.67

2 342.65 6.00 17.07 3.02 25.10 3.02

3 1549.94 12.46 50.63 5.77 77.06 6.91

4 540.42 42.50 86.36 25.40 106.58 26.96

5 1881.46 482.31 258.79 132.02 275.10 145.85

Table 13. Number of iterations using RSAMG and EMAMG (W+SGS)

System
Number of iterations

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 622 30 45 11 28 6

2 2732 22 75 11 53 5

3 5143 21 96 10 67 5

4 370 16 36 9 21 4

5 322 63 37 17 20 9
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Table 14. Total CPU time using RSAMG and EMAMG methods (W+SGS)

System
Total CPU time (seconds)

RSAMG EMAMG RSCG EMCG RSBCGs EMBCGs

1 139.03 6.63 10.20 2.58 13.18 3.22

2 678.23 5.92 17.53 3.15 29.46 3.42

3 3015.75 13.08 52.85 6.67 74.93 9.22

4 958.59 47.65 89.49 24.19 109.25 26.62

5 3003.56 638.15 351.29 158.32 400.40 184.58

(4) The AMG method that employs the RS coarsening strategy together with
EM interpolation is robust for the test problems. However, we noticed
that it would be quite another story if the RS coarsening were replaced by
simpler coarsening strategies.

(5) The numerical examples indicate that EMAMG can bring better applica-
bility and robustness with respect to the parameters, θ1 and θ2.

(6) The SETUP phase of EMAMG costs more CPU time and memory than the
classical AMG. Therefore, EMAMG is preferable only when the linear sys-
tems are relatively difficult to solve, i.e., when the SOLVE phase dominates
the whole computational time.

Finally, we would like to point out that, when the computational technique pre-
sented in [26] is used, the EMAMG method can be processed entirely through pure
algebraic operations. The EMAMG method does not require any use of the geomet-
ric information related to the PDE or the discretization. Therefore, such a method
is automatically applicable to most of the numerical models of subsurface flows.
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