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LOCAL ERROR ESTIMATES OF THE LDG METHOD FOR 1-D

SINGULARLY PERTURBED PROBLEMS

HUIQING ZHU AND ZHIMIN ZHANG

Abstract. In this paper local discontinuous Galerkin method (LDG) was analyzed for solving
1-D convection-diffusion equations with a boundary layer near the outflow boundary. Local error
estimates are established on quasi-uniform meshes with maximum mesh size h. On a subdomain
with O(h ln(1/h)) distance away from the outflow boundary, the L2 error of the approximations to
the solution and its derivative converges at the optimal rate O(hk+1) when polynomials of degree
at most k are used. Numerical experiments illustrate that the rate of convergence is uniformly
valid and sharp. The numerical comparison of the LDG method and the streamline-diffusion finite
element method are also presented.
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1. Introduction

We are interested in the convection-diffusion problem

(1.1)
−ǫu′′ + au′ + bu = f in I = (0, 1),

u = 0 on ∂I = {0, 1},
where 0 < ǫ ≪ 1 is the diffusion parameter, a = a(x) ≥ α > 0 accounts for the
convection, and b = b(x) accounts for the reaction term. The function f = f(x) is
a given source term. We assume that α is a constant; a, b, and f are sufficiently
smooth on I.

When ǫ is small, the solution to Problem (1.1) typically has a boundary layer with
width O(ǫ ln 1

ǫ ) at x = 1. The standard finite element method produces numerical
solutions that exhibits nonphysical oscillation on uniform mesh unless the mesh
size is comparable with ǫ. Many techniques have been developed to eliminate
the nonphysical oscillation (c.f. [1, 11, 12, 15, 16]). Among these techniques is
the streamline-diffusion finite element method (SDFEM) proposed in eighties by
Hughes et.al. (c.f. [12]) by adding an appropriate amount of artificial diffusion
in the streamline direction to stabilize the conforming finite element method. The
SDFEM is quite satisfactory for practical situations, but may lead to large artificial
layers near boundaries and discontinuities. There has been many theoretical results
published up to now (c.f. [6, 14, 16]). Another technique is to employ a layer-
adapted mesh based on the a priori knowledge of Problem (1.1), such as Shishkin-
type meshes, Bakhvalov-type meshes (c.f. [15, 16, 20, 21]).

Starting from 1970’s, discontinuous Galerkin methods has been intensively stud-
ied and applied to hyperbolic and convection-dominated elliptic problems with great
success (c.f. [7, 8, 9, 13]). Recently, the superconvergence of the numerical traces
and the L2 convergence of DG methods have been discussed for one-dimensional
convection-diffusion problems (c.f. [4, 5, 18, 19, 21]). It has been reported in the
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numerical experiments of [18] that the error curves of numerical traces didn’t show
any any oscillation even on uniform meshes if mesh size h is comparable with ǫ, or if
ǫ ≪ h is extremely small. It implies that the local discontinuous Galerkin method
(LDG) seems not to produce a large artificial layers as SDFEM did outside the
boundary layer region of Problem (1.1). Motivated by this finding, we are interest-
ed in investigating the LDG method for Problem (1.1) on uniform or quasi-uniform
meshes to see how efficient it could be.

In this work, we proved that the L2 errors of u′ − ǫ−1Q and u − U converge
at the optimal rate O(hk+1) on a subdomain I0 ⊂ I where ∂I0 is O(h ln(1/h))
distance away from the outflow boundary of I, i.e., x = 1. Here (U,Q) denotes the
LDG approximation of (u, ǫu′); h denotes the maximum mesh size; and approxi-
mation space consists of piecewise polynomials of degree at most k. These rates
of convergence are uniformly valid in terms of the singular perturbation parameter
ǫ, as verified by our numerical experiments. The numerical comparison of LDG
and SDFEM are also presented in this paper. The numerical results in Section
4 illustrate that the L2 errors of the LDG approximations to the exact solution
and its derivative on I0 are smaller comparing with the L2 errors of SDFEM on
the same subdomain I0. For a fixed uniform mesh, the subdomain I0 of the LDG
method expands and contains more mesh elements as the parameter ǫ → 0. If
ǫ ≪ h is extremely small, the error curves of numerical traces will not show any
oscillation. Furthermore, numerical results shows that a small artificial layer does
exist for small ǫ if the mesh size h is not very large.

On the other hand, the subdomain I0 of SDFEM expands slower than LDG and
the artificial layer always contains (k+1) lnN mesh elements as ǫ→ 0. Therefore,
its nodal error curves will always show an oscillation near the outflow boundary
x = 1 even if ǫ is extremely small. This finding, then, seems to support the former
view in [18] that the DG method is more ‘local’ than finite element method.

The outline of this article is as follows: In Section 2, we present the LDG dis-
cretization and state our main results, which give some local error estimates. The
proof of the main results is carried out in details in Section 3. In section 4, we
present several numerical experiments testing our theoretical results. We end in
Section 5 with some concluding remarks.

Notations. Throughout this article, the letter C will denote a generic constant
not necessarily the same at each occurrence. It might depend on the coefficient
functions a, b, the right-hand side function f , and the polynomial degree k, but
is independent of the singular perturbation parameter ǫ and the mesh. For any
measurable subdomain D ⊆ I, we use the standard Sobolev spaces L2(D), H1(D),
Hs(D) =W s

2 (D) for some nonnegative integer s.

2. The LDG discretization and main results

In this section, we present the LDG discretization and state our main results.
We begin with partitioning the domain I. If 0 = x0 < x1 < . . . < xN−1 < xN = 1,
we denote by Ih = {Ij = (xj−1, xj), j = 1, 2, · · · , N} a quasi-uniform partition of
domain I, and by hj = xj−xj−1 the length of the j-th element. Let h = max

j=1,··· ,N
hj.

For any j = 1, 2, · · · , N , there exists a constant Cq such that hj ≥ Cqh. Define
v(x±j ) = limδ→0 v(xj ± δ) as in [13]. For each element Ij ∈ Ih, we set its outward

unit normal nIj (xj) = 1 and nIj (xj−1) = −1. We denote vj = v(xj), v
±
j = v(x±j ),

Jv0K = −v+0 and JvN K = v−N , JvjK = v−j nIj (xj) + v+j nIj+1
(xj) = v−j − v+j for

j = 1, · · · , N − 1.
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We denote by Hm(Ih) the space of functions on I whose restriction to each
element I belongs to the Sobolev space Hm(I). Vh denotes the finite dimensional
space of functions that are polynomial of degree degree at most k on each element.
For any D ⊆ Ih the Sobolev seminorm on Hs(D) is defined as

|v|s,D := (v(s), v(s))
1/2
D .

Accordingly, the Sobolev norm on Hr(D) is defined as

‖v‖r,D :=

(
r∑

s=0

|v|2s,D

)1/2

.

We drop the first subscript whenever r = 0, and drop the second subscript if
D = Ih.

Introducing a new variable q = ǫu′, we rewrite the problem (1.1) as a system of
one-order equations

q = ǫu′ in I = (0, 1),

−q′ + au′ + bu = f in I = (0, 1),

u = 0 on ∂I = {0, 1}.

Then we will search for the approximate solution (Q,U) of the LDG method
from a finite-dimensional subspace of H1(Ih)×H1(Ih), Vh × Vh. We consider the
following problem (see [4]): Find (Q,U) ∈ Vh × Vh, such that

(Q,w)Ih
= −ǫ (U,w′)Ih

+ 〈ǫûǫ, w〉∂Ih
,(2.1a)

(Q− aU, v′)Ih
− 〈q̂, v〉∂Ih

+ 〈aûc, v〉∂Ih
+ ((b − a′)U, v)Ih

= (f, v)Ih
,(2.1b)

for all (w, v) ∈ Vh × Vh. Here we have used the notations

(ϕ, ψ)Ih
=
∑

Ij∈Ih

(ϕ, ψ)Ij =
∑

Ij∈Ih

∫

Ij

ϕ(x)ψ(x)dx,

and

〈ϕ, ψ〉∂Ih
=
∑

Ij∈Ih

〈ϕ, ψ〉∂Ij =
N∑

j=1

[
ϕ−
j ψ

−
j − ϕ+

j−1ψ
+
j−1

]
.

For simplicity, we always write the above two inner products as (ϕ, φ) and 〈ϕ, ψ〉
for functions ϕ, φ ∈ H1(Ih) without the subscripts.

To completely define the LDG scheme, we take the following numerical traces:

(2.2)

q̂(xj) = Q+
j , for j = 0, 1, · · · , N − 1,

q̂(1) = Q(1−)− λU(1−),

ûǫ(xj) = U−
j , for j = 1, · · · , N − 1,

ûǫ(0) = 0; ûǫ(1) = 0,

ûc(xj) = U−
j , for j = 1, · · · , N,

ûc(0) = 0,
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where the stabilization parameter λ ≥ 0 will be determined later. The LDG method
defined by these numerical traces was called the md-LDG method in [4]. Substi-
tuting the numerical traces (2.2) into (2.1), we have

(2.3)

ǫ−1(Q,w) + (U,w′)−
N−1∑

j=1

U−
j JwjK = 0,

(Q− aU, v′) + ((b− a′)U, v) +Q+
0 v

+
0 −

N−1∑

j=1

Q+
j JvjK

− (Q−
N − λU−

N )v−N +

N∑

j=1

a−j U
−
j JvjK = (f, v).

The above system leads to

a(Q,w) + b1(U,w) = 0,(2.4a)

b2(Q, v) + c(U, v) = f(v).(2.4b)

where these bilinear forms are defined as

a(Q,w) = ǫ−1(Q,w),(2.5a)

b1(U,w) = (U,w′)−
N−1∑

j=1

U−
j JwjK,(2.5b)

b2(Q, v) = (Q, v′)−
N−1∑

j=0

Q+
j JvjK −Q−

Nv
−
N ,(2.5c)

c(U, v) = −(aU, v′) + ((b − a′)U, v) +
N∑

j=1

a−j U
−
j JvjK + λU−

N v
−
N ,(2.5d)

f(v) = (f, v).(2.5e)

In this article, we assume that a(x) is continuous so that a+j = a−j = aj for any j =

0, 1, · · · , N . By the integration by parts, we can verify that b1(v, w) = −b2(w, v).
The following proposition guarantees the existence and uniqueness of the numer-

ical solution defined by (2.1) and (2.2). The proof is provided in Section 3.1.

Proposition 2.1. Suppose λ ≥ 0 and b − a′/2 ≥ 0, then the LDG solution deter-
mined by (2.1) and numerical traces (2.2) exists and is unique.

Define the compact form of our LDG discretization

(2.6) A(φ, ψ;w, v) = a(φ,w) + b1(ψ,w) + b2(φ, v) + c(ψ, v),

for any (φ, ψ), (w, v) ∈ Vh × Vh. By the consistency of the numerical traces, it is
straightforward to verify the orthogonality property

(2.7) A(q −Q, u− U ;w, v) = 0

for any (w, v) ∈ Vh × Vh.

We are now ready to state out main results, which give some local error estimates
on a subdomain I0 ⊂ I.
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Theorem 2.2. Let I0 = (0, A) and I+
s = (0, A+ s ln(1/h)ρ), where ρ and A are

defined in (3.21); A is chosen such that A + s ln(1/h)ρ is an interior mesh point.
Let m be a positive constant such that h2m ≤ Cǫ. Suppose that the positive constant
L defined in (3.32) is sufficiently small; the exact solution of problem (1.1) satisfies

(2.8) ‖u‖L∞(I) ≤ C, ‖u‖W 1
∞

(I) ≤ Cǫ−1

for some constant C independent of ǫ.
(1) If b(x) − a′(x)/2 > 0 for all x ∈ I and ‖u‖k+2,I+

m+k+1

≤ C, then there exists a

constant C such that

(2.9) ‖u− U‖I0
+
√
ǫ‖u′ − ǫ−1Q‖I0

≤ Chk+1.

(2) If a(x) = constant, b(x) = 0 for all x ∈ I, and ‖u‖k+2,I+

m+k+1

≤ C, then there

exists a constant C such that

(2.10) ‖u− U‖I0
+
√
ǫ‖u′ − ǫ−1Q‖I0

≤ C lnNhk+1.

(3) If a(x) = constant, b(x) = 0 for all x ∈ I, and ‖u‖k+2,I+

2m+k+1

≤ C, then there

exists a constant C such that

(2.11) ‖u− U‖I0
+ ‖u′ − ǫ−1Q‖I0

≤ Chk+1.

Remark 2.3. Note that all these three convergence rates are independent of the
singular perturbation parameter ǫ. The error bounds of (2.9) and (2.10) indicate
that when s = m + k + 1, the L2 errors of u − U and

√
ǫ(u′ − ǫ−1Q) converge at

the optimal rate on subdomain I0, which is O(h ln(1/h)) distance away from the
outflow boundary x = 1. On the other hand, (2.11) shows that the L2 error of
u′ − ǫ−1Q converges at the optimal rate on a smaller subdomain, when b(x) = 0,
a(x) = constant, and s = 2m+ k + 1.

Remark 2.4. Since the specially chosen numerical traces (2.2) significantly sim-
plifies the proof, the error estimate may not hold for a different choice of numerical
traces. Similar local error estimates could be derived for reaction-diffusion problem
if the position of the boundary layer is known.

3. Proofs

This section is devoted to the proofs of Proposition 2.1 and Theorem 2.2. To
prove Theorem 2.2, we first establish interpolation error estimates on quasi-uniform
meshes. Then we introduce the cut-off function and Lemma 3.7, which is the
foundation of the error analysis. Theorem 2.2 will follow after a direct application
of Lemma 3.4 and Lemma 3.7.

3.1. Proof of Theorem 2.1.

Proof. We only need to verify that Q = 0, U = 0 in (2.4) if f = 0. Taking w = Q
and v = U , f = 0 in (2.4) and adding (2.4a) and (2.4b) together we get

(3.1)

a(Q,Q) + c(U,U)

= ǫ−1‖Q‖2Ih
− (aU, U ′) + ((b− a′)U,U) +

N∑

j=1

ajU
−
j JUjK + λU−

N v
−
N = 0.

By an integration by parts,

− (aU, U ′) = (aU, U ′) + (a′U,U)−
N∑

j=1

[
aj(U

−
j )2 − aj−1(U

+
j−1)

2
]
.
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Solving the above equation for (aU, U ′) one has

(3.2) − (aU, U ′) =
1

2
(a′U,U)− 1

2


−a0(U+

0 )2 +

N−1∑

j=1

aj
q
U2
j

y
+ aN (U−

N )2


 .

Therefore, the sum of the second term, the third term and the fourth term of (3.1)
can be simplified as

(3.3)

((b− a′/2)U,U) +
1

2
a0
(
U+
0

)2 − 1

2
aN
(
U−
N

)2

+

N−1∑

j=1

aj

[(
U−
j

)2 − U−
j U

+
j − 1

2

(
U−
j

)2
+

1

2

(
U+
j

)2
]
+ aN

(
U−
N

)2

=
∥∥∥(b − a′/2)

1
2U
∥∥∥
2

Ih

+

N∑

j=0

1

2
ajJUjK2.

By substituting (3.3) into (3.1), the left side of (3.1) becomes

(3.4) a(Q,Q)+c(U,U) = ǫ−1‖Q‖Ih
+
∥∥∥(b− a′/2)

1
2U
∥∥∥
2

Ih

+
N∑

j=0

1

2
ajJUjK2+λ

(
U−
N

)2
,

which implies that

U = 0, Q = 0 if b− a′/2 > 0,(3.5a)

U ∈ C0(I), Q = 0 if b− a′/2 = 0.(3.5b)

When b − a′/2 = 0 holds true, (2.4a) can be written by using an integration by
parts for (2.5b) as

ǫ−1(Q,w)− (U ′, w) − U+
0 w

+
0 + U−

Nw
−
N +

N−1∑

j=1

JUjKw+
j = 0.

It follows from (3.5b) that (U ′, w) = 0 for all w ∈ Vh, which implies that U is
a piecewise constant function on I by taking w = U ′. This, together with the
implementation of (3.5b), prove that U = 0. The existence and uniqueness of the
LDG solution follow as a consequence. �

3.2. Proof of Theorem 2.2. To provide a detailed proof for Theorem 2.2, we
proceed in several steps. First, we introduce interpolation operators and two pre-
liminary lemmas. In step 2, a cut-off function and some properties are introduced.
For more details of the cut-off function, we refer the reader to [14, 10]. This function
is the one-dimensional case of the cut-off function used in [10]. Then, in Step 3,
local error estimates on a subdomain I0 ∈ I are established from the combination
of interpolation error estimates and properties of the cut-off function.

Step 1: Interpolations. We use polynomial interpolation of degree k > 0. Let
I = (a+, a−) be an arbitrary interval and Pk(I) the space of the polynomials of
degree at most k on I.

For v ∈ C(I), we define the projection π±v ∈ Pk(I) with the following two
conditions:

(3.6) π±v(a±) = v(a±),

∫

I

[v(x)− π±v(x)]p′(x)dx = 0

for any p(x) ∈ Pk(I). Let ξu := u−π−u, ηu := π−u−U , eu := u−U , ξq := q−π+q,
ηq := π+q−Q, and eq := q−Q. As a consequence, we have eu = ξu+ηu, eq = ξq+ηq.
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In the following proof, we will estimate (ξq , ξu) and (ηq, ηu) separately. To esti-
mate the interpolation errors ξu and ξq, we need two preliminary lemmas and some
frequently used inequalities. The first lemma was proven in [17].

Lemma 3.1. (Lemma 3.7, [17]) For any v ∈ C(I), the interpolation operators π±

satisfy

(3.7)
∥∥π±v

∥∥2
I
≤ C

(
‖v‖2I + |v(±1)|2

)

on the reference element I = (−1, 1).

The second lemma gives elementwise error bounds of the interpolation [3].

Lemma 3.2. (Lemma 3.3, [3]) If v ∈ Hk+1(Ij), there exists a constant C such
that

∣∣(v − π±v)(x±j )
∣∣ ≤ Ch

s− 1
2

j ‖u‖s,Ij , j = 0, · · · , N − 1,(3.8a)
∥∥v − π±v

∥∥
Ij

≤ Chsj‖u‖s,Ij , j = 1, · · · , N,(3.8b)

for s = 0, 1, · · · , k + 1.

A direct application of Lemma 3.2 on mesh Ih produces the following lemma.

Lemma 3.3. Suppose that the exact solution u of (1.1) satisfies

(3.9) ‖u‖W 1
∞

(D) ≤ C

for some subdomain D ⊂ I. If Dh = {Ij ∈ Ih | Ij ⊂ D}, then there exists a
constant C such that

(3.10) ǫ−1 ‖ξq‖Dh
+ ‖ξu‖Dh

≤ Chk+1.

Applying the definition of the interpolation (3.6) and Lemma 3.1 yields the
following conclusion.

Lemma 3.4. Suppose that u is the exact solution of (1.1) and satisfies (2.8), then
there exists a constant C such that

(3.11) ǫ−
1
2 ‖ξq‖Ih

+ ‖ξu‖Ih
+ |(ξq)−N | ≤ Cǫ−

1
2 .

Proof. By (3.6) and (3.7), we have

‖ξq‖2Ih
≤ ‖q‖2Ih

+
∥∥π+q

∥∥2
Ih

≤ C ‖q‖2Ih
+ Ch

N−1∑

i=0

(q+j )
2.

Using (2.8) and q = ǫu′

(3.12) ǫ−
1
2 ‖ξq‖Ih

≤ Cǫ−
1
2 (1 + hN)

1
2 ≤ Cǫ−

1
2 .

Similarly, we use (3.6), (3.7) and (2.8) to prove

(3.13) ‖ξu‖Ih
≤ C

(
‖u‖2Ih

+ h
N∑

i=1

(u−j )
2

) 1
2

≤ C.

To estimate
∣∣(ξq)−N

∣∣, we first apply the trace inequality to obtain

(3.14)
∣∣(ξq)−N

∣∣ ≤
∣∣q−N
∣∣+
∣∣(π+q)−N

∣∣ ≤
∣∣q−N
∣∣+ h−

1
2

∥∥π+q
∥∥
IN
.

Since the assumption(2.8) implies
∣∣q−N
∣∣ ≤ C and ‖q‖IN ≤ Ch

1
2 , then using (3.7) we

have

(3.15)
∥∥π+q

∥∥
IN

≤ |q|IN + h
1
2 |q−N | ≤ Ch

1
2 .
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Substituting (3.15) into (3.14) yields
∣∣q−N
∣∣ ≤ C, which, combined with (3.12) and

(3.13) establishes (3.11). �

Step 2: The cut-off function. In this step we introduce a cut-off function which
will be instrumental throughout the proof of Theorem 2.2. Let ϕ(t) be function
satisfying the following conditions. We suppose that there exist positive constants
C1 and C2,which are independent of ǫ and h, such that

(3.16)

C1 ≤ ϕ(t) ≤ C2, for t ≤ 1,

ϕ(t) = e−t, for t ≥ 0,

ϕ(t) = 3− 1

ln(|t|) + 1
, for t ≤ −1;

(3.17) ϕ′(t) < 0, for t ∈ (−∞,∞);

(3.18)

|ϕℓ(t)| ≤ C2|ϕ(t)|, (1 ≤ ℓ ≤ k + 1) for t ∈ (−∞,∞),

|ϕℓ(t)| ≤ C2|ϕ′(t)|, (2 ≤ ℓ ≤ k + 1) for t ∈ (−∞,∞),

|ϕ(t)| ≤ C2(|t|+ 1)(ln(|t|+ 1) + 1)2|ϕ′(t)|, for t ∈ (−∞,∞).

Finally, setting

RO(Î, ϕ) =
max
x∈Î

|ϕ(x)|

min
x∈Î

|ϕ(x)| ,

we assume that

(3.19) RO(Î, ϕ) +RO(Î, ϕ′) ≤ C2.

for any interval Î of length 1.
Then the cut-off function ω is defined as

(3.20) ω(x) = ϕ

(
x−A

ρ

)
,

where

(3.21) A ∈ I and ρ = θh,

for some positive constant θ ≥ 1. Parameter θ will be specified in the proof of
Lemma 3.7 to produce a sufficiently small constant L.

Remark 3.5. We note that ω(x) is a one-dimensional version of the function
introduced by Guzmán in [10] which was a variation of an analogous function
employed by Johnson et al. in [14]. Guzmán’s modification was necessary in order
to handle the case where b(x) is not bounded away from zero from below, i.e., in
the absence of the reaction term.

Some of the basic properties of ω(x) which follow directly from the properties
(3.16)–(3.19) are gathered in the following lemma.

Lemma 3.6. The cut-off function ω(x) has the following regularity properties

|ω(α)(x)| ≤ Cρ−α|ω(x)|, 1 ≤ α ≤ k + 1, x ∈ Ih,(3.22a)

|ω(α)(x)| ≤ Cρ−α+1|ω′(x)|, 1 ≤ α ≤ k + 1, x ∈ Ih,(3.22b)

|ω(x)| ≤ C(lnN)2|ω′(x)|, x ∈ (0, 1−A),(3.22c)

|ω(x)| = ρ|ω′(x)|, x ∈ (1−A, 1),(3.22d)

RO(Ij , ω) +RO(Ij , ω
′) ≤ C, j = 1, 2, · · · , N(3.22e)
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for some constant C.

Step 3: A weighted norm.
For any (τ, v) ∈ H1(Ih)×H1(Ih) we define the weighted norm

(3.23)

|(τ, v)|2W := ǫ−1 ‖ωτ‖2Ih
+
∥∥∥(b− a′/2)

1
2 ωv

∥∥∥
2

Ih

+
∥∥∥(aω|ω′|)

1
2 v
∥∥∥
2

Ih

+
1

2

N∑

j=0

aj JωjvjK2 + λ
(
ω−
Nv

−
N

)2
.

Step 4: The estimation of |(ηq, ηu)|W .
The following lemma (Lemma 3.7) is essential in the proof of local error esti-

mates. It shows that the error ηu and ηq in the weighted norm can be bounded by
interpolation errors. Some supplementary error estimates are provided in Lemma
3.8 after Lemma 3.7.

Lemma 3.7. Suppose that the positive constant L defined in (3.32) is sufficiently
small. If b− a′/2 > 0, there exists a constant C such that

(3.24) | (ηq, ηu) |W ≤ C
[
ǫ−

1
2 ‖ωξq‖Ih

+ ‖ωξu‖Ih
+
∣∣(wξq)−N

∣∣
]
.

Otherwise, if a = constant and b = 0, there exists a constant C such that

(3.25) | (ηq, ηu) |W ≤ C
[
ǫ−

1
2 ‖ωξq‖Ih

+
∣∣(wξq)−N

∣∣
]
.

Proof. The proof includes three parts. The first part is devoted to transform the
expression of the error in the weighted-norm to an expression suitable for the es-
timation. Then, we estimate each terms of this expression in the second part and
the third part of the proof.

Part I. Since (3.17) and (3.20) imply ω′ < 0, the definition of the weighted norm
(3.23) gives

(3.26)

|(ηq, ηu)|2W = ǫ−1
(
ηq, ω

2ηq
)
+
(
(b− a′/2)ηu, ω

2ηu
)
−
(
aωη2u, ω

′
)

+
1

2

N∑

j=0

ajJ(ωηu)jK2 + λ
(
ω−η−u

)2
N
.

To simplify the right side of the equation, we need to investigate the term
(
aωη2u, ω

′
)
.

By an integration by parts, we have

(3.27)
(aωη2u, ω

′) =

N∑

j=1

[
aj
(
ω−η−u

)2
j
− aj−1

(
ω+η+u

)2
j−1

]

− (a′ωη2u, ω)− (aω′η2u, ω)− 2(aω2ηu, η
′
u),

and

(3.28)
−(aω2ηu, η

′
u) = −

N∑

j=1

[
aj
(
ω−η−u

)2
j
− aj−1

(
ω+η+u

)2
j−1

]

+ (a′ωη2u, ω) + (aηu, (ω
2ηu)

′).

Substituting (3.28) into (3.27) yields

(aωη2u, ω
′) = −1

2

N∑

j=1

[
aj
(
ω−η−u

)2
j
− aj−1

(
ω+η+u

)2
j−1

]

+
1

2
(a′ωη2u, ω) + (aηu, (ω

2ηu)
′),
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which, combined with (3.26), gives

|(ηq, ηu)|2W = ǫ−1
(
ηq, ω

2ηq
)
+
(
(b − a′)ηu, ω

2ηu
)
−
(
aηu, (ω

2ηu)
′
)

+

N−1∑

j=1

aj
(
ω−η−u

)
j
J(ωηu)jK + (aN + λ)(ηu)

−
N (ω2ηu)

−
N .

Noticing that from (2.5) we have

A(ηq , ηu;ω
2ηq, ω

2ηu) = a(ηq, ω
2ηq) + b1(ηu, ω

2ηq)− b1(ω
2ηu, ηq) + c(ηu, ω

2ηu).

By (2.5) and the fact ω ∈ C(I), it is straightforward to verify that

(3.29) |(ηq, ηu)|2W = A(ηq , ηu;ω
2ηq, ω

2ηu)− (ηu, 2ωω
′ηq).

Part II. Next, we are going to estimate the fist term of (3.29). Let Eq :=
ω2ηq − π+(ω2ηq), Eu := ω2ηu − π−(ω2ηu). The estimation of Eq and Eu are listed
in Lemma 3.8 at the end of this section. Using the orthogonality of the compact
form (2.7), we have

(3.30)

A(ηq, ηu;ω
2ηq, ω

2ηu) = A(ηq, ηu;Eq, Eu) +A(ηq, ηu;π
+(ω2ηq), π

−(ω2ηu))

= A(ηq, ηu;Eq, Eu) +A(ξq , ξu;π
+(ω2ηq), π

−(ω2ηu))

= R1 +R2.

(1) Consider R1. Define ā|Ij =
1

hj

∫

Ij

a(x)dx for all j = 1, 2, · · · , N . Therefore,

standard approximation theory implies that ‖a− ā‖L∞(Ij) ≤ Chj‖a‖W 1
∞

(Ij) for any
j = 1, 2, · · · , N . Instead of the expression A(ηq , ηu;Eq, Eu) as in (2.6), we use

A(ηq, ηu;Eq, Eu) = a(ηq, Eq)− b2(Eq, ηu)− b1(ηq, Eu) + c(ηu, Eu),

where

a(ηq, Eq) = ǫ−1 (ηq, Eq) ,

−b2(Eq , ηu) = − (Eq, η
′
u)− (Eqηu)

+
0 +

N−1∑

j=1

(Eq)
+
j J(ηu)jK + (Eqηu)

−
N

= (Eqηu)
−
N ,

−b1(ηq , Eu) = −(Eu, η
′
q) +

N−1∑

j=1

(Eu)
−
j J(ηq)jK,

c(ηu, Eu) = (bηu, Eu) + (aEu, η
′
u)−

N−1∑

j=1

aj(Eu)
+
j J(ηu)jK + a0(Euηu)

+
0

where we apply (3.6) and an integration by parts to c(ηu, Eu). Adding these four
terms give rise to

R1 = ǫ−1(ηq, Eq) + (bηu, Eu) + ((a− ā)Eu, η
′
u) + (Eqηu)

−
N −

N−1∑

j=0

aj(Eu)
+
j J(ηu)jK

= S1 + S2 + S3.

Here we inserted one expression (Eu, āη
′
u), which equals zero in view of (3.6).
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Now we turn to the estimate of S1. We first apply the Schwarz’s inequality, the
inverse inequality and (3.22e) to obtain

ǫ−1(ηq, Eq)Ij ≤ Cǫ−1‖ωηq‖Ij‖ω−1Eq‖Ij ≤ Cθ−1ǫ−1 ‖ωηq‖2Ij ,

(bηu, Eu)Ij ≤ C‖ωηu‖Ij‖ω−1Eu‖Ij ≤ C lnNh
1
2 θ−

1
2

∥∥∥(aω|ω|) 1
2 ηu

∥∥∥
2

Ij
,

((a− ā)Eu, η
′
u)Ij ≤ Ch‖a‖W 1

∞
,Ij‖Eu‖Ij‖η′u‖Ij ≤ C‖ωηu‖Ij‖ω−1Eu‖Ij

≤ C lnNh
1
2 θ−

1
2

∥∥∥(aω|ω|) 1
2 ηu

∥∥∥
2

Ij
,

for any j = 1, 2, · · · , N . Here we also used (3.22a)-(3.22e), and error estimates
(3.40a)-(3.40b). Combining the above inequalities for all Ij ∈ Ih yields

(3.31)
S1 ≤ C

[
θ−1ǫ−1 ‖ωηq‖2Ih

+ θ−
1
2 h

1
2 lnN

∥∥∥(aω|ω|) 1
2 ηu

∥∥∥
2

Ih

]

≤ CL|(ηq, ηu)|2W ,

where the constant L is defined as

(3.32) L = max

{√
1

θ
,

√
h

θ
lnN,

√
ǫ

λh

1

θ
,
ǫ

θh

}
.

Consider S2 and S3. From definition of (Eq , Eu) and (3.40c)-(3.40d),

∣∣∣
(
ω−1Eq

)−
N

∣∣∣ =
∣∣∣∣
∫

IN

ω−1E′
qdx

∣∣∣∣ ≤ C
√
hN
∥∥ω−1E′

q

∥∥
IN

≤ Ch−
1
2 θ−1 ‖ωηq‖IN ,

(3.33a)

∣∣∣
(
ω−1Eu

)+
j

∣∣∣ =
∣∣∣∣∣

∫

Ij+1

ω−1E′
udx

∣∣∣∣∣ ≤ C
√
hj
∥∥ω−1E′

u

∥∥
Ij+1

≤ Cθ−
1
2

∥∥∥(aω|ω|) 1
2 ηu

∥∥∥
Ij+1

,

(3.33b)

for any j = 0, 1, · · · , N − 1. By Schwarz’s inequality, (3.33a) and (3.22e), we have

(3.34)
S2 ≤ Cλ−

1
2

∣∣∣
(
ω−1Eq

)−
N

∣∣∣
(
λ
(
ωη−u

)2
N

) 1
2

≤ Cλ−
1
2 θ−1h−

1
2 ‖ωηq‖Ih

(
λ
(
ωη−u

)2
N

) 1
2 ≤ CL|(ηq, ηu)|2W .

Here we used the general assumption ǫ < h. Meanwhile, it follows from (3.33b)
that

(3.35)

S3 ≤ C

N−1∑

j=0

|ajJ(ωηu)jK| ·
∣∣∣
(
ω−1Eu

)+
j

∣∣∣

≤ C

N∑

j=1

|ajJ(ωηu)jK| · θ−
1
2

∥∥∥(aω|ω|) 1
2 ηu

∥∥∥
Ij+1

≤ Cθ−
1
2




N∑

j=1

|ajJ(ωηu)jK|2



1
2

·
∥∥∥(aω|ω|) 1

2 ηu

∥∥∥
Ij+1

≤ CL|(ηq, ηu)|2W .

The combination of the estimates (3.31)-(3.35) yields

(3.36) R1 ≤ CL|(ηq, ηu)|2W .
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(2) The estimation of R2. The expression of R2 can be written as

R2 = A(ξq, ξu;π
+(ω2ηq), π

−(ω2ηu))

= a(ξq, π
+(ω2ηq)) + b1(ξu, π

+(ω2ηq)) + b2(ξq , π
−(ω2ηu)) + c(ξu, π

−(ω2ηu))

where these bilinear forms can be simplified by interpolation operators (3.6)

a(ξq, π
+(ω2ηq)) = ǫ−1

(
ξq, π

+(ω2ηq)
)
,

b1(ξu, π
+(ω2ηq)) =

(
ξu,
[
π+(ω2ηq)

]′)−
N−1∑

j=1

(ξu)
−
j Jπ+(ω2ηq)jK = 0,

b2(ξq , π
−(ω2ηu)) =

(
ξq,
[
π−(ω2ηu)

]′)−
N−1∑

j=0

(ξq)
+
j Jπ−(ω2ηu)jK − (ξq)

−
N

(
π−(ω2ηu)

)−
N

= −(ξq)
−
N

(
π−(ω2ηu)

)−
N
,

c(ξu, π
−(ω2ηu)) =

(
(b− a′)ξu, π

−(ω2ηu)
)
−
(
aξu,

[
π−(ω2ηu)

]′)

+

N−1∑

j=1

aj(ξu)
−
j Jπ−(ω2ηu)

′
jK + (aN + λ)(ξu)

−
N

(
π−(ω2ηu)

)−
N

=
(
(b− a′)ξu, π

−(ω2ηu)
)
−
(
aξu, π

−(ω2ηu)
′
)
.

Adding the above four terms yields

R2 = ǫ−1
(
ξq, π

+(ω2ηq)
)
+
(
(b − a′)ξu, π

−(ω2ηu)
)
−
(
aξu,

[
π−(ω2ηu)

]′)

− (ξq)
−
N

(
π−(ω2ηu)

)−
N

= T1 + T2 + T3 + T4.

We will estimate these four terms separately. By the facts π+(ω2ηq) = ω2ηq − Eq,
π−(ω2ηu) = ω2ηu − Eu, the Schwarz’s inequality, the triangle inequality, (3.22e)
and (3.40a), we obtain

T1 = ǫ−1
(
ξq, ω

2ηq − Eq

)

≤ Cǫ−1 ‖ωξq‖2Ih
+

1

8
ǫ−1 ‖ωηq‖2Ih

+
1

8
ǫ−1

∥∥ω−1Eq

∥∥2
Ih

≤ Cǫ−1 ‖ωξq‖2Ih
+ (

1

8
+ CL)|(ηq, ηu)|2W .

If a = constant and b = 0, then we have b−a′ = 0, which implies T2 = 0. Otherwise,
if b−a′/2 > 0, using Schwarz’s inequality, the triangle inequality, (3.22e) and (3.40b)
we obtain

T2 =
(
(b − a′)ξu, ω

2ηu − Eu

)

≤ C ‖ωξu‖2Ih
+

1

8

∥∥∥(b− a′/2)
1
2ωηu

∥∥∥
2

Ih

+
∥∥ω−1Eu

∥∥2
Ih

≤ C ‖ωξu‖2Ih
+ (

1

8
+ CL)|(ηq, ηu)|2W .



362 H. ZHU AND Z. ZHANG

Because of (3.6), T3 = 0 if a(x) = constant. Otherwise, if b− a′/2 > 0 one has

T3 =
(
(a− ā)ξu, I

−(ω2ηu)
′
)
+
(
āξu, I

−(ω2ηu)
′
)

=
(
(a− ā)ξu, (ω

2ηu − Eu)
′
)

= ((a− ā)ξu, 2ωω
′ηu) +

(
(a− ā)ξu, ω

2η′u
)
+ ((a− ā)ξu, E

′
u)

≤ Ch‖a‖W 1
∞

(I)‖ωξu‖Ih

(
‖ω′ηu‖Ih

+ ‖ωη′u‖Ih
+
∥∥ω−1E′

u

∥∥
Ih

)

≤ Ch‖ωξu‖Ih

(
ρ−

1
2

∥∥∥(aω|ω′|) 1
2 ηu

∥∥∥
Ih

+ h−1
∥∥∥(b− a′/2)

1
2ωηu

∥∥∥
Ih

)

≤ C ‖ωξu‖2Ih
+

1

8

∥∥∥(b − a′/2)
1
2ωηu

∥∥∥
2

Ih

+ CL|(ηq, ηu)|2W .

Here we used the inequality ‖ωη′u‖Ij ≤ Cc
− 1

2

0 h−1
∥∥∥(b − a′/2)

1
2ωηu

∥∥∥
Ij

for any j =

1, 2, · · · , N , which is a consequence of inverse inequality and (3.22e). Compared
with other two coefficients, the coefficient in the first term could be relatively large.

Note that
(
π−(ω2ηu)

)−
N

= (ω2ηu)
−
N . Using (3.6) one gets

T4 = −(ξq)
−
N

(
π−(ω2ηu)

)−
N

≤
∣∣(wξq)−N

∣∣ ·
∣∣(ωηu)−N

∣∣

≤ Ca−1
N

∣∣(wξq)−N
∣∣2 + 1

8

[
1

2
aN(ω−

N (ηu)
−
N )2

]
.

If b(x) = 0 and a(x) = constant, combining error estimates of T1 − T4 yields

(3.37) R2 ≤ C
[
ǫ−1 ‖ωξq‖2Ih

+
∣∣(wξq)−N

∣∣2
]
+

(
3

8
+ CL

)
|(ηq , ηu)|2W ,

Otherwise, if b− a′/2 > 0, we have

(3.38) R2 ≤ C
[
ǫ−1 ‖ωξq‖2Ih

+ ‖ωξu‖2Ih
+
∣∣(wξq)−N

∣∣2
]
+

(
3

8
+ CL

)
|(ηq, ηu)|2W .

Part III. The estimation of the second term of (3.29) follows (3.22c)-(3.22d)

(3.39)

−(ηu, 2ωω
′ηq) ≤ Cǫ−

1
2 ‖ωηq‖Ih

· ǫ 1
2 ‖ω′ηu‖Ih

≤ 1

8
ǫ−1 ‖ωηq‖2Ih

+ Cǫρ−1
∥∥∥(ω|ω′|) 1

2 ηu

∥∥∥
2

Ih

≤ (
1

8
+ CL)|(ηq , ηu)|2W .

Therefore, when b(x) = 0, a(x) = constant, we combine (3.36), (3.37) and (3.39)
to obtain

|(ηq, ηu)|2W ≤ C
[
ǫ−1 ‖ωξq‖2Ih

+
∣∣(wξq)−N

∣∣2
]
+ |(ηq, ηu)|2W .

Similarly, if b− a′/2 > 0, we combine (3.36), (3.38) and (3.39)

|(ηq, ηu)|2W ≤ C
[
ǫ−1 ‖ωξq‖2Ih

+ ‖ωξu‖2Ih
+
∣∣(wξq)−N

∣∣2
]
+

(
1

2
+ CL

)
|(ηq, ηu)|2W .

For each assumption of the coefficients a and b, local error estimates (3.24) and
(3.25) are established by taking sufficiently small L and then moving the last term
to the left side of the inequality. �
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Lemma 3.8. Suppose Eq := ω2ηq − π+(ω2ηq) and Eu := ω2ηu − π−(ω2ηu). Then
there exists a constant C such that the estimates

∥∥ω−1Eq

∥∥
Ij

≤ Cθ−1 ‖ωηq‖Ij ,(3.40a)

∥∥ω−1Eu

∥∥
Ij

≤ Ch
1
2

j θ
− 1

2

∥∥∥(aω|ω′|) 1
2 ηu

∥∥∥
Ij
,(3.40b)

∥∥ω−1E′
q

∥∥
Ij

≤ Ch−1
j θ−1 ‖ωηq‖Ij ,(3.40c)

∥∥ω−1E′
u

∥∥
Ij

≤ Ch
− 1

2

j θ−
1
2

∥∥∥(aω|ω′|) 1
2 ηu

∥∥∥
Ij
,(3.40d)

hold for any j = 1, 2, · · · , N .

Proof. By Lemma 3.2, the properties of ω (3.22a)-(3.22e), and inverse inequality,
we get that for any j = 1, 2, · · · , N , one has

∥∥ω−1Eq

∥∥
Ij

≤ C|ω−1|L∞(Ij)

∥∥ω2ηq − π+(ω2ηq)
∥∥
Ij

≤ C|ω−1|L∞(Ij)

∑

|α+β+γ|=k+1,γ≤k

hk+1
j

∥∥DαωDβωDγηq
∥∥
Ij

≤ C|ω−1|L∞(Ij)

∑

|α+β+γ|=k+1,γ≤k

hk+1
j ρ−(α+β)h−γ

j

∥∥ω2ηq
∥∥
Ij

≤ C|ω−1|L∞(Ij)θ
−1
∥∥ω2ηq

∥∥
Ij

≤ Cθ−1 ‖ωηq‖Ij ,

and∥∥ω−1Eu

∥∥
Ij

≤ C|ω−1|L∞(Ij)

∥∥ω2ηu − π−(ω2ηu)
∥∥
Ij

≤ C|ω−1|L∞(Ij)

∑

|α+β+γ|=k+1,γ≤k

hk+1
j

∥∥DαωDβωDγηu
∥∥
Kj

≤ C|ω−1|L∞(Ij)

∑

|α+β+γ|=k+1,γ≤k

hk+1
j ρ−(α+β)+ 1

2 h−γ
j

∥∥∥ω(aω|ω′|) 1
2 ηu

∥∥∥
Ij

≤ C|ω−1|L∞(Ij)h
1
2

j θ
− 1

2

∥∥∥ω(aω|ω|) 1
2 ηu

∥∥∥
Ij

≤ Ch
1
2

j θ
− 1

2

∥∥∥(aω|ω|) 1
2 ηu

∥∥∥
Ij
.

Another two inequalities can be verified in a similar way to (3.40a) and (3.40b).
Note that π+v = v if v is a polynomial of degree at most k. By the Bramble-Hilbert
Lemma, the properties of ω (3.22a)-(3.22e) and the inverse inequality,

∥∥ω−1Eq

∥∥
Ij

≤ C|ω−1|L∞(Kj)

∑

|α+β+γ|=k+1,γ≤k

hkj
∥∥DαωDβωDγηq

∥∥
Ij

≤ Ch−1
j θ−1 ‖ωηq‖Ij ,

and
∥∥ω−1Eu

∥∥
Ij

≤ C|ω−1|L∞(Kj)

∑

|α+β+γ|=k+1,γ≤k

hkj
∥∥DαωDβωDγηu

∥∥
Ij

≤ Ch
− 1

2

j θ−
1
2

∥∥∥(aω|ω′|) 1
2 ηu

∥∥∥
Ij
.

Here constant C depends on RO(Ij , ω) and RO(Ij , ω
′). �

Step 5. Now we will prove Theorem 2.2.
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Proof. (1) If b− a′/2 > 0, using a property of ω (3.22c), we have

(3.41) ‖ηu‖I0
≤ C

∥∥∥(b− a′/2)
1
2ωηu

∥∥∥
I0

≤ C|(ηq , ηu)|W ,

(3.42) ǫ−
1
2 ‖ηq‖I0

≤ Cǫ−
1
2 ‖ωηq‖I0

≤ C|(ηq, ηu)|W .

The definition of ω implies that

ω(x) ≤ w (A+ s ln(1/h)ρ) ≤ hs, ∀ x ∈ I \ I+
s .

Set s = m+ k+1. The above estimate, associated with Lemma 3.3, Lemma 3.4
and (3.24), gives rise to

(3.43)

|(ηq, ηu)|W
≤ C

[
ǫ−

1
2 ‖ωξq‖Ih

+ ‖ωξu‖Ih
+
∣∣(wξq)−N

∣∣
]

≤ C
[
ǫ−

1
2 ‖ξq‖I+

s
+ ‖ξu‖I+

s

]
+ Chs

[
ǫ−

1
2 ‖ξq‖Ih\I

+
s
+ ‖ξu‖Ih\I

+
s
+
∣∣(ξq)−N

∣∣
]

≤ Chk+1‖u‖Hk+2(I+

k+m+1
) + Chsǫ−

1
2

≤ Chk+1.

On the other hand, the interpolation error estimate on I0 can be derived from
Lemma 3.3, i.e.,

(3.44) ǫ−
1
2 ‖ξq‖I0

+ ‖ξu‖I0
≤ Chk+1‖u‖Hk+2(I0) ≤ Chk+1.

Then, (2.9) follows the combination of (3.41)-(3.44).
(2) Consider the error estimate in the case of a(x) = constant and b(x) = 0.

Instead of (3.41), we use

(3.45) ‖ηu‖I0
≤ C‖ωηu‖I0

≤ C lnN
∥∥∥(aω|ω′|)

1
2 ηu

∥∥∥
I0

≤ C lnN |(ηq, ηu)|W .

By Lemma 3.3, Lemma 3.4 and (3.25), we obtain the same error bound as (3.43)

|(ηq, ηu)|W ≤ C
[
ǫ−1/2‖ωξq‖Ih

+
∣∣(wξq)−N

∣∣
]
≤ Chk+1,

which, combined with (3.44) and (3.45), proves the inequality (2.10).
(3) If we let s = 2m+ k + 1, the estimate (3.45) becomes

|(ηq, ηu)|W ≤ C
[
ǫ−

1
2 ‖ωξq‖Ih

+
∣∣(wξq)−N

∣∣
]

≤ C
√
ǫhk+1‖u‖Hk+2(I+

k+2m+2
) + Chsǫ−

1
2N

≤ C
√
ǫhk+1.

Therefore, the combination of (3.42),(3.45) leads to

‖ηu‖I0
+ ǫ−1‖ηq‖I0

≤ Chk+1,

which, combined with (3.10), completes the proof of (2.11). �

4. Numerical Results

In this section, numerical results are presented to verify theoretical results. We
first consider the LDG method in Section 4.1. The numerical experiments for the
SDFEM are presented in Section 4.2. Then we compare it with the numerical
results of the SDFEM in Section 4.3. Uniform meshes with N elements are used for
all examples. Similar numerical results are observed when quasi-uniform meshes
are used.
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4.1. The numerical experiments for the LDG method. We use uniform
meshes and choose ǫ = 10−5, 10−10. The stabilization parameter is chosen to be λ =
1/h. In order to observe the order of convergence of the error, at each refinement
of the mesh, we compute the approximate order of convergence as follows. Denote

by In the subdomain Ih\
N⋃

i=N−n+1

Ii for any integer 0 ≤ n ≤ N . Define the local

error of (ǫ−1eq, eu) = (u′ − ǫ−1Q, u− U) as

Ek
q (N,n) :=

∥∥ǫ−1eq
∥∥
In
, Ek

u(N,n) := ‖eu‖In
,

where the index k = 1, 2, 3 indicates the choice of the degree of approximation
polynomial space. The corresponding rates of convergence are computed by using
the formula

rkq (N,n) := log2

(
Ek

q (N,n)

Ek
q (2N,n)

)
, rku(N,n) := log2

(
Ek

u(N,n)

Ek
u(2N,n)

)
,

for any k = 1, 2, 3.
Let nj = j JlnNK, where JsK denotes the smallest integer that is greater than s.

If n = nj , the number of elements dropped depends on the total number of elements
N (or 2N) when calculating the errors and rates. Otherwise, if n is a fixed positive
integer, it is independent of N . In the following analysis, Table 1, and Table 2, we
will drop parameter ‘N ’ in these notations and will use notations Ek

q (n), E
k
u(n),

rkq (n) and r
k
u(n).

Example 4.1. We apply the LDG method to the test problem (1.1) with a(x) = 1,
b(x) = 0, and f(x) = sinπx such that the exact solution u(x) is

u(x) =
1 + e−1/ǫ − 2e−(1−x)/ǫ

π(1 + π2ǫ2)(1 − e−1/ǫ)
+
ǫπ sinπx− cosπx

π(1 + π2ǫ2)
.

Table 1 displays the errors
(
Ek

q (n), E
k
u(n)

)
and convergence rates

(
rkq (n), r

k
u(n)

)

for ǫ = 10−5 and 10−10, respectively. The main factor hk+1 of the convergence
rate in (2.9) of Theorem 2.2 is observed. Table 1 illustrates that the L2 error
converges at an optimal rate when the last n1 elements are dropped, which verifies
our theoretical results. It also shows that when ǫ ≪ h is extremely small (for
example, ǫ = 10−10), the L2 errors on a larger subdomain converge at the optimal
rate. Actually, for the k-th degree polynomial approximation, we only cut off k
elements from I near the outflow boundary to get I0. It means that the same
order convergence rate can be obtained even when we discard much less elements
than what we did in the theoretical error estimates. The reason is because the
boundary layer is much more narrow when ǫ ≪ h and the LDG method is locally
and globally conservative, so that it can capture the solution and its derivative on
the margin area of the boundary layer without producing a wide artificial layer.
Once again, this confirms the observations of Figure 4.4 and Figure 4.6 in [18], i.e.,
DG methods is more ‘local’ than traditional finite element method.

The errors of Table 1 are plotted in Figure 1 and Figure 2. To display the rapid
change of the errors on the last element IN of the uniform mesh when ǫ = 10−10,
we combine the graph of the errors of Ek(N, 0) and some related graphs with the
graph of Ek(N, k). The first graph of Figure 2 shows that the L2 error of the LDG
linear approximation to the exact solution converges at the optimal rate even on
uniform meshes.
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Table 1. L2 errors of LDG method and convergence rates of Ex-
ample 1 for ǫ = 10−5 and ǫ = 10−10.

ǫ = 10−5

N E1
u(n1) r1u(n1) E2

u(n1) r2u(n1) E3
u(n1 + 1) r3u(n1 + 1)

32 1.15e-04 - 1.03e-06 - 5.28e-09 -
64 3.04e-05 1.92 1.29e-07 2.99 3.54e-10 3.90
128 7.92e-06 1.94 1.62e-08 3.00 2.33e-11 3.93
256 2.01e-06 1.98 2.03e-09 3.00 1.49e-12 3.97
512 5.09e-07 1.99 2.54e-10 3.00 9.42e-14 3.98
N E1

q (n1) r1q (n1) E2
q (n1) r2q(n1) E3

q (n1 + 1) r3q(n1 + 1)

32 2.52e-04 - 1.84e-06 - 1.29e-008 -
64 6.34e-05 1.99 2.42e-07 2.92 8.12e-10 3.99
128 1.59e-05 2.00 3.16e-08 2.94 5.09e-11 4.00
256 3.97e-06 2.00 4.02e-09 2.98 3.2187e-12 3.98
512 9.93e-07 2.00 5.08e-10 2.98 6.74e-13 2.26

ǫ = 10−10

N E1
u(1) r1u(1) E2

u(2) r2u(2) E3
u(3) r3u(3)

32 1.28e-04 - 1.04e-06 - 5.67e-09 -
64 3.25e-05 1.98 1.299e-07 3.00 3.73e-10 3.93
128 8.19e-06 1.99 1.62e-08 3.00 2.39e-11 3.96
256 2.05e-06 1.99 2.03e-09 3.00 1.51e-12 3.98
512 5.15e-07 2.00 2.54e-10 3.00 9.53e-14 3.99
N E1

q (1) r1q(1) E2
q (2) r2q(2) E3

q (3) r3q(3)

32 2.54e-04 - 1.97e-06 - 1.30e-08 -
64 6.35e-05 2.00 2.55e-07 2.95 8.14e-10 4.00
128 1.59e-05 2.00 3.24e-08 2.98 5.09e-11 4.00
256 4.10e-06 1.95 4.08e-09 2.99 3.30e-12 3.95
512 3.11e-06 0.40 5.13e-10 2.99 6.65e-13 2.31

4.2. The numerical experiments for the SDFEM. The SDFEM solves (1.1)
for uh ∈ Vh by the following scheme

ǫ(u′h, v
′) + (au′h, v) + (buh, v) + δ(−ǫu′′h + au′h + buh, av

′) = (f, v) + δ(f, av′),

where the parameter δ = 1/h and

Vh =
{
v ∈ H1

0 (I) | v|Ij ∈ P k(Ij), ∀ Ij ∈ Ih
}
.

Remark 4.2. In the literature, local error estimates of the SDFEM for the solution
of the singularly perturbed problem on two-dimensional domain Ω were obtained
in [14]. Similar convergence rates were proved for discontinuous Galerkin (DG)
methods in [10] and for Continuous Interior Penalty (CIP) Method in [2]. The L2

error bound O(ln(1/h)hk+
1
2 ) was established for these methods on a subdomain

Ω0 ⊂ Ω where ∂Ω0 is O(h ln(1/h)) distance away from the outflow boundary of
Ω. Here h denotes the maximum size of the quasi-uniform mesh, uh denotes the
numerical solution.

Similar to the LDG method, we denote the error and the convergence rate by:

Ek
u(N,n) := ‖u− uh‖In

, Ek
u′(N,n) :=

√
h ‖(u − uh)

′‖In
,
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Figure 1. The convergence rates of the LDG method for k =
1, 2, 3, ǫ = 10−5.

rku(N,n) := log2
Ek

u(N,n)

Ek
u(2N,n)

, rku′(N,n) := log2
Ek

u′(N,n)

Ek
u′ (2N,n)

,

for k = 1, 2, 3. This definition has slight difference from the one defined in Section
4.1.

Example 4.3. To compare with the LDG method, we apply the SDFEM to the
test problem (1.1) with the same exact solution as Example 4.1.

Table 2 displays the L2 errors
(
Ek

q (n), E
k
u(n)

)
and convergence rates

(
rkq (n), r

k
u(n)

)

on subdomain I0 for ǫ = 10−5 and 10−10, respectively. The main factor hk+1/2 of
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Figure 2. The convergence rates of the LDG method for k =
1, 2, 3, ǫ = 10−10.

the convergence rate for the approximation of
√
hu′ is observed, while the approxi-

mation of u converges at the optimal rate O(hk+1). Figure 3 and Figure 4 illustrate
that the above rates of convergence can be seen when collecting the errors on a sub-
domain I0 which is O(h ln(1/h)) away from the outflow boundary. This subdomain
is much smaller than the subdomain used in the LDG method. Actually, for the
polynomial approximation of degree k, about (k + 1) lnN elements need to be cut
off to maintain the rates of convergence for different values of ǫ, which is observed
from Figure 3 and Figure 4.

4.3. The comparison of the LDG method and the SDFEM. The compari-
son of the data from Table 1 and Table 2 shows that L2 errors of the LDG method
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Table 2. L2 errors of SDFEM and convergence rates of Example
2 for ǫ = 10−5 and ǫ = 10−10.

ǫ = 10−5

N E1
u(n2) r1u(n2) E2

u(n3) r2u(n3) E3
u(n4) r3u(n4)

32 2.41e-04 - 1.80e-06 - 6.64e-08 -
64 6.28e-05 1.94 2.02e-07 3.16 2.35e-09 4.82
128 1.60e-05 1.97 2.30e-08 3.13 8.47e-11 4.79
256 4.00e-06 2.00 2.69e-09 3.10 3.24e-12 4.71
512 9.80e-07 2.03 3.21e-10 3.06 2.93e-13 3.47
N E1

u′(n2) r1u′ (n2) E2
u′ (n3) r2u′ (n3) E3

u′(n4) r3u′(n4)
32 2.81e-03 - 4.10e-05 - 4.58e-07 -
64 1.08e-03 1.38 7.87e-06 2.38 3.12e-08 3.88
128 4.08e-04 1.40 1.41e-06 2.48 2.63e-09 3.57
256 1.49e-04 1.45 2.50e-07 2.50 2.38e-10 3.46
512 5.39e-05 1.48 4.41e-08 2.50 2.25e-11 3.41

ǫ = 10−10

N E1
u(n2) r1u(n2) E2

u(n3) r2u(n3) E3
u(n4) r3u(n4)

32 2.42e-04 - 1.80e-06 - 6.64e-08 -
64 6.32e-05 1.94 2.02e-07 3.16 2.36e-09 4.82
128 1.62e-05 1.96 2.30e-08 3.13 8.52e-11 4.79
256 4.11e-06 1.98 2.69e-09 3.10 3.28e-12 4.70
512 1.04e-06 1.99 3.22e-10 3.06 2.94e-13 3.48
N E1

u′(n2) r1u′ (n2) E2
u′ (n3) r2u′ (n3) E3

u′(n4) r3u′(n4)
32 2.81e-03 - 4.10e-05 - 4.58e-07 -
64 1.08e-03 1.39 7.87e-06 2.38 3.12e-08 3.88
128 4.08e-04 1.40 1.41e-06 2.48 2.63e-09 3.57
256 1.49e-04 1.45 2.51e-07 2.50 2.39e-10 3.46
512 5.39e-05 1.47 4.43e-08 2.50 2.26e-11 3.40

are smaller than that of SDFEM, although the errors are collected from more mesh
elements. The error curves in Figure 1 - Figure 4 confirms the above conclusion.
Moreover, the LDG approximation of the derivative converges at a optimal rate
O(hk+1), which is the same as LDG approximation of u.

Numerical results shows that a small artificial layer does exist for small ǫ if the
mesh size h is not very large. Furthermore, if we choose ǫ≪ h is extremely small, it
is observed that the LDG solution U has no oscillation on uniform mesh. The reason
is that the huge error caused by the boundary layer, which is inside one element,
will not pollute local errors on other elements. This property does not hold true for
the SDFEM. As stated in Section 4.2, the artificial layer of the SDFEM contains
certain amount of mesh elements for different values of ǫ. To illustrate this point
visually, we plot the exact solution (solid blue curve), nodal values of the LDG
solution (red star) the SDFEM solution(red star) of the Example 4.1 together in
Figure 5 when ǫ = 10−10, k = 1 and N = 32. The graphs for the case ǫ = 10−5 are
very similar to Figure 5.

The first column of Figure 5 includes the graph of the numerical solution and
numerical derivative of the LDG method. The second column is about the SDFEM,
with penalty parameters δ = 1/h. It can be seen that the SDFEM solution exhibits
a numerical layer with width O(h ln(1/h)) when δ = 1/h. Because of the large
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Figure 3. The convergence rates of SDFEM for k = 1, 2, 3, ǫ = 10−5.

derivative on the last mesh element IN , the difference of the numerical derivatives
in the second row of Figure 5 is not obvious. To see more details, we drop the last
element IN and plot the graph of the numerical derivatives on a subdomain I \ IN
in the third row of Figure 5. It can be seen that the SDFEM approximation for
the derivative also has a artificial layer, which is wider than LDG.

All these numerical observations seems to support the conclusion that the LDG
method capture the boundary layer of Problem (1.1) more locally than FEM and
SDFEM.
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Figure 4. The convergence rates of SDFEM for k = 1, 2, 3, ǫ = 10−10.

5. Concluding remarks

In this article, we investigate the LDG discretization on uniform and quasi-
uniform mesh for solving singularly perturbed problems in one dimensional setting.
Based on a mixed discretization for the elliptic part, we establish an optimal rate
of convergence on a subdomain, which is O(h(ln 1/h)) distance away from the out-
flow boundary. Numerical experiments indicate that the our theoretical results are
sharp. Numerical experiments also show that the LDG method can capture the
solution and its derivative on the margin area of the boundary layer without pro-
ducing a wide artificial layer. A comparison of the LDG method and SDFEM are
provided.
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Figure 5. The LDG solution and the exact solution (column 1);
the SDFEM solution and the exact solution (column 2). (k = 1,
ǫ = 10−10)
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