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Abstract. In this article, we investigate the decay rate of the solutions of two water wave models

with a nonlocal viscous term written in the KdV form

ut + ux + βuxxx +

√
ν
√
π

∫ t

0

ut(s)√
t− s

ds+ uux = νuxx.

and

ut + ux − βutxx +

√
ν
√
π

∫ t

0

ut(s)√
t− s

ds+ uux = νuxx.

in the BBM form. In order to realize this numerical study, a numerical scheme based of the
Gα-scheme is developed.

Key words. waterwaves, viscous asymptotical models, long-time asymptotics, fractional deriva-

tives.

1. Introduction

Modeling the effect of viscosity on the gravity waves is a challenging issue and
much research on this subject has been carried out during last decade. After the
pionneer work of Kakutani and Matsuuchi [14], P. Liu and T. Orfila [15], and D.
Dutykh and F. Dias [12] have derived, independently, asymptotical models for long
gravity waves on viscous shallow water. These models are Boussinesq type systems
with a non local in time viscous terms. A one-way reduction of these models was
adressed in [11].

Computing the decay rate for solutions of that type of problem is also a chal-
lenging issue [1, 3, 4, 8]. In a previous work [7], Chen et al. were concerned with
computing both theoretically and numerically the decay rate of solutions to a water
wave model with a nonlocal viscous dispersive term. This model is the following

(1) ut + ux + βuxxx +

√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ γuux = αuxx,

where u is the horizontal velocity of the fluid. This equation requires some com-
ments: the usual diffusion is −αuxx, while βuxxx is the geometric dispersion and√
ν√
π

∫ t
0
ut(s)√
t−sds stands for the nonlocal diffusive-dispersive term and models the vis-

cosity. Here α, β, γ and ν are non negative parameters dedicated to balance or
unbalance the effects of viscosity and dispersion versus the nonlinear effects. Specif-
ically the authors have obtained the following global existence and decay results
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for the problem (1) with β = 0 (see also [13] for β = 1 and γ = α = 0) with small
initial datum. More precisely, they state the following theorem.

Theorem 1 (Chen et al., 2009). Consider (1) with β = 0 supplemented with
initial data u0 ∈ L1(R) ∩ L2(R). There exists ε > 0, C(u0) > 0 such that
for all ‖u0‖L1(R) < ε, there exists a unique global solution u ∈ C(R+;L2

x(R)) ∩
C1(R+;H−2

x (R)). In addition, u satisfies

(2) t
1
2 ‖u(t)‖L∞x (R) + t

1
4 ‖u(t)‖L2

x(R) 6 C(u0)

and u solves the fixed point equation

(3) u(t, x) = K(t, .) ? u0 +N ∗ u2,

where K and N are given by

K(t, x) =
1

2
√
πt
e−

x2

4t e−x
−
(

1 +
1

2

∫ +∞

0

e−
µ2

4t −
µ|x|
2t −

µ
2 dµ

)
and

N(t, x) =
1

2
√
πt
∂x

[
e−

x2

4t −x
−
(

1− 1

2

∫ +∞

0

e−
µ2

4t −
µ|x|
2t −

µ
2 dµ

)]
,

with x− = max(−x, 0), ? denotes the usual convolution product in space and ∗ the
time-space convolution product defined by

v ∗ w(t, x) =

∫ t

0

∫
R
v(s, y)w(t− s, x− y) dx dy

whenever the integrals make sense.

The proof of this theorem can be found in [7].
We also consider the following equivalent BBM (Benjamin-Bona-Mahony) form

of the equation (1)

(4) ut + ux − βutxx +

√
ν√
π

∫ t

0

ut(s)√
t− s

ds+ γuux = αuxx.

In this article we investigate the asymptotical decay rate of the solutions with
several numerical simulations for the two asymptotic models (1) and (4). First, we
will compare our numerical simulations to the results of theorem 1 and those from
[7] in order to validate the numerical scheme developed in this article. Then, we
will discuss in the sequel the role of respectively the non local viscous terms, the
geometric dispersion and the nonlinearity.

This article is organized as follows. In the second section, we recall some defi-
nitions and give some notations used in this article, such as the Fourier transform
and the Gear operator which will be used to approximate the non local viscous

term

√
ν√
π

∫ t

0

ut(s)√
t− s

ds. In section 3, after a presentation of the numerical scheme,

we perform several numerical simulations for equation (1). In the last section, we
numerically analyze the decay rate of the solutions for equations (4) with different
values of the parameters (α, β, γ and ν).

2. Some notations and definitions

2.1. Notations. Let us introduce some notations that we shall use in the sequel.
The Fourier transform of a function u in L1(R) reads

û(ξ) = F(u)(ξ) =

∫
R
u(x) e−ixξ dx.
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We expect the decay rate of the solution to be O(ta), with a < 0, namely

||u(t, .)||L2
x
≈ Cta or ||u(t, .)||L∞x ≈ Ct

a′ for t large, the ratios

R2 =

log

(
||u(t+∆t,.)||L2

x

||u(t,.)||L2
x

)
log( t+∆t

t )
and R∞ =

log
(
||u(t+∆t,.)||L∞x
||u(t,.)||L∞x

)
log( t+∆t

t )

approach a and a′ as t→∞. Here ∆t denotes the time step. We use, in the sequel,
the ratios R2 and R∞ to describe the decay rate of the solutions.

2.2. Outline of the Gα-scheme. In [7], the time dependent equation

(5) ut +

√
ν√
π

∫ t

0

ut(s)√
t− s

ds = f(t), u(t = 0) = u0,

is discretized writting u as a convolution

(6) u(t) = u0 +

∫ t

0

N(ν(t− s))f(s) ds

where N(t) =
1√
π
et
∫ +∞

t

e−s√
s
ds. The drawback of this method is that this is

not suitable to approximate the solution of equation (4). Then, we consider in

this article a direct discretization of the half derivative
1√
π

∫ t

0

ut(s)√
t− s

ds using the

Gα-scheme.
This method consists in approximating the fractional derivative by an Euler

backward formula and was developed by Galucio et al [9] (see also [10] for more
details). In order to explain the main ideas of this method, let u be a time dependent
function, and consider only its discretized values un at each time tn = n∆t where
n is a positive integer and ∆t is the time step, supposed to be fixed. Let G be the
Gear operator that approximates the first derivative of u, defined by

(7) G =
1

∆t

[
3

2
I − 2δ− +

1

2
(δ−)2

]
where the backward operator δ is defined by

(δ−u)n = un−1.

Thus we can formally approximate the α-derivative of u by the formula

(8) Gα =
1

∆tα

(
3

2

)α [
I − 4

3
δ− +

1

3
(δ−)2

]α
.

This operator is directly obtained by evaluating the α-power of equation (7). Thus
the equation (8) becomes, using the Newton binomial formula:

Gα =
1

∆tα

(
3

2

)α ∞∑
j=0

j∑
l=0

(
4

3

)j (
1

4

)l
(−1)j Cjα (−1)l Clj (δ−)j+l,

then the α-derivative of u at time tn can be approximated by

(9) (Gαu)n =
1

∆tα

(
3

2

)α ∞∑
j=0

j∑
l=0

(
4

3

)j (
1

4

)l
Aαj+1B

j
l+1u

n−j−l

where the coefficients Aδj+1 and Bjl+1 are computed using the recurrence formulae:

Aαj+1 =
j − α− 1

j
Aαj and Bjl+1 =

l − j − 1

l
Bjl
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with Aα1 = 1 for any α and Bj1 = 1 for any j. For sake of simplicity, we will write
in the following the approximation (9) using the expression:

(10) (Gαu)n =
1

∆tα

(
3

2

)α ∞∑
j=0

gαj+1u
n−j

where gαj+1 are rational numbers. For numerics, (10) is convenient to approximate
the fractional derivatives. Either in equation (1) or in equation (4), the viscous

term 1√
π

∫ t
0
ut(s)√
t−sds will be handled with (10) and α = 1/2.

For illustrative purposes, we present in Table 1 the first five coefficients (gαj )j=1..5

of Gα for three values of α: 1
3 , 1

2 and 3
4 .

Table 1. First five coefficients gj+1 of the formal power series (10).

j α = 1/3 α = 1/2 α = 3/4

0 1 1 1

1 − 4
9 − 2

3
−1

2 − 7
81 − 1

18
1
12

3 − 104
2187 − 1

27 − 1
108

4 − 643
19683 − 17

648 − 1
96

5 − 4348
177147 − 19

972 − 7
864

3. Numerical computation for the KdV-like equation

3.1. The scheme. In this section, we will consider the KdV equation with non
local viscosity (1).

The numerical computations on this equation allow us to observe the effect of
each term, namely the viscous diffusion, the geometric dispersion and the nonlin-
earity.

We consider a large interval of R and we work with periodic boundary conditions
in space. The space approximation of the solutions was performed by standard
Fourier methods. Since we perform the numerics with an initial data that provides a
wave that moves to the right boundary, we expect our computations to be physically
relevant until this wave reaches the right boundary.

We now develop the time discretization of the equation (1). Let us introduce
a time step ∆t > 0 and set tn = n∆t, ∀ 0 ≤ n ≤ N , we will denote by un the
approximate value of u(tn). We firstly approximate the term ut as follows:

∂u

∂t
' u(tn+1)− u(tn)

∆t
' un+1 − un

∆t
.

Thus, using the approximation of the fractional derivative based on the Gear
scheme developed in the previous section, the discretization in time of the equation
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(1) reads

un+1 − un

∆t
+

√
ν√

∆t

√
3

2

n∑
j=0

gn+1−ju
j+ 1

2

= αu
n+ 1

2
xx − un+ 1

2
x − βun+ 1

2
xxx − γ

1

2
(un)2

x,

(11)

where uj+
1
2 = 1

2 (uj + uj+1), 0 ≤ j ≤ n. Finally applying a Fourier transform in
space to the equation (11), we obtain the complete following discretization :

ûn+1 − ûn

∆t
+

√
ν√

∆t

√
3

2

n∑
j=0

gn+1−j û
j+ 1

2

= ûn+ 1
2

(
−αξ2 − iξ + iβξ3

)
− i

2
γξ(̂un)

2
,

(12)

where û(t, ξ) denote the Fourier transform of u(t, x).

3.2. The numerical results. In all the computations presented below, the initial
data is u0(x) = 0.32∗sech2(0.4∗(x−x0)), where x0 is the middle of the interval. This
initial datum provides a small amplitude and long wave KdV soliton for α = ν = 0,
β = 1 and γ = 6. Our aim is to compare our numerical results with those obtained
in [7] in order to validate the use of a Gear operator for approximate a fractional
derivative.
Remark on the stability : No attempt has been made to prove the convergence of
the numerical scheme developed above. But when there is no viscosity, results exist
in the literature on the stability of the scheme for a sufficiently small perturbation
(see for example [16]). Using the data given above with a space step of discretization
equal to h = 0.2, a numerical experiment shows that a time step of discretization
equal to ∆t = 0.02 is needed to ensure the stability on a time interval [0, 100].
These are the data considered in the computations.

But when the viscosity effects are taken into account, for example with a viscosity
equal to ν = 0.1, due to the diffusive property of this term, only a time step equal
to ∆t = 0.2 is required to ensure the stability on the time interval [0, 100].

In Figure 1, we observe the effects of the local diffusion and non-local viscous
terms in the linear case (γ = 0) for (α, ν) = (0, 1), (α, ν) = (5, 0) and (α, ν) = (5, 1),
which correspond to cases with only non local viscous term, only local diffusion term
and with both terms. The solutions are plotted at time T = 100.

We first note that when (α, ν) = (0, 0), the solution of the linear wave equation is
a traveling wave with speed 1. So the solution at T = 100 would be the same shape
of wave, but centered at 350. Comparing this with the case (α, ν) = (0, 1), we see
that the non local viscous term slows the wave down significantly and also at the
same time, enlarges the wave length. On the other hand, by comparing the cases
(α, ν) = (0, 0) and (α, ν) = (5, 0), we see that the local diffusion term also enlarges
the wave length, but preserves the velocity of the wave. When both viscous and
diffusion terms are involved in the simulation, the wave profile is closer to the case
with only local viscous term.

We now plan to observe numerically the results of Theorem 1 and obtain some
quantitative insight on the decay of the solutions. Furthermore, we will investigate
the cases where theoretical results are not available. For this purpose, we study the
decay of the solutions for the L∞ and the L2 norm of (1), on the interval (0, 1000),
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Figure 1. Solutions at time T = 100 for different viscosity
(ν equal to 0 and 1, α equal to 0 and 5 and β = γ = 0).

when the viscosity coefficients (α, ν) = (0, 0.1), (0.1, 0) and (0.1, 0.1), β = 0 and γ
equal to 0 (linear) and 1 (nonlinear).

Since the expected decay is of the form O(ta), Figure 2 (resp. Figure 3) shows
the ratio R∞ ( resp. the ratio R2) versus the time t for the linear problem (γ equal
to 0).

From Figure 2, one observes that the non local dissipative term produce a larger
decay rate compared with the local dissipative term. The decay rates in all three
cases appear to approach 0.5, but the convergence rate is quite small. The Figure 3
is for L2-norm, instead of L∞-norm and the result are similar. Similar computations
are performed with γ = 1 (the nonlinear case).

We also compute the decay rate a for each of the two norms using the data
from [T − 200, T ]. The results are given in Table 2. These results match the
theoretical results given in [7] (Theorem 1.4) for the cases where theoretical results
are available. We can also observe that there is no significant difference between
the linear and the non linear case. Moreover, the decay of the solution is the same
when α = 0.1 or ν = 0.1.

Table 2. Decay rate of the solution u(t, .) versus the time (ν and α
equal to 0 and 0.1, β = 0, γ = 0 and 1).

Ratio (α, ν) = (0, 0.1) (α, ν) = (0.1, 0) (α, ν) = (0.1, 0.1)
γ = 0 γ = 1 γ = 0 γ = 1 γ = 0 γ = 1

R∞ −0.52 −0.52 −0.47 −0.49 −0.52 −0.52
R2 −0.28 −0.28 −0.23 −0.24 −0.28 −0.28

Comparing these results with those obtained by [7], we can observe a difference
of order 10−2 approximately between the two numerical methods. Thus we can say
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Figure 2. Ratio R∞ versus the time ((α, ν) = (0, 0.1), (0.1, 0),(0.1, 0.1), β = 0 and
γ = 0). The first and the third curves overlap each other.
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Figure 3. Ratio R2 versus the time ((α, ν) = (0, 0.1), (0.1, 0),(0.1, 0.1), β = 0 and
γ = 0). The first and the third curves overlap each other.

that the use of the Gear operator to approximate a fractionnal derivative of order
1
2 yields good results for these datasets.

In the final sequence of computations, we plan to study the different effects of
diffusion and dispersion. We consider now the full equation (1), where the geometric
dispersive term uxxx plays a role. When there is no viscosity (α = ν = 0), the exact
solution of the problem is the soliton u(t, x) = u0(x − 1.64 ∗ t). In Figure 4, we
compare solutions from (1) with different set of coefficients. The solutions with
(α, ν, β, γ) = (0, 0, 1, 6), i.e. KdV equation, (α, ν, β, γ) = (0.1, 0, 1, 6), (0, 0.1, 1, 6),
(0.1, 0.1, 1, 6) and the exact KdV solution are plotted. Again, the local dissipative
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term slows the wave down. The local dispersive term might contribute to the
appearance of the double hump.
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Figure 4. Solutions at time T = 10 (ν and α equal to 0 and 0.1, β = 1, γ = 6).

If we compare the Figure 4 to the Figure 5 in the article [7], we see that the
computed solutions for these different coefficients are overall in the same form. But
in using a Gear operator, we note an oscillatory effect more apparent than in [7].

We now investigate numerically the decay rate of the solutions when the local
dispersion term uxxx is present. For that we fix firstly β to 1 and γ to 6 and we
vary the coefficients α and ν equal to 0 and 1. Finally we present the functions R∞
and R2 versus the time t in the Figure 5 and Figure 6.

As for Table 2, we computed the decay rate a of the solutions for these coefficients
and these results are given in Table 3, and shows a decay rate near from − 1

2 for

the L∞-norm and − 1
4 for the L2-norm.

Table 3. Decay rate of the solution u(t, .) versus the time (ν
and α equal to 0 and 1, β = 1, γ = 6).

Norm (α, ν) = (0, 1) (α, ν) = (1, 0) (α, ν) = (1, 1)
L∞ −0.44 −0.51 −0.43
L2 −0.23 −0.25 −0.22

To conclude this section, we can say that the results obtained by the Gear
operator are analogous to those produced in [7]. Therefore the numerical method
using the Gear operator turns out to be good technique to compute solutions of
the equation (1).
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Figure 5. Ratio R∞ versus the time (α and ν equal to 0 and 1, β = 1, γ = 6).
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Figure 6. Ratio R2 versus the time (α and ν equal to 0 and 1, β = 1, γ = 6).

4. Numerical study of the BBM-like equation

4.1. The numerical scheme. We describe in this section the numerical scheme
to approximate solutions of (4).

For the time discretization, a semi-implicit Crank-Nicholson-leap-frog method
(with the first step computed by a semi-implicit backward Euler method) is used
in order to have a conservative scheme if α = β = γ = ν = 0 (for more details, see
[6]). More precisely, let ∆t be the time step and tn = n∆t for n ∈ N, the scheme
can be written, for n > 1
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(1− β∆)
un+1 − un−1

2∆t
+
√
ν
(
G

1
2u
)n
− α

2

(
un+1
xx + un−1

xx

)
+

1

2

(
un+1
x + un−1

x

)
+ γ

1

2
(un)2

x = 0,

(13)

where un represents the numerical approximation of u(tn, .), and u0 is the initial

data u0. The viscous term
(
G

1
2u
)n

(see Section 2) at time tn is approximated by(
G

1
2u
)n

=
1

2
G

1
2

(
un+1 + un−1

)
=

1

2

√
3

2∆t

n+1∑
j=0

gn+1−ju
j +

n−1∑
j=0

gn−1−ju
j

 .

For the space discretization, a Fourier discretization is implemented, so Fast Fourier
Transforms can be used. Therefore, the periodic boundary condition on an interval
[0, L] with large L is used.

The fully discretized problem can be written, denoting by û(ξ) the Fourier trans-
form of u at the frequency ξ, for n ≥ 1

(1 + βξ2)
(
ûn+1 − ûn−1

)
+

√
3ν∆t

2

n+1∑
j=0

gn+1−j û
j +

n−1∑
j=0

gn−1−j û
j


+∆t

(
αξ2 + iξ

) (
ûn+1 + ûn−1

)
+ iγ∆t ξ ˆ(un)2 = 0

(14)

at time tn = n∆t, and for ξ =
2π

L
j, −N

2
≤ j ≤ N

2
and N is the number of modes

under consideration.

4.2. Validation of the scheme. In order to validate the numerical method used
in the sequel, we will follow the ideas of M. Chen [6]. This technique consists
in neglecting the viscous and viscous diffusion terms in equation (4), and compute
numerically the solution of this equation with a known exact solitary-wave solution.
With α = ν = 0, β = γ = 1, equation (4) reads

ut + ux − utxx + uux = 0.

Let u(x, t) = ϕ(x− pt), ϕ satisfies

(p− 1)ϕ′ − pϕ′′′ − ϕϕ′ = 0.

Using Lemma 1 in [5], namely αη′ − βη′′′ − ηη′ = 0 admits a solution

η = 3α sech2
(

1
2

√
α
βx
)

, one finds explicit solutions

(15) u(x, t) = ϕ(x− pt) = 3 (p− 1) sech2

(
1

2

√
p− 1

p
(x− pt)

)
.

The one with p = 2 is used for our test.
For an interval of length L = 400 with N = 800 modes, a time step ∆t = 0.01,

the computed solution has ‖u(T, .)‖L∞ equal to 3.00005 at time T = 50 while the
explicit solution has ‖uex(T, .)‖L∞ equal to 3. The maximum difference between the
computed solution u(T, .) and uex(T, .) at T = 50, ‖uex(T, .) − u(T, .)‖L∞ is equal
to 3.05×10−4. By halving the size of ∆t = 0.005, ‖uex(T, .)−u(T, .)‖L∞ decreased
to 7.6 × 10−5. Therefore, the numerical scheme is validated for non-dissipative
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equation and it is second order in time as expected. It has a spectral accuracy in
space.

4.3. Solutions and decay rate for various values of the parameters. In the
first part of this section, we show the influence of parameters α, β, γ and ν on the
solutions. These computations are realized on the interval [0, L] with L = 800. The
space step size h is equal to h = 0.1 and the time step size ∆t is equal to ∆t = 0.1
The initial datum is the function u(x, t = 0) defined in (15) with p = 2 and has the
peak at shifted x0 = 100.

Figure 7, Figure 8 and Figure 9 show the solutions for various values of the
parameters α, β, γ and ν at time T = 500.

In Figure 7, we can observe that the non local viscous term ν slows the wave
down significantly. We note also the influence of this parameter, since the wave
profiles are very close to some of the other, despite a change of values of the other
coefficients. The influence of viscous term will be studied more precisely in the
sequel.
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Figure 7. Solutions for α, β, γ equal to 0 or 1 (ν = 1).

We observe in Figure 8 that the wave moves faster than in the case ν = 1,
but have their wave lengths expanded and their amplitude reduced. We also note
that the solutions for ν = 0, α = γ = 1 are very similar and consequently the
parameter β does not play an important role in this simulation. On the other side,
the nonlinear term γ might contribute to the general form of the solution, because
Figure 8 shows that if γ = 1, the appearance of the wave is more leaning toward
the right, while for γ = 0, the wave is centered at x = 600.

In Figure 9, we have plotted solutions for different values of the parameters.
We observe the same graphs obtained in Figure 7 when the parameter ν = 1. On
the other side, for ν = 0.1, the solution is more damped than for the two other
solutions, but also its wave length is larger.

Numerical simulations are performed to compute the decay rates of solutions
obtained above for various values of parameters, both with the L2 and L∞-norm.
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Figure 8. Solutions for α, β, γ equal to 0 or 1 (ν = 0).
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Figure 9. Solutions for α, β, γ and ν equal to 0, 0.1 or 1.

For this computation, the domain of computation, the space step and time of
discretization and the initial datum remain unchanged.

The functions R2 and R∞ versus the time t are plotted in Figure 10 and 11
for ν = 1, Figure 12 and 13 for various values of parameters. The values of the
decay rate are presented in Table 4. Looking more closely at these results on the
decay rates, there is a certain similarity with the results for equation (1). That is
to say, when the non local viscosity occurs, the decay rate are around −0.24 for the
L2-norm as in equation (1) and are around −0.48 for the L∞-norm. We can say
that both solutions of KdV and BBM equations with the non local viscosity term
have nearly the same decay rate.
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Table 4. Decay rate of the solution u(t, .) versus the time for various
values of the parameters.

Viscosity Dispersive Non linear Diffusion L2 L∞

ν term β term γ term α decay rate decay rate
1 1 0 1 −0.22 −0.45
1 1 1 1 −0.20 −0.40
1 0 0 0 −0.24 −0.48
0 1 1 1 −0.25 −0.52
0 1 0 1 −0.25 −0.49
0 0 1 1 −0.25 −0.50
1 0.1 1 1 −0.20 −0.39

0.1 1 0 1 −0.28 −0.54
1 0 0.1 0.1 −0.23 −0.46
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Figure 10. Ratio R2 versus the time t for α, β, γ equal to 0 or 1 (ν = 1).

4.4. Influence of the magnitude of the viscosity. In this subsection, numer-
ical experiments are performed to study the influence of the viscosity on the decay
rate. In these computations, the data are: L = 2000, h = 0.2, ∆t = 0.2, T = 1000,
α = 0 and β = γ = 1. In these experiments, the initial datum is the function (15)
with p = 2, and shift around the point x0 = L/2.

The solutions at T = 1000 for equations with various ν between 0.1 and 20
are plotted in Figure 14. As expected, we observe that the viscosity increases the
damping of the wave. In addition, the velocity of the wave also decreases with the
viscosity.

The ratio R2 and R∞ versus the time t are plotted in Figure 15 and 16 for
different values of ν. The values of decay rate are shown in Table 5. We notice
immediately in Table 5 the influence of viscosity, because the more the values of
ν increases, the more the value of decay rate in L2 and L∞-norm decreases. This
results are consistent with comments made on the Figure 14.
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Figure 11. Ratio R∞ versus the time t for α, β, γ equal to 0 or 1 (ν = 1).
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Figure 12. Ratio R2 versus the time t for α, β, γ and ν equal to 0, 0.1 or 1.

5. Conclusion

In this paper, we propose a discretization of the non local viscosity using a Gα-
scheme. The technique permits us to study the influence of the viscosity on the
decay rate for the viscous KdV-like equation and compare these results to those
obtained in [7]. Moreover, a study of the influence of the viscosity on the viscous
BBM-like equation is presented, study that can not be allowed using techniques
developed in [7].
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Figure 13. Ratio R∞ versus the time t for α, β, γ and ν equal to 0, 0.1 or 1.

Table 5. Decay rate of the solution u(t, .) versus the time for various
values of ν (β = γ = 1 and α = 0).

Viscosity L2 L∞

ν decay rate decay rate
0.1 −0.26 −0.47
0.5 −0.23 −0.43
1 −0.21 −0.41
2 −0.20 −0.39
5 −0.18 −0.35
10 −0.17 −0.32
20 −0.15 −0.30
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