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THE IMMERSED FINITE ELEMENT METHOD FOR

PARABOLIC PROBLEMS USING THE LAPLACE

TRANSFORMATION IN TIME DISCRETIZATION

TAO LIN AND DONGWOO SHEEN

Abstract. In this paper we are interested in solving parabolic problems with a piecewise constant
diffusion coefficient on structured Cartesian meshes. The aim of this paper is to investigate the
applicability and convergence behavior of combining two non-conventional but innovative methods:
the Laplace transformation method in the discretization of the time variable and the immerse finite
element method (IFEM) in the discretization of the space variable. The Laplace transformation
in time leads to a set of Helmholtz-like problems independent of each other, which can be solved
in highly parallel. The employment of immerse finite elements (IFEs) makes it possible to use
a structured mesh, such as a simple Cartesian mesh, for the discretization of the space variable
even if the material interface (across which the diffusion coefficient is discontinuous) is non-trivial.
Numerical examples presented indicate that the combination of these two methods can perform
optimally from the point of view of the degrees of polynomial spaces employed in the IFE spaces.

Key words. Immersed finite element method, interface problems, Laplace transform, parallel
algorithm

1. Introduction

We consider solving the following parabolic interface problem:

∂u

∂t
−∇ · a(x)∇u = f(x, t), (x, t) ∈ Ω× (0, T ), (1.1a)

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ), (1.1b)

u(x, 0) = u0(x), x ∈ Ω, (1.1c)

where the domain Ω is decomposed into two subdomains Ω+ and Ω− by an interface
γ such that Ω = Ω+∪Ω− with Ω+∩Ω− = ∅. In (1.1), the diffusion coefficient a(x)
is a piecewise constant function such that

a(x) =

{
a− > 0, x ∈ Ω−,

a+ > 0, x ∈ Ω+,

with a− 6= a+ in general; see Figure 1 for an illustration.
The discontinuity in the coefficient a(x) leads to the following interface jump

conditions to be satisfied by u(x, t):

[u]γ = 0 and

[
a
∂u

∂n

]

γ

= 0,(1.2)

where n is the unit normal on the interface γ towards Ω+.
In this paper, we apply two non-conventional but innovative approaches in solv-

ing (1.1). The time discretization is accomplished by the Laplace transformation
method and the space discretization is carried out through the immersed finite
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Figure 1. The domain Ω of the interface problem is separated by
the interface γ across which the coefficient has a jump discontinuity.

element methods (IFEMs). The Laplace transformation approach allows us to
generate an approximate solution to the parabolic initial boundary value problem
(IBVP) through the solutions to a set of independent Helmholtz-like interface prob-
lems. In addition, IFEMs allow us to use interface independent meshes, such as
structured Cartesian meshes if preferred, to solve parabolic IBVPs whose diffusion
coefficients are discontinuous.

Instead of solving the parabolic problem (1.1) by using traditional time-marching
algorithms, such as the backward Euler scheme and the Crank-Nicolson scheme,
we apply the Laplace transformation method for the discretization in the time
direction. For each z on a suitable contour Γ ⊂ C, we denote by û(x, z) the
standard Laplace transform in time of a function u(x, t):

û(·, z) := L[u](z) =

∫ ∞

0

u(·, t)e−zt dt.(1.3)

The Laplace transforms of (1.1) are then given in the form

zû(x, z)−∇ · a(x)∇ û(x, z) = u0(x) + f̂(x, z),

(x, z) ∈ Ω× Γ, (1.4a)

û(x, z) = ĝ(x, z),

(x, z) ∈ ∂Ω× Γ. (1.4b)

For each z ∈ Γ, let S(z) : L2(Ω) × H1/2(∂Ω) → H1(Ω) be the solution operator
associated with the above complex-valued Helmholtz-like problem (1.4) so that

û(·, z) = S(z)
(
u0(·) + f̂(·, z), ĝ(·, z)

)
.(1.5)

By the Laplace inversion formula ([3]), the time-domain solution to the parabolic
interface problem (1.1) is given by

u(·, t) =
1

2πi

∫

Γ

û(·, z)ezt dz (1.6a)

=
1

2πi

∫

Γ

S(z)
(
u0(·) + f̂(·, z), ĝ(·, z)

)
ezt dz. (1.6b)
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It should be stressed that the procedure of solving (1.4) for a number of z’s on Γ is
easily parallelizable since in calculating (1.5) for a z is completely independent of
calculating it for other z’s.

Moreover, by choosing a suitably deformed contour Γ, one can stabilize the
Laplace inversion (1.6) which can also enhance convergence significantly. Such an
idea of using the Laplace transformation to solve parabolic problems has been de-
veloped actively after [26, 27], which emphasized the nature of parallelization as
well as the deformation of the contour Γ to improve stability and convergence. This
thread of thoughts has been analyzed and improved in [10, 16, 17, 25, 29, 31] and
the references therein. Since the Laplace transformation method is highly accurate
in time discretization, it is natural to keep a balance between time and space dis-
cretizations. An investigation in this direction has been carried out in [7], where
some high-order compact finite difference schemes are used for space discretization
and the Laplace transformation method is adopted in time discretization; the re-
sulting linear systems are solved using Madpack (a multigrid solver [6]) and QMR
(quasi-minimal residual methods [9]).

In solving the interface problems (1.4) by the finite element method, one needs to
take a special care around the interface γ in order to balance the spatial discretiza-
tion errors generated near the interface and those generated far from the interface.
Typical remedies are to employ locally fitted finite elements and adaptive finite
elements. Although these methods are very effective, one drawback is that the
meshes are seriously distorted, and thus the mesh generation requires some addi-
tional nontrivial labors. Another approach, instead, is to adopt the IFEM based
on Cartesian meshes independent of the interface. The idea of IFEM is to fit the
jump conditions described in (1.2) inside each element by modifying the standard
finite element basis φ such that

[φ]γ = 0 and

[
a
∂φ

∂n

]

γ

= 0.

Since the 1D linear IFEM [18] was announced, the 2D linear IFEM [19, 20, 28],
the 3D linear IFEM [14], the bilinear IFEM [21], a quadratic IFEM [4] and an
arbitrarily higher-order 1D IFEM [2] have been developed. Convergence analysis
has been carried out in [2, 12, 19, 22]. The idea of IFE spaces has been applied
to Galerkin methods, finite volume methods, and discontinuous Galerkin methods
[1, 2, 4, 8, 11, 13, 14, 18, 20, 21] to solve elliptic interface problems. For the
application of the IFEMs to some engineering problems, readers are referred to
[15, 23, 24, 30].

The organization of the paper is as follows. In the section to follow the Laplace
transformation method is applied to the discretization in time variable. In §3 the
IFEM is applied to solve the resulting complex-valued elliptic interface problems.
Numerical results are shown in §4 to illustrate feature of this new approach for
solving parabolic problems with discontinuous coefficients. Conclusions are drawn
in the last section.

2. The Laplace transformation method

In this section we briefly review the Laplace transformation method for solving
parabolic problems and how it can be used to carry out the discretization in time.

The idea of finding an exact solution for (1.1) by solving the Laplace transformed
equations (1.4) goes back to Thomas John I’Anson Bromwich [3] in 1917. Although
Bromwich did not define or mention the notion of Laplace transformation (1.3)



THE IMMERSED FEM USING THE LAPLACE TRANSFORMATION 301

explicitly, what he used was exactly the identical framework of inverse Laplace
transformation, as given in (1.6a). It was Gustav Deutsch who started to call (1.3)
as “Laplace transform” and studied intensively in his well-known monograph [5]
published in 1937. Noticeably Bromwich proved that the Laplace inversion (1.6a)
using a straight line contour parallel to the imaginary axis,

(2.1) Γ = {z ∈ C : z(ω) = ζc + iω, where ω ∈ R

increases from −∞ to +∞},

was equal to that using any deformed contour as long as all the singularities of
the integrand, whose real parts are less than ζc, lie to the left of the new con-
tour, still denote by Γ. We represent the deformed contour Γ using the following
parameterization:

Γ = {z ∈ C : z(ω) = ζ(ω) + isω, ω ∈ R},(2.2)

where ζ : R → R is an increasing, continuous function and s is a parameter. For
such examples, see the graphs on the left and right in Figure 2, respectively.

2.1. Deformation of the contour. Although the two contour integrals obtained
by using a straight line contour of type (2.1) and a deformed contour of type (2.2)
are identical, their numerical approximation errors can be significantly different.
In evaluating the integral in (1.6) numerically, the integrand, containing the expo-
nential part ezt, will suffer from an oscillatory behavior, as the imaginary part of
z along the contour Γ goes to ±∞. This is one of the main sources of numerical
instability, which can be more tamed if the real part of z becomes smaller. This
feature will be culminated if the real part of z gets negative. Based on this, Sheen

et al. [27] proposed a hyperbola contour by choosing ζ(ω) = α−
√
ω2 + β2 in (2.2).

In this case, since the contour cuts the real line at α− β, α and β must be selected
such that α− β is larger than the negative of the smallest eigenvalue of the elliptic

operator A ≡ −∇ · a(x)∇ and the real parts of singularities of u0 + f̂(z). Also
s should be chosen such that all the singularities of û(·, z) are to the left of the
contour Γ. Using such a hyperbola contour, the inversion formula (1.6) becomes an
infinite integral with respect to the real variable ω as follows:

u(·, t) =
1

2πi

∫ ∞

−∞

û(·, z(ω))ez(ω)tz′(ω)dω(2.3)

=
1

2πi

∫ ∞

−∞

û(·, ζ(ω) + isω)e(ζ(ω)+isω)t(ζ′(ω) + is)dω.

The next step is to transform the infinite domain, (−∞,∞), of the above inte-
gration (2.3) into any convenient finite interval, e.g., [−1, 1], on which a numerical
quadrature will be applied. There are of course infinitely many possible transfor-
mations to accomplish this, each of which determines a different distribution of
graded quadrature points on the contour Γ. To be specific, we use the change of
variables y = ψ(ω) = tanh( τω2 ) mapping from (−∞,∞) to [−1, 1], with its inverse
given by

ω(y) = ψ−1(y) =
2

τ
tanh−1(y) =

1

τ
log

1 + y

1− y
,(2.4)

where τ > 0 determines the gradedness of quadrature points such that the larger τ
is chosen, the more points are concentrated near the real axis. The above change
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Figure 2. The contours used for the Laplace inversion.

of variables reduces the integral on an infinite interval in (2.3) to an integral on a
finite interval as follows:

u(·, t) =
1

2πi

∫ 1

−1

û(·, z(ω(y)))ez(ω(y))tz′(ω(y))ω′(y)dy(2.5)

=
1

2πi

∫ 1

−1

û(·, ζ(ω(y)) + isω(y))

e(ζ(ω(y))+isω(y))t(ζ′(ω(y)) + is)ω′(y)dy.

Since f(x, t) and g(x, t) are real-valued functions, the solution û(x, z) of (1.4) sat-
isfies the conjugate relation:

û(x, z) = û(x, z).(2.6)

Let Γ+ and Γ− denote the upper and lower half pieces of the contour Γ. Owing to
(2.6) and the symmetry of the contour Γ with respect the real axis, the integral in
(1.6) can be evaluated on Γ+ as follows:

u(·, t) =
1

2πi

∫

Γ+

û(·, z)ezt dz +
1

2πi

∫

Γ−

û(·, z)ezt dz

=
1

2πi

∫

Γ+

û(·, z)ezt dz −
1

2πi

(∫

Γ+

û(·, z)ezt dz

)

=
1

π
Im

(∫

Γ+

û(·, z)ezt dz

)
.(2.7)

A similar argument applies to (2.3) and (2.5). Consequently we have

u(·, t) =
1

π
Im

(∫ 1

0

û(·, z(ω(y))ez(ω(y))tz′(ω(y))ω′(y)dy
)
.(2.8)

2.2. Semi-discrete approximation. The last integral formula (2.8) in the pre-
vious section can be discretized by using a quadrature rule. Since the integrand
and its derivatives will vanish at the upper limit of the integral, the composite
trapezoidal rule will perform very well due to the Euler-McLaurin type behavior.
Hence, we have the semi-discrete approximation of u(·, t) given by

uNz,τ (·, t) =
1

π
Im

(∑Nz−1

j=0
qj û(·, zj)

dz

dω
(ωj)

dω

dy
(yj)e

zjt
)
,(2.9)
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where q0 = 1
2Nz

, qj = 1
Nz
, 1 ≤ j ≤ Nz − 1, are the quadrature weights with the

corresponding quadrature nodes:

yj =
j

Nz
for j = 0, 1, · · · , Nz − 1,(2.10)

and

zj = z(ωj), ωj = ω(yj), j = 0, 1, · · · , Nz − 1.(2.11)

It is proved in [27] that the quadrature scheme (2.9) is of arbitrary high-order
spectral convergence rate if in particular the source term f has high-order regularity,
stated as follows:

Theorem 2.1 ([27]). Let u(x, t) be the solution of (1.1) and let uNz,τ (x, t) be its

approximation defined by (2.9). Assume that f̂(·, z) is analytic to the right of the

contour Γ and continuous onto Γ, with f̂ (j)(·, z) bounded on Γ for j ≤ r and r an
integer ≥ 1, Then, for t > rτ

(2.12) ‖uNz,τ (t)− u(t)‖ ≤
Cr,s

N r
z

(
1 + tr +

1

τr

)
eγt

(
1 + log+

1

t− rτ

)

(
‖u0‖+max

k≤r
sup
z∈Γ

‖f̂ (k)(z)‖

)
.

The implication of the above theorem without the source term f is that the
scheme is of order O( 1

Nr
z
) with an arbitrarily large r > 0 whenever τ and t are

chosen such that t
τ is sufficiently large. In this case, the discretization errors in the

time direction by using the Laplace transformation method are negligible compared
to those caused from the spatial discretization part.

We should point out that the summands of (2.9), û(·, zj)
dz
dω (ωj)

dω
dy (yj), j =

0, · · · , Nz, are independent of t. Therefore, we only have to generate an approximate
solution to û(·, zj) once by solving the complex-valued elliptic problem (1.4) for
a set of zj , j = 0, 1, · · · , Nz. Then, the solution u(x, t) to (1.1) for any t in an
interval can be generated very quickly by (2.9) from the set of already-computed
spatial solutions û(·, zj), j = 0, 1, · · · , Nz; the only modification is to change the
multiplication factor ezjt for the needed time t.

Also, we note that the elliptic problem (1.4) for each zj from the set of zj , j =
0, 1, · · · , Nz, is independent of the other elliptic problems for the remaining zj ’s.
Modern multiprocessor computers can take a great advantage of this feature because
each processor can be assigned to solve one of these boundary value problems,
and the computation of û(·, zj), j = 0, 1, 2, · · · , Nz, can be carried out in parallel
without any communication between each solution procedure.

3. The immersed finite element method

Even though we believe that most of the immersed finite elements in the liter-
ature for 2nd order elliptic interface problems can be applied to solving parabolic
interface problems, we survey only two classes of them in this section to present
our main ideas.

3.1. The 1D p-th degree IFE space. For the 1D parabolic interface problems,
we plan to use the p-th degree IFE space [1, 2] which is developed originally for
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solving the following interface problem:

− (a(x)u′(x))′ = f(x), x ∈ Ω = (0, 1), (3.1a)

u(0) = ul, u(1) = ur, (3.1b)

[u]γ = 0, [au′]γ = 0, (3.1c)

where we assume that the coefficient a(x) is a piecewise constant function with one
interface.

a(x) =

{
a− > 0, x ∈ Ω− = (0, γ),

a+ > 0, x ∈ Ω+ = (γ, 1).

The idea can be easily extended to handle the case in which a(x) has multiple
interfaces. Consider a family of mesh {Ωh}0<h<1:

Ωh : 0 = x0 < x1 < · · · < xM = 1,

hj = xj − xj−1, 1 ≤ j ≤M, h = max
1≤j≤M

hj .

Without loss of generality, we assume that there is only one interface element,
say Kjγ = (xjγ−1, xjγ ) in Ωh such that γ ∈ Kjγ , while all the other elements are
interface-free. On an element Kj = (xj−1, xj), 1 ≤ j ≤ M , we introduce p + 1
auxiliary nodes:

xj−1 = tj,0 < tj,1 < · · · < tj,p < tj,p = xj ,

and let Lj,k(x), 0 ≤ k ≤ p, be the p-th degree Lagrange cardinal polynomials
defined by these nodes. On each non-interface element Kj , j 6= jγ , we define the
local IFE space by

Sh(Kj) = span{φj,k(x), 0 ≤ k ≤ p}, φj,k(x) = Lj,k(x), 0 ≤ k ≤ p.

On the interface element Kjγ , we construct the p+ 1 IFE functions φjγ ,k(x), 0 ≤
k ≤ p as follows:

φjγ ,k(x) =

{
φ−jγ ,k(x) ∈ Πp, x ∈ K−

jγ
= (xjγ−1, γ),

φ+jγ ,k(x) ∈ Πp, x ∈ K+
jγ

= (γ, xjγ ),

φjγ ,k(tjγ ,l) = δjl, 0 ≤ l ≤ p,
[
φjγ ,k

]
γ

= 0,
[
aφ

(l)
jγ ,k

]
γ
= 0, 1 ≤ l ≤ p,

where Πp denotes the set of polynomials of degree not greater than p. It has been
shown [2] that these IFE functions can be uniquely constructed and they are linearly
independent. Set

Sh(Kjγ ) = span{φjγ ,k(x), 0 ≤ k ≤ p}

to be the local IFE space on the interface element Kjγ . Finally, we can form the
1D p-th degree IFE space on Ω as follows:

Sh(Ω) = {v ∈ H1(Ω) | v|Kj
∈ Sh(Kj), ∀Kj ∈ Ωh},

where Sh(Kj) is the p-th degree local IFE space described above.
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3.2. The 2D linear IFE space. The 2D IFE space to be used is developed in
[20] for the following interface problem:

−∇ · (a(x)∇u(x)) = f(x), x ∈ Ω ⊂ R
2, (3.2a)

u(x) = g(x), x ∈ ∂Ω, (3.2b)

[u]γ = 0,

[
a
∂u

∂n

]

γ

= 0. (3.2c)

Let (Ωh)0≤h≤1 be a family of triangular meshes of the domain Ω formed with nodes

Nh ∈ Ω. Note that Ωh consists of two types of elements: (1) interface elements
cut through by the interface γ; (2) non-interface elements. First, on each element
K = △A1A2A3 ∈ Ωh, let φj(x), j = 1, 2, 3, be the standard linear polynomials
such that

φj(Ak) = δik, k = 1, 2, 3.

Denote by Π1(K
′) the space of linear polynomials on a set K ′ ⊂ R

2. If K ∈ Ωh

is a non-interface element, let the local IFE function space be the usual standard
piecewise linear space Sh(K) = Π1(K) such that

Sh(K) = span{φ1, φ2, φ3} with φj(Ak) = δjk.

On each interface elementK = △A1A2A3, we construct 3 linear IFE basis functions

φ̃j(x), j = 1, 2, 3, as follows:

φ̃j =

{
φ̃−j ∈ Π1(K

−), x ∈ K−,

φ̃+j ∈ Π1(K
+), x ∈ K+,

φ̃j(Ak) = δjk, k = 1, 2, 3,

[φ̃j ]DE = 0,

[
a
∂φ̃j
∂nDE

]

DE

= 0,

where D and E are the two points where the interface γ intersects with the edge
of the interface element K as shown in Figure 3.

Again, it can be shown that these linear IFE basis functions can be uniquely
constructed [19, 20] and we define the local IFE function space on an interface
element K ∈ Ωh by

Sh(K) = span{φ̃1, φ̃2, φ̃3}.

Finally, the 2D linear IFE space can be described as follows:

Sh(Ω) = {v | v|K ∈ Sh(K) ∀K ∈ Ωh, v is continuous at all x ∈ Nh}.

3.3. The IFEM for the Laplace transformed equations. The weak formula-
tion of the Laplace transformed equations (1.4) is given as follows: for each z ∈ Γ,
find û = û(·, z) ∈ H1(Ω) such that

z(û, v) + (a∇ û,∇ v) =
(
u0 + f̂(·, z), v

)
, v ∈ H1

0 (Ω), (3.3a)

û(x, z) = ĝ(x, z), x ∈ ∂Ω. (3.3b)

Let (Ωh)0<h<1 be a family of meshes of Ω whose elements have diameters bounded
by h. Associated with Ωh, let Sh(Ω) be an IFE space such as one of those discussed
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A1
A2

A3

K−

K+

D

E

φ̃1(X)

φ̃1(A1) = 1

Figure 3. An interface basis function φ1 on K = K−∪K+ whose

gradient has a jump across the line DE; φ̃1(Aj) = δ1j .

in the previous subsections. The immersed finite element method for (3.3) is to
find ûh(·, z) ∈ Sh(Ω) such that for all vh ∈ Sh,0(Ω), we have

z(ûh, vh) + (a∇ ûh,∇ vh) =
(
u0 + f̂(·, z), vh

)
, (3.4a)

vh ∈ Sh,0(Ω),

ûh(x, z) = ĝ(x, z), ∀x ∈ Nh ∩ ∂Ω, (3.4b)

with

Sh,0(Ω) = {v | v ∈ Sh(Ω), v(x) = 0 ∀x ∈ Nh ∩ ∂Ω}.

The IFE functions used here are designed for solving the elliptic interface problem
(3.2); hence, they can perform well in discretization involving the term (a∇ û,∇ v)
in the weak form which contains the interface part. Furthermore, our numerical
results confirm that these IFE functions are also suitable for the approximation in
the mass matrix part resulted from the term (û, v) as well.

4. Numerical Examples

In this section we present numerical examples to demonstrate features of our
new method for solving the parabolic initial boundary problem (1.1) with a discon-
tinuous coefficient in one and two dimensions.

We start with a summarization of our method:

Step 1: Choose suitable parameters α, β, s and τ to be used in (2.2) and (2.4).
Step 2: Choose the number of control points Nz, generate yj , 0 ≤ j ≤ Nz − 1 by

(2.10) and the corresponding ωj , zj , 0 ≤ j ≤ Nz − 1 by (2.2) and (2.4),
respectively.

Step 3: Choose a suitable mesh parameter h for the discretization in x variable and
generate ûh(x, zj), 0 ≤ j ≤ Nz − 1 by (3.4).
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Step 4: Generate uh(x, t) ≈ u(x, t) by (2.9) with ûh(x, zj) ≈ û(x, zj), 0 ≤ j ≤
Nz − 1.

4.1. A 2D numerical example. We consider the parabolic IBVP (1.1) posed on
Ω = (−1, 1)2 which is separated by the interface γ into two sub-domains Ω− = {x :

|x| < r0} and Ω+ = Ω\Ω− with r0 = π/6.28. The coefficient function a(x, y) is
chosen as a piecewise constant function

a(x) =

{
a− = 10, x ∈ Ω−,

a+ = 1, x ∈ Ω+.

We define

w(x) =

{
|x|3

a−
, x ∈ Ω−,

|x|3

a+ −
(

1
a−

− 1
a+

)
r30 , x ∈ Ω+.

(4.1)

By direct verification, we see that w(x) satisfies the jump conditions across the
interface γ:

[w]γ = 0 and

[
a
∂w

∂n

]

γ

= 0.

Then, we set u(x, t) = w(x)e−δt with δ = 0.1 as the exact solution to the parabolic
problem (1.1) from which we can generate the following data functions:

f(x, t) = [−δw(x) −∇ · (a(x)∇w(x))] e−δt, g(x, t) = u(x, t),

and the initial condition given by u0(x, 0) = w(x).
In the numerical results reported below, the following parameters are used:

α = 1.25, β = 0.25, s = 0.45, τ = 0.5.

Unless otherwise specified, Nz = 40 points are employed to approximate the contour
integration in all the two dimensional numerical experiments. Also, in the linear
IFEM used for solving the complex-valued elliptic interface problems we use uniform
triangular meshes Ωh formed by first partitioning Ω into squares with edge length
h and further partitioning each square into two triangles along a diagonal line.

The errors in uh(x, t) measured by both L2-norm and H1-seminorm for time
t = 0.5, 1, 2, · · · , 6, are shown in Tables 1 and 2, respectively.

From these numerical experiments, we note that once the set of complex-valued
IFE solutions ûh(x, zj), j = 0, 1, · · · , Nz − 1 for the elliptic interface problems are
obtained by solving (3.4), the approximation uh(x, t) to u(x, t) can be generated
by the numerical inversion (2.9) with û(x, zj) replaced by ûh(x, zj) very quickly
because uh(x, t) is simply a linear combination of ûh(x, zj), j = 0, 1, · · · , Nz − 1.
Secondly, we notice that once this set of complex-valued IFE solutions ûh(x, zj), j =
0, 1, · · · , Nz − 1 are prepared, they can be used to generate the solution u(x, t) for
a rather large range of values of t.

For this example, the data in Table 1 indicate that the 40 IFE solutions ûh(x, zj),
j = 0, 1, · · · , 39, can produce approximation to u(x, t) with the optimal O(h2)-
convergence rate in the L2 norm for any t ∈ [1, 5]. This scheme seems to become
sub-optimal when t is outside of [1, 5] as suggested by the data at t = 0.5 and t = 6
in Table 1. On the other hand, as demonstrated by the data in Table 2, if we
measure the error by the H1-seminorm, these IFE solutions can produce optimal
approximation to u(x, t) for t in a larger range.
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Table 1. The L2-norm errors for time t = 0.5, 1, 2, · · · , 6 for a
two-dimensional example in §4.1.

t\h 2/16 2/32 2/64 2/128 2/256 2/512 ‖u− uh‖0
0.5 1.78E-2 4.27E-3 8.91E-4 1.81E-4 2.71E-4 3.13E-4 1.13E-1h1.24

1 1.73E-2 4.36E-3 1.10E-3 2.80E-4 7.36E-5 2.14E-5 9.43E-1h1.94

2 1.57E-2 3.94E-3 9.97E-4 2.51E-4 6.45E-5 1.73E-5 9.25E-1h1.97

3 1.42E-2 3.57E-3 9.02E-4 2.27E-4 5.84E-5 1.57E-5 8.34E-1h1.97

4 1.28E-2 3.23E-3 8.17E-4 2.06E-4 5.32E-5 1.45E-5 7.43E-1h1.96

5 1.16E-2 2.92E-3 7.40E-4 1.88E-4 4.96E-5 1.46E-5 6.25E-1h1.94

6 1.05E-2 2.65E-3 6.77E-4 1.77E-4 5.16E-5 2.02E-5 4.20E-1h1.83

Table 2. The H1-seminorm errors for time t = 0.5, 1, 2, · · · , 6 for
a two-dimensional example in §4.1.

t\h 2/16 2/32 2/64 2/128 2/256 2/512 |u− uh|1
0.5 3.79E-1 1.90E-1 9.56E-2 4.80E-2 2.42E-2 1.23E-2 2.96h0.99

1 3.61E-1 1.81E-1 9.10E-2 4.57E-2 2.30E-2 1.17E-2 2.82h0.99

2 3.26E-1 1.64E-1 8.23E-2 4.13E-2 2.08E-2 1.06E-2 2.56h0.99

3 2.96E-1 1.48E-1 7.45E-2 3.74E-2 1.88E-2 9.56E-3 2.31h0.99

4 2.67E-1 1.34E-1 6.74E-2 3.39E-2 1.70E-2 8.65E-3 2.09h0.99

5 2.42E-1 1.21E-1 6.10E-2 3.06E-2 1.54E-2 7.83E-3 1.89h0.99

6 2.19E-1 1.10E-1 5.52E-2 2.78E-2 1.40E-2 7.08E-3 1.71h0.99

4.2. 1D numerical examples. Next, we consider a one-dimensional IBVP:

ut − (aux)x = f, (x, t) ∈ Ω× (0, T ],

u(0, t) = g0(t), u(1, t) = g1(t), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

with the domain Ω = (0, 1) and the piecewise constant coefficient function a(x)
given by

a(x) =

{
a− = 1, x ∈ Ω−,

a+ = 20, x ∈ Ω+,

Ω− = (0, π/6), Ω+ = Ω \ Ω−.

In all the numerical experiments, we choose f(x, t), u0(x), and g0(t), g1(t) such
that the exact solution of the IBVP is given by

u(x, t) =

{
ex−0.1t, (x, t) ∈ Ω− × (0, T ],((
(x − π/6)p+1 + c1

)
ex + c2

)
e−0.1t, (x, t) ∈ Ω+ × (0, T ],

c1 =
a−

a+
, c2 = (1− c1)e

π/6,

where p is the degree of the polynomial used in the IFE spaces.
We first use Nz = 50 as the number of control points on the contour Γ with

the same parameters as in the previous example in §4.1 for the inversion of the
Laplace transform in all the numerical experiments and vary the degree of IFEs
from p = 1 to 5. Each of the IFE spaces is formed on a uniform mesh Ωh of Ω
with h = 1/4, 1/8, 1/16, and 1/32. The L2-norm and H1-seminorm errors and their
reduction rates are shown in Tables 3 and 4.

From these data tables, we note that the convergence rate in the H1-seminorm
is optimal while that in the L2 norm is also optimal except p = 5. This indicates
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Table 3. L2-norm errors at t = 2 with higher-order IFEs with
Nz = 50 for a one-dimensional example in §4.2.

p\h 1/4 1/8 1/16 1/32 ‖u− uh‖0
1 3.10E-2 6.24E-3 1.38E-3 3.37E-4 6.01E-1 h2.17

2 1.33E-3 1.57E-4 1.97E-5 2.22E-6 9.39E-2 h3.07

3 8.70E-5 5.71E-6 3.17E-7 1.90E-8 2.53E-2 h4.07

4 6.47E-6 1.90E-7 5.85E-9 2.31E-10 5.68E-3 h4.93

5 4.57E-7 6.75E-9 1.87E-10 1.55E-10 4.75E-5 h3.98

Table 4. H1-seminorm errors at t = 2 with high-order IFEs with
Nz = 50 for a one-dimensional example in §4.2.

p\h 1/4 1/8 1/16 1/32 |u− uh|1
1 5.09E-1 1.76E-1 7.62E-2 3.73E-2 2.63 h1.25

2 4.39E-2 1.07E-2 2.48E-3 5.51E-4 8.33E-1 h2.11

3 5.02E-3 5.90E-4 5.97E-5 7.19E-6 4.09E-1 h3.17

4 5.06E-4 2.45E-5 1.49E-6 8.67E-8 1.52E-1 h4.16

5 4.00E-5 1.12E-6 3.27E-8 9.98E-10 4.60E-2 h5.10

that 50 control points used in the approximation of the contour integration for the
Laplace inversion are not sufficient. We numerically find that increasing the control
points to about 230 enables this scheme to perform optimally for the 5th degree
IFEs; see data in Tables 5 and 6.

Table 5. L2-norm errors at t = 2 with higher-order interface
elements with Nz = 230 for a one-dimensional example in §4.2.

p\h 1/4 1/8 1/16 1/32 ‖u− uh‖0
5 4.57E-7 6.75E-9 1.03E-10 1.72E-12 1.84E-3 h6.00

Table 6. H1-seminorm errors at t = 2 with higher-order interface
elements with Nz = 230 for a one-dimensional example in §4.2.

p\h 1/4 1/8 1/16 1/32 |u− uh|1
5 4.00E-5 1.12E-6 3.27E-8 9.93E-10 4.62E-2 h5.10

In our numerical experiments, we notice again that once the complex-valued
elliptic IFE solutions are prepared for the set of zj , j = 0, 1, · · · , Nz − 1 chosen
on the control contour, they can be used to generate approximations to u(x, t) for
a long range of t. For example, when the quadratic IFEM is used with Nz = 80
control points, our method performs optimally for any t ∈ [0.95, 15] as demonstrated
by the error data in both the L2-norm and the H1-seminorms in Tables 7 and 8.

4.3. Numerical examples with large jump in coefficients. In general, a
larger jump in the coefficient a(x) across the interface implies a stronger discontinu-
ity in the exact solution, and this usually makes the related interface problem more
challenging for conventional numerical methods. On the other hand, since the jump
conditions across the interface have been incorporated into IFE basis functions, the
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Table 7. L2-norm errors at various times with 2nd-order interface
elements with Nz = 80 for a one-dimensional example in §4.2.

t\h 1/10 1/18 1/26 1/34 ‖u− uh‖0
0.95 1.48E-3 1.74E-4 2.19E-5 2.58E-6 1.01E-1 h3.05

5 9.89E-4 1.61E-4 1.46E-5 1.65E-6 6.96E-2 h3.07

15 3.64E-4 4.27E-5 5.37E-6 6.61E-7 2.39E-2 h3.03

Table 8. H1-seminorm errors at various time with 2nd-order in-
terface elements with Nz = 80 for a one-dimensional example in
§4.2.

t\h 1/10 1/18 1/26 1/34 |u− uh|1
0.95 4.87E-2 1.19E-2 2.75E-3 6.12E-4 9.26E-1 h2.11

5 3.25E-2 7.96E-3 1.84E-3 4.08E-4 6.17E-1 h2.11

15 1.20E-2 2.93E-3 6.76E-4 1.50E-4 2.27E-1 h2.11

jump magnitude in coefficient becomes a much less concern for IFEMs. This fea-
ture has been reported for several IFEMs developed for solving time independent
interface problems, see [12, 19] for example. This feature seems to hold also for the
IFEM developed in this article for solving parabolic interface problems.

To see this, we consider interface problems similar to the one in Section 4.1
except that the ratio a− : a+ or a+ : a− in these problems is much larger. Tables 9
and 10 contain numerical results generated by the IFEM developed in the present
article for the interface problem in which a− = 1, a+ = 1000, while Tables 11 and
12 contain numerical results for the interface problem in which a− = 1000, a+ = 1.
These numerical results clearly suggest that our IFEM can perform optimally in
the chosen time range. We note that, without presenting actual numerical data in
order to reduce presentation space, similar behaviors of our IFEM are also observed
for the 1D parabolic interface problems with large jump in the coefficients.

Table 9. The L2-norm errors for time t = 1, · · · , 6 for a two-
dimensional example in §4.3 with a− = 1, a+ = 1000.

t\h 1/16 1/32 1/64 1/128 1/256 1/512 ‖u− uh‖0
1 3.91E-3 1.04E-3 2.78E-4 6.06E-5 1.41E-5 3.41E-6 2.98E-1h2.05

2 3.54E-3 9.40E-4 2.52E-4 5.48E-5 1.27E-5 2.99E-6 2.75E-1h2.05

3 3.20E-3 8.51E-4 2.28E-4 4.96E-5 1.15E-5 2.71E-6 2.49E-1h2.05

4 2.90E-3 7.70E-4 2.06E-4 4.49E-5 1.04E-5 2.46E-6 2.24E-1h2.05

5 2.62E-3 6.97E-4 1.87E-4 4.07E-5 9.48E-6 2.30E-6 1.99E-1h2.04

6 2.37E-3 6.31E-4 1.69E-4 3.70E-5 8.91E-6 2.71E-6 1.51E-1h1.99

5. Conclusions

We have applied the Laplace transformation method for the discretization in time
and the immersed finite element method for that in space in solving linear parabolic
problems with piecewise constant coefficients on structured Cartesian meshes. A
linear immersed finite element is adopted for 2D examples which has jump ratios
in the coefficient from 1:10 to 1:1000. High-order immersed finite elements up
to degree five are employed for 1D examples. Numerical results indicate optimal
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Table 10. The H1-norm errors for time t = 1, · · · , 6 for a two-
dimensional example in §4.3 with a− = 1, a+ = 1000.

t\h 1/16 1/32 1/64 1/128 1/256 1/512 |u− uh|1
1 7.03E-2 3.61E-2 1.82E-2 9.04E-3 4.54E-3 2.30E-3 5.57E-1h1.00

2 6.36E-2 3.27E-2 1.65E-2 8.18E-3 4.11E-3 2.08E-3 5.04E-1h1.00

3 5.75E-2 2.96E-2 1.49E-2 7.40E-3 3.72E-3 1.89E-3 4.56E-1h1.00

4 5.21E-2 2.68E-2 1.35E-2 6.70E-3 3.37E-3 1.71E-3 4.12E-1h1.00

5 4.71E-2 2.42E-2 1.22E-2 6.06E-3 3.05E-3 1.54E-3 3.73E-1h1.00

6 4.26E-2 2.19E-2 1.11E-2 5.48E-3 2.76E-3 1.40E-3 3.38E-1h1.00

Table 11. The L2-norm errors for time t = 1, · · · , 6 for a two-
dimensional example in §4.3 with a− = 1000, a+ = 1.

t\h 1/16 1/32 1/64 1/128 1/256 1/512 ‖u− uh‖0
1 1.73E-2 4.34E-3 1.09E-3 2.74E-4 7.01E-5 1.97E-5 1.00 h1.96

2 1.57E-2 3.93E-3 9.82E-4 2.46E-4 6.12E-5 1.55E-5 9.98 E-1h2.00

3 1.42E-2 3.56E-3 8.88E-4 2.23E-4 5.54E-5 1.41E-5 9.00 E-1h2.00

4 1.28E-2 3.22E-3 8.04E-4 2.02E-4 5.04E-5 1.31E-5 8.99 E-1h1.99

5 1.16E-2 2.91E-3 7.29E-4 1.84E-4 4.71E-5 1.35E-5 6.64 E-1h1.96

6 1.05E-2 2.64E-3 6.66E-4 1.74E-4 4.93E-5 1.94E-5 4.33 E-1h1.85

Table 12. The H1-norm errors for time t = 1, · · · , 6 for a two-
dimensional example in §4.3 with a− = 1000, a+ = 1.

t\h 1/16 1/32 1/64 1/128 1/256 1/512 |u− uh|1
1 3.61E-1 1.81E-1 9.06E-2 4.53E-2 2.26E-2 1.13E-2 2.89E-1h1.00

2 3.27E-1 1.64E-1 8.19E-2 4.10E-2 2.05E-2 1.02E-2 2.62E-1h1.00

3 2.96E-1 1.48E-1 7.41E-2 3.71E-2 1.85E-2 9.27E-3 2.36E-1h1.00

4 2.68E-1 1.34E-1 6.71E-2 3.35E-2 1.68E-2 8.39E-3 2.14E-1h1.00

5 2.42E-1 1.21E-1 6.07E-2 3.04E-2 1.52E-2 7.59E-3 1.94E-1h1.00

6 2.19E-1 1.10E-1 5.49E-2 2.75E-2 1.37E-2 6.87E-3 1.75E-1h1.00

convergence can be obtained by solving a reasonably small number of complex-
valued elliptic problems, which are obtained by the Laplace transformation of the
parabolic problems in time variable.
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