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UNCONDITIONAL CONVERGENCE OF HIGH-ORDER

EXTRAPOLATIONS OF THE CRANK-NICOLSON, FINITE

ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS

ROSS INGRAM

Abstract. Error estimates for the Crank-Nicolson in time, Finite Element in space (CNFE) dis-
cretization of the Navier-Stokes equations require application of the discrete Gronwall inequality,
which leads to a time-step (∆t) restriction. All known convergence analyses of the fully dis-
crete CNFE with linear extrapolation rely on a similar ∆t-restriction. We show that CNFE with
arbitrary-order extrapolation (denoted CNLE) is convergences optimally in the energy norm with-
out any ∆t-restriction. We prove that CNLE velocity and corresponding discrete time-derivative
converge optimally in l∞(H1) and l2(L2) respectively under the mild condition ∆t ≤ Mh1/4 for

any arbitrary M > 0 (e.g. independent of problem data, h, and ∆t) where h > 0 is the maximum
mesh element diameter. Convergence in these higher order norms is needed to prove convergence
estimates for pressure and the drag/lift force a fluid exerts on an obstacle. Our analysis exploits
the extrapolated convective velocity to avoid any ∆t-restriction for convergence in the energy
norm. However, the coupling between the extrapolated convecting velocity of usual CNLE and
the a priori control of average velocities (characteristic of CN methods) rather than pointwise
velocities (e.g. backward-Euler methods) in l2(H1) is precisely the source of ∆t-restriction for
convergence in higher-order norms.

Key words. Navier-Stokes, Crank-Nicolson, finite element, extrapolation, linearization, error,
convergence, linearization

1. Introduction

The usual Crank-Nicolson (CN) in time Finite Element (FE) in space discretiza-
tion of the Navier-Stokes (NS) Equations (NSE) denoted by CNFE is well-known to
be unconditionally (energetically) stable. The error analysis of the CNFE method
is based on a discrete Gronwall inequality which introduces a time-step (∆t > 0)
restriction (for convergence, not for stability) of the form

∆t ≤ C(Re, h), e.g. ∆t ≤ O(Re−3) (1)

(see Appendix A for a derivation, Theorem A.1 with e.g. (157)). Here h > 0 is the
maximum mesh element diameter and Re > 0 is the Reynolds number. Condition
(1)(a) implies conditional convergence whereas (1)(b) is a robustness condition and
both are prohibitively restrictive in practice; for example, (1)(b) suggests

Re = 100 (low-to-moderate value) ⇒ ∆t ≤ O(10−6).

Consequently, an important open question regards whether condition (1) is

• an artifact of imperfect mathematical technique, or
• a special feature of the CN time discretization.
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We consider the necessity of a ∆t-restriction in a linear, fully implicit variant of
CNFE obtained by extrapolation of the convecting velocity u: for example, sup-
pressing spatial discretization, given u0, u1, and p1, for each n = 1, 2, . . . find
velocity un+1 and pressure pn+1 satisfying

un+1 − un

∆t
+ (

3

2
un − 1

2
un−1) · ∇un+1 + un

2

−Re−1∆
un+1 + un

2
+∇pn+1 + pn

2
=

fn+1 + fn

2
∇ · un+1 = 0.

(2)

Here f is body-force term, and zi := z(x, ti) and ti = i∆t. This method is often
called CNLE and was first studied by Baker [3]. CNLE is linearly implicit, uncon-
ditionally (energetically) stable, and second-order accurate. In this report, we show
that no ∆t-restriction is required for the convergence of CNLE (Proposition 3.1,
Theorem 3.5). In particular,

||error(CNLE)||l∞(L2)∩l2(H1) ≤ C(hk +∆t2), k = degree of FE space

(Theorem 3.5). This result was proved for the semi-discrete case as ∆t → 0 in [10]
and the fully discrete Backward Euler (BE) scheme with Constant Extrapolation
(BECE) in [32]. The analysis depends on

• Gronwall inequality - exploit time-lagged convecting velocity (Section 1.1)
• Estimate (74) - bound convecting velocity in L2 (Section 1.1.1)

Indeed, for extrapolated CN, we apply a discrete Gronwall Lemma without any ∆t-
restriction; for general extrapolations we derive and apply the estimate (74)(b) of
the explicitly skew-symmetric convective term. We explain our strategy for proving
the CNLE error estimate and corresponding difficulties in detail in Section 1.1.

We also prove convergence estimates in higher-order norms. We show that the
CNLE velocity approximation converges optimally in the l∞(H1)-norm and the
corresponding discrete time-derivative of the velocity approximation converges op-
timally in the l2(L2)-norm (Theorems 3.8, 3.10) under a modest ∆t-restriction

∆t ≤ Mh1/4, for any M > 0 (no Re-dependence). (3)

Note that M is completely arbitrary so that (3) only governs the rate at which
∆t → 0 and not the size of ∆t. In particular, restriction (3) is not a typical artifact
of the discrete Gronwall inequality since it does not depend problem data. The
error estimate is obtained by a bootstrap argument that utilizes the error in the
energy norm. Although such estimates have been proved for BECE in [32], the
analysis of CNLE is distinctly different because CN methods only give a priori
control of average velocities un+1/2 rather than pointwise velocities un+1 (e.g. BE
methods) in l2(H1). Our analysis depends on

• Estimate (75) - bound test-function of convective term in L2 (Section 1.1.1)
• CN a priori estimates - introduce ∆t-restriction (3) (Section 1.1.2)
• Stokes projection - preserve optimal convergence rate (Section 1.1.3).

Indeed, we derive and apply estimate (75)(b) of the explicitly skew-symmetric con-
vective term; we obtain intermediate estimates in the convergence analysis of CNLE
with limited options corresponding to limited control of average velocities (charac-
teristic of CN methods) in l2(H1); and we exploit the Stokes projection to preserve
the optimal convergence rate for the FE and CN discretization.
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It is a source of current research to determine whether (3) is strictly necessary
and to develop linear, implicit variants of usual CNLE (2)(a) that are guaranteed to
avoid (3). Indeed, the extrapolated convecting velocity in (2)(a) is the source of ∆t-
restriction for convergence in l∞(H1). Moreover, higher-order extrapolations reduce
the modeling error of extrapolation. Consequently, we investigate the arbitrary-
order extrapolation herein: for some n0 ≥ 0 and ai ≥ 0 for 0 ≤ i ≤ n0, consider
∫

un+1 + un

2
· ∇un+1 + un

2
· v ≈

∫

(a0u
n + . . .+ an0

un−n0) · ∇un+1 + un

2
· v.

We consider the important case when the nonlocal compatibility condition is not
satisfied (addressed by Heywood and Rannacher in [19,20] and more recently, e.g.,
by He in [12, 14] and He and Li in [15, 16]). Suppose, for example, that p0 be the
solution of (well-posed) Neumann problem

{

∆p0 = ∇ · (f0 − u0 · ∇u0), in Ω,
∇p0 · n̂|∂Ω = (∆u0 + f0 − u0 · ∇u0) · n̂|∂Ω. (4)

In order to avoid the accompanying factor min
{

t−1, 1
}

in the estimates presented in
Section 3, the following compatibility condition is necessarily required (e.g. see [19],
Corollary 2.1):

∇p0|∂Ω = (∆u0 + f0 − u0 · ∇u0)|∂Ω. (5)

Replacing (4) with (4)(a), (5) defines an overdetermined Neumann-type problem.
Condition (5) is a nonlocal condition relating u0 and f0. Condition (5) is satisfied
for several practical applications including startup from rest with zero force, u0 = 0,
f0 = 0. In general, however, condition (5) cannot be verified. In this case, it is
shown that, e.g., |ut(·, t)|1, ||u(·, t)||3 → ∞ as t → 0+.

In Section 1.1, we provide an overview of CN time-stepping schemes for NSE
approximation and explain our methodology for CNLE convergence analysis and
corresponding improved estimates. We provide the mathematical setting for CNLE
in Section 2 for both the continuous and discrete function spaces (Section 2.1). In
Section 2.2, we compile the fundamental estimates and assumptions of the FE space
and extrapolated convecting velocity. Section 3 contains the main results of our
report. Section 4 contains the proofs of these results. In Section 3.2, we compile the
fundamental approximations and identities required for our error analysis. Section
3.3 is devoted to analysis of the trilinear convective term and the explicitly skew-
symmetric convective term used in CNLE. In Section 3.4, we present the elliptic
and Stokes projections.

1.1. Remark on improved estimate. The key difference between our conver-
gence proof for CNLE and that of CNFE is the resulting intermediate estimate: for
approximations Un

h and constants κn > 0,

CNFE ⇒ ||UN
h ||2 + . . . ≤

N
∑

n=0

κn||Un
h ||2 + . . . (6)

CNLE ⇒ ||UN
h ||2 + . . . ≤

N−1
∑

n=0

κn||Un
h ||2 + . . . . (7)

Notice that the term ||UN
h ||2 is included in the right-hand-side of (6), but not of (7).

Estimates of the form (6) require a discrete Gronwall inequality (Lemma 3.14) to
proceed, which is the source of a ∆t-restriction. Conversely, estimates of the form
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(7) allow application of an alternate discrete Gronwall inequality (Lemma 3.15),
which does not require a ∆t-restriction.

1.1.1. Key estimate for CNLE error analysis. The key difficulty resolved in
our CNLE proof (resulting in suboptimal results reported in previous error analyses)
is associated with the extrapolated convecting velocity 3

2u
n − 1

2u
n−1. Once again

consider the error equation for CNLE:

||UN
h ||2 +Re−1∆t

∑

n

||∇Un+1
h +Un

h

2
||2 + . . .

= ∆t
∑

n

∫

(
3

2
Un

h − 1

2
Un−1

h ) · ∇u · U
n+1
h +Un

h

2
+ . . . . (8)

To derive an a priori estimate from (8), each Un
h from the right-hand side must be

absorbed into the left-hand side. However, 3
2U

n
h − 1

2U
n−1
h cannot be written as a

sum of averages. Indeed, suppose that Un
h = −Un+1

h 6= 0 so that ||∇U
n+1

h +U
n
h

2 || = 0

whereas ||∇Un+1
h || > 0. Then, in this case, it is impossible to absorb any factor

of
∑

n ||∇(32U
n
h − 1

2U
n−1
h )||2 > 0 into

∑

n ||∇
U

n+1

h +U
n
h

2 ||2 = 0. To proceed from

(8) requires care so that only L2-norms of 3
2U

n
h − 1

2U
n−1
h are introduced when ma-

jorizing the right-hand side. Indeed
∑

n κn||Un
h ||2 can be absorbed via the discrete

Gronwall Lemma. Assuming that u ∈ H2, the key estimate to prove is

|ch(u,v,w)| ≤ C||u||Hr ||v||H2 ||w||H1−r ∀u ∈ Hr, v ∈ H2, w ∈ H1−r

for some C > 0 and r = 0 and 1 where ch(u,v,w) = 1
2 (u · ∇v,w) − 1

2 (u · ∇w,v)
is the explicitly skew-symmetric convective term (see estimates (74)(b), (75)(b)).

1.1.2. Introduction of ∆t-restriction (3). It is illuminating to introduce the
BE scheme to highlight the difficulty in convergence estimates for CN schemes in
higher order norms. Let i = 1 for BE and i = 2 for CN. Write zn+1/2 = 1

2 (z
n+1+zn)

and
∫

un+1/i·∇un+1/i·v ≈
∫

ξn(u)·∇un+1/i·v, ξn(u) := a0u
n+. . .+an0

un−n0 . (9)

Note that ξn(u) = un and ξn(u) = 3
2u

n − 1
2u

n−1 in (9) for BECE and CNLE
respectively. The energy difference due to the numerical extrapolation (9) is the
source of the ∆t-restriction (3) for CNLE. Indeed, BECE velocities are shown to
converge unconditionally in l∞(H1) (see e.g. [32]). Let e represent the fully discrete
velocity error for CNLE or BECE. We show herein for CNLE (and it is known for
BECE) that

max
n

||en||+ (Re−1∆t
∑

n

||∇en+1/i||2)1/2 ≤ C(hk +∆ti) (10)

for some C > 0 without any ∆t-restriction. The key difference between our con-
vergence proof for CNLE and that for BECE is the resulting error equation: for



UNCONDITIONAL CONVERGENCE OF CNLE 261

approximations Un
h ,

Re−1||∇UN
h ||2 +∆t

∑

n

||U
n+1
h −Un

h

∆t
||2 + . . .

=



















∆t
∑

n

∫

en · ∇en+1 · U
n+1
h −Un

h

∆t
+ . . . BECE

∆t
∑

n

∫

(
3

2
en − 1

2
en−1) · ∇en+1 + en

2
· U

n+1
h −Un

h

∆t
+ . . . CNLE

(11)

Estimate (10) gives us a priori control in l2(H1) of two terms en, en+1 in (11)(a).
However, we only have a priori control of 1

2 (e
n+1+en) in (11)(b) since 3

2e
n− 1

2e
n−1

cannot be written as a sum of averages. Indeed, suppose that en = −en+1 6= 0.

Then ||∇e
n+1+e

n

2 || = 0 whereas ||∇en+1|| > 0. In this case it is impossible to bound
∑

n ||∇(32e
n − 1

2e
n−1)||2 > 0 above by any factor of

∑

n ||∇e
n+1+e

n

2 ||2 = 0. The
remaining term in (11)(a) and 2 terms in (11)(b) must be absorbed to the left-hand
side of the estimate or with the Gronwall Lemma. The limited control of the CNLE

term
∫

(32e
n − 1

2e
n−1) · ∇e

n+1+e
n

2 · U
n+1

h −U
n
h

∆t leads to the restriction (3).

1.1.3. Preserving optimal convergence rate in l∞(H1). We utilize the Stokes
projections (79) in the convergence analysis of Theorems 3.8, 3.10. The Stokes pro-
jection requires additional regularity of the pressure p, but is necessary to establish
the optimal convergence rate for velocity in l∞(H1) reported in Theorem 3.10. The
crucial estimate involves the error in the pressure: for each n ≥ 0, fix q̃n+1

h ≈ pn+1

and Un+1
h ∈ H1

0 so that

(pn+1 − q̃n+1
h ,∇ · U

n+1
h −Un

h

∆t
) ≤











||pn+1 − q̃n+1
h || ||∇ · U

n+1
h −Un

h

∆t
||

||pn+1 − q̃n+1
h ||1 ||U

n+1
h −Un

h

∆t
||

. (12)

The first option in (12) must be avoided, because we have no a priori control of

||∇ · U
n+1

h −U
n
h

∆t ||. The second option (12) is applicable, but ultimately leads to a
suboptimal error estimate. Indeed, approximation theory for FE functions suggests

||pn+1 − q̃n+1
h ||m ≤ Chs+1−m, s = degree of FE space (13)

for some C > 0 so that a factor of h is lost in the case m = 1. Alternatively, let
(ṽn+1

h , q̃n+1
h ) ≈ (un+1, pn+1) be the Stokes projection. Then

Re−1(∇(un+1 − ṽn+1
h ),∇Un+1

h −Un
h

∆t
)− (pn+1 − q̃n+1

h ,∇ · U
n+1
h −Un

h

∆t
) = 0. (14)

Identity (14) eliminates the need to bound (12). Instead, the error is shifted to the
time derivative of the Stokes projection and requires

|| (p
n+1 − q̃n+1

h )− (pn − q̃nh)

∆t
|| ≤ Chs+1 (15)

for some C > 0.



262 R. INGRAM

1.2. Overview of CN schemes. There are many analyses of CN time-stepping
methods for the NSE. Heywood and Rannacher [20] provide a well-cited and com-
prehensive analysis of CNFE. The 2nd and 3rd order CNLE methods are intro-
duced and analyzed in [3,4]. Numerous error analyses of CNLE have been provided
since: e.g. multilevel based CNLE [18,21], LES turbulence modeling [6], stochastic
CNLE [7], and a stabilized CNLE method [24]. Each of these analyses requires,
explicitly stated or implicitly, a ∆t-restriction of the form (1) to guarantee con-
vergence. For instance, in [6], the first Gronwall Lemma 3.14 must be applied
with ∆t-restriction (p. 223) since Equation (4.11) includes the pertinent term up
to and including the current time-step (see 4th-term on RHS of Equation (4.11)).
The convergence analysis in [12–17] requires ∆t ≤ cT or ∆t ≤ cT | log h|−1. Con-
vergence estimates for fully-discrete BECE is derived and family of semi-discrete
multi-step CNLE-type methods are derived in [32] and [10] respectively. Concur-
rent to our work, the authors of [26] correctly perform the convergence analysis in
energy norm, but not in higher-orders and do not consider general case when the
nonlocal compatibility condition (4), (5) is not satisfied.

Applications of CNLE are also widespread: e.g. stability analysis of NSE and
MHD equations with CNLE in [2], a 1st order CNLE applied in conjunction with a
coupled multigrid and pressure Schur complement scheme for the NSE is proposed
in [23], a velocity-vorticity formulation of CNLE analyzed in [29], and the NS-α/NS-
ω regularization method with CNLE [25]. The CN method is also applied, for exam-
ple, to a general class of non-stationary partial differential equations encompassing
reaction-diffusion type equations including the nonlinear Sobolev equations [28] and
the Ginzburg-Landau model [22]. Time-step restrictions of type (1)(b) (where Re
has a different meaning) are implicitly required in the convergence analyses of these
discrete models.

A CN/Adams-Bashforth (CN-AB) time-stepping, scheme is another linear vari-
ant of CNFE. Unlike CNLE, CN-AB is explicit in the nonlinearity and only con-
ditionally stable [17] (i.e. a ∆t-restriction of form (1)(a) is required for stability).
CN-AB is a popular method for approximating NS flows because it is fast and easy
to implement. Each time-step requires only one discrete Stokes system and linear
solve. For example, CN-AB is used to model turbulent flows induced by wind tur-
bine motion [31], turbulent flows transporting particles [27], and reacting flows in
complex geometries (e.g. gas turbine combustors) [1].

Lastly, the compatibility condition (4), (5) is not satisfied in general, see [20] for
an overview of this problem. When the (4), (5) is not satisfied, we have limited
regularity that greatly restricts convergence analysis of high-order methods (both

in time and space), e.g. ∂
(2)
t u /∈ L2(H1). Corresponding regularity in the case that

(4), (5) is satisfied is assumed the analyses of [3, 4, 6, 7, 10, 24, 26, 32]. See [12, 14–
16, 19, 20, 30] for a rigorous treatment of the general case when the compatibility
condition is not satisfied. We also provide details herein.

2. Problem formulation

Let a := (a0, a1, . . . , an0
) ∈ R

n0+1 for some n0 ∈ {0} ∪ N be equipped with the
standard lq norm denoted by |a|q for 1 ≤ q ≤ ∞. Fix p ≥ 1. Let Lp(Ω) denote
the linear space of all real Lebesgue-measurable functions u and bounded in the
usual norm denoted by ||u||Lp(Ω). Let (·, ·)Ω and || · ||Ω be the standard L2(Ω)-

inner product and norm. Fix k ∈ R. The Sobolev space W k,p(Ω) is equipped
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with the usual norm denoted by ||u||Wk,p(Ω). Identify || · ||k,p,Ω := || · ||Wk,p(Ω),

Hk(Ω) := W k,2(Ω), || · ||k,Ω := || · ||Wk,2(Ω) with | · |k,Ω the corresponding semi-

norm. Let the context determine whether W k,p(Ω) denotes a scalar, vector, or
tensor function space. For example let v : Ω → R

d. Then, v ∈ H1(Ω) implies that
v ∈ H1(Ω)d and ∇v ∈ H1(Ω) implies that ∇v ∈ H1(Ω)d×d. Define

H1
0 (Ω) :=

{

v ∈ H1(Ω) : v|∂Ω = 0
}

, V (Ω) :=
{

v ∈ H1
0 (Ω) : ∇ · v = 0

}

.

The dual space of H1
0 (Ω) is denoted W−1,2(Ω) := (H1

0 (Ω))
′ and equipped with the

norm

||f ||−1,Ω := sup
06=v∈H1

0
(Ω)

< f ,v >W−1,2(Ω)×H1
0
(Ω)

|v|1,Ω
.

Define

L2
0(Ω) :=

{

q ∈ L2(Ω) : (q, 1)Ω = 0
}

.

For brevity, omit Ω in the definitions above. For example, (·, ·) = (·, ·)Ω, H1 =
H1(Ω), and V = V (Ω).

Fix time T > 0 and m ≥ 1. Let Wm,q(0, T ;W k,p(Ω)) denote the linear space
of all Lebesgue measurable functions from (0, T ) onto W k,p equipped with and
bounded in the norm

||u||Wm,q(0,T ;Wk,p) := (

∫ T

0

m
∑

i=0

||∂(i)
t u(·, t)||q

Wk,pdt)
1/q.

Write Wm,q(W k,p) = Wm,q(0, T ;W k,p(Ω)) and Cm(W k,p) = Cm([0, T ];W k,p(Ω)).

2.1. Discrete function setting. Fix h > 0. Let Th be a family of subdivisions
(e.g. triangulation) of Ω ⊂ R

d satisfying Ω =
⋃

E∈Th
E so that diameter(E) ≤ h

and any two closed elements E1, E2 ∈ Th are either disjoint or share exactly one
face, side, or vertex. Suppose further that Th is quasi-uniformly regular as h → 0.
See [5] (Definition 4.4.13) for a precise definition and treatment of the inherited
properties of such a space (see Appendix II.A in [11] for more on this subject in
context of Stokes problem). For example, Th consists of triangles for d = 2 or
tetrahedra for d = 3 that are nondegenerate as h → 0.

LetXh,· ⊂ (H1)d andQh,· ⊂ L2 be a FE space. For example, letXh,· and Qh,· be
continuous, piecewise (on each E ∈ Th) polynomial spaces. Define Xh := Xh,·∩H1

0 ,
Qh := Qh,· ∩ L2

0. The discretely divergence-free space is given by

Vh = {vh ∈ Xh : (qh,∇ · vh) = 0 ∀qh ∈ Qh,·} .
Note that in general Vh 6⊂ V (e.g. Taylor-Hood elements).

Set 0 = t0 < t1 < . . . < tn = T < ∞ with ∆t = tn − tn−1. Write zn := z(tn)
and zn+1/2 := 1

2 (z(t
n+1) + z(tn)). Define

||u||lq(m1,m2;Wk,p) :=

{

(∆t
∑m2

n=m1
||un||qk,p)1/q, q ∈ [1,∞)

maxm1≤n≤m2
||un||k,p, q = ∞

for any 0 ≤ n = m1,m1+1, . . . ,m2 ≤ N . Write ||u||lq(Wk,p) = ||u||lq(0,N ;Wk,p). We

say that u ∈ lq(m1,m2;W
k,p) if the associated norm defined above stays finite as

∆t → 0. Define the discrete time-derivative

∂n+1
∆t v :=

vn+1 − vn

∆t
.
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Explicit skew-symmetrization of the convective term in NS-type equations en-
sures stability of the corresponding numerical approximation:

ch(u,v,w) :=
1

2
(u · ∇v,w) − 1

2
(u · ∇w,v). (16)

Fix ai ∈ R for i = −1, 0, 1, . . . , n0 ≥ −1 and n ∈ {0} ∪ N. Define ξn(u) so that

ch(u,v,w) ≈ ch(ξ
n(u),v,w), ξn(u) := a−1u

n+1 + a0u
n + . . .+ an0

un−n0 .

To summarize,

No linearization ⇒ a−1 = 1, ai = 0 for all i ≥ 0
Linearization ⇒ a−1 = 0, ai 6= 0 for some i ≥ 0

For example,

ξn(u) = un ⇒ ξn(u) = u(·, tn+1/2) +O(∆t)

ξn(u) = 1
2 (3u

n − un−1) ⇒ ξn(u) = u(·, tn+1/2) +O(∆t2)
ξn(u) = 1

8 (15u
n − 10un−1 + 3un−2) ⇒ ξn(u) = u(·, tn+1/2) +O(∆t3)

CNLE is a particularly attractive method because it is ∆t2-accurate, implicit in the
nonlinearity (a source of stiffness), and linearized which avoids issues of nonlinear
solvers converging and greatly reduces the computational cost. Fix the kinematical
viscosity ν > 0. Note that ν ∝ Re−1.

Problem 2.1 (CNLE). Suppose that ui
h ∈ Vh for i = 0, 1, . . . , n0 and pn0

h ∈ Qh.

For each n = n0, n0 + 1, . . . , N − 1, find (un+1
h , pn+1

h ) ∈ Xh ×Qh satisfying

(
un+1
h − un

h

∆t
,vh) + ch(ξ

n(uh),u
n+1/2
h ,vh)

+ ν(∇u
n+1/2
h ,∇vh)− (p

n+1/2
h ,∇ · vh) = (fn+1/2,vh), ∀vh ∈ Xh (17)

(qh,∇ · un+1) = 0, ∀qh ∈ Qh. (18)

Remark 2.2. Note that ξn(uh) = u
n+1/2
h defines the CNFE method analyzed in

e.g. [20], ξn(uh) =
1
2 (3u

n
h −un−1

h ) defines the CNLE method of e.g. [3,13,24], and

ξn(uh) = un−1/2 the O(∆t) CNLE method of e.g. [6].

2.2. Assumptions and approximations. Let C > 0 be a generic data-independent
constant throughout; specifically, C is independent of h, ∆t, ν → 0. Error esti-
mates for the elliptic projection (78) and Stokes projection (80) in L2 and W−1,2

require regularity of solutions to the following auxiliary problem.

Assumption 2.3. Given θ ∈ W−1,2, find (wθ, rθ) ∈ H1
0 × L2

0 satisfying

(∇wθ,∇v)− (rθ ,∇ · v)− (q,∇ ·w) = (θ,v), ∀(v, q) ∈ H1
0 × L2.

This problem is well-known to be well-posed. Suppose further that (wθ, rθ) ∈
(Hm+2 ∩ V )× (Hm+1 ∩ L2

0) satisfy

||wθ||m+2 + ||rθ||m+1 ≤ C||θ||m (19)

when m = 0, 1 and θ ∈ Hm
0 (with H0

0 = L2).

Indeed, (19) is true if Ω is smooth enough.
Preserving an abstract framework for the FE spaces, we assume that Xh,·×Qh,·

inherit several fundamental approximation properties.

Assumption 2.4. The FE spaces Xh ×Qh satisfy:
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Uniform inf-sup (LBB) condition:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

|vh|1 ||q|| ≥ C > 0 (20)

FE-approximation:

inf
vh∈Xh

||u− vh||1 ≤ Chk||u||k+1

inf
qh∈Qh

||p− qh|| ≤ Chs+1||p||s+1
(21)

for k ≥ 0, and s ≥ −1 when u ∈ Hk+1 ∩H1
0 , p ∈ Hs+1 ∩ L2

0

Inverse-estimate:

|vh|1 ≤ Ch−1||vh||, ∀vh ∈ Xh (22)

The well-known Taylor-Hood mixed FE is one such example satisfying Assumption
2.4. Estimates in (23), (24), (25), (28) stated below are used in proving error
estimates for time-dependent problems. First define

σ(t) := min {1, t} .
Then for any n = n0, n0 + 1, . . . , N − 1, k ≥ −1,

||∂n+1
∆t u||2k ≤ ∆t−1

∫ tn+1

tn
||∂tu(·, t)||2kdt (23)

||un+1/2 − u(·, tn+1/2)||2k ≤ C∆t3σ(tn+1/2)−2

∫ tn+1

tn
σ(t)2||∂(2)

t u(·, t)||2kdt (24)

||∂n+1
∆t u− (∂tu)

n+1/2||2k ≤ C∆t3σ(tn+1/2)−2

∫ tn+1

tn
σ(t)2||∂(3)

t u(·, t)||2kdt (25)

when ∂tu ∈ L2(Hk), t2 ∂
(2)
t u(·, t) ∈ L2(Hk), t2 ∂

(3)
t u(·, t) ∈ L2(Hk). Derivation of

these estimates follows from application of an appropriate Taylor expansion with
integral remainder, see Appendix B. Moreover, (24) and (25) are replaced by

||un+1/2 − u(·, tn+1/2)||2k ≤ C∆t3
∫ tn+1

tn
||∂(2)

t u(·, t)||2kdt (26)

||∂n+1
∆t u− (∂tu)

n+1/2||2k ≤ C∆t3
∫ tn+1

tn
||∂(3)

t u(·, t)||2kdt (27)

if ∂
(2)
t u ∈ L2(Hk), ∂

(3)
t u ∈ L2(Hk) respectively. The operator ξn(u) should be

chosen to preserve the ∆t2-convergence rate of the fully-nonlinear CN scheme. This
is made precise by assuming (28) holds.

Assumption 2.5. Suppose that t2 ∂
(2)
t u ∈ L2(Hk) for some k ≥ 0. Then for each

n = n0, n0 + 1, . . ., N − 1,

||ξn(u)− u(·, tn+1/2)||2k ≤ C∆t3σ(tn+1/2)−2

∫ tn+1

tn−n0

σ(t)2||u(·, t)||2kdt (28)

Note that if ∂
(2)
t u ∈ L2(Hk), then (28) becomes

||ξn(u)− u(·, tn+1/2)||2k ≤ C∆t3
∫ tn+1

tn−n0

||u(·, t)||2kdt (29)
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We summarize the continuous-in-space and discrete-in-time counterparts to the
regularity results of Theorems 2.2, 2.3., 2.4 reported in [19] when the nonlocal
compatibility condition (4), (5) is not satisfied. The same results (with extensions)
are also reported and applied in [12, 14–16]). We summarize the results here as
an assumption. The results follow if u ∈ L∞(H1) and ∂Ω and problem data are
smooth enough.

Assumption 2.6. Suppose that for any i ≥ 0, k ≥ −1, and 2i+ k > 0 that
∫ T

tn0

σ(t)2i+k−3||∂(i)
t u(·, t)||2kdt < ∞

and

∆t

N
∑

n=1

σ(tn)2i+k−2||∂(i)
t un||2k+1

+ max
1≤n≤N

σ(tn)2i+k−2||un||2k +∆t

N
∑

k=1

σ(tn)2i+k−2||∂(i)
t pn||2k < ∞.

3. Convergence estimate for CNLE

We state the main results in this section. A list of the constants found in these
theorems (referenced throughout this section) are compiled in Section 3.1. The error
equation required for the convergence proofs is derived in Section 4. Throughout,
require that the continuous problem data minimally satisfies u0 ∈ H2 ∩ V and
f ∈ W 1,∞(L2). In this setting, we state the NSE: find u ∈ L∞(L2) ∩ L2(H1

0 ) and
p ∈ W−1,∞(L2

0) satisfying

d

dt
(u,v) + (u · ∇u,v) + ν(∇u,∇v) − (p,∇ · v) = (f ,v), ∀v ∈ H1

0 (30)

∇ · u(x, t) = 0 a.e. (x, t) ∈ Ω× (0, T ] (31)

u(x, 0) = u0(x), a.e. x ∈ Ω. (32)

See e.g. [9] and references therein for NSE existence and regularity results. De-
fine e := u − uh. Proposition 3.1 provides sufficient conditions to conclude that
e ∈ l∞(L2)∩ l2(H1). Indeed, Proposition 3.1 holds for u ∈ C0([tn0 , T ];H1) without
a Gronwall exponential factor (use a priori estimate derivable for un+1

h ). Alterna-
tively, the proof of Proposition 3.1 herein is obtained as an intermediate step in the
proof of Theorem 3.5. We gain insight to the basic regularity requirements in our
method of proof for the error estimate (34).

Proposition 3.1. Suppose that the FE space satisfies Assumption 2.4. Suppose
further that Assumption 2.3 is satisfied along with

u ∈ l2(H2) ∩ l∞(V ) ∂tu ∈ l2(n0, N ;W−1,2), p ∈ l2(n0, N ;L2
0).

and ∂tu ∈ L2(tn0 , T ;H1). Then

||e||l∞(n0+1,N ;L2) + ν1/2(∆t
N−1
∑

n=n0

|en+1/2|21)1/2 ≤ C(||uN ||+ ν1/2||∇u||l2(n0,N ;L2))

+ exp(Cν−1||u||2l2(n0,N ;H2))(K0||e||l∞(0,n0;L2) +K1 +K2) (33)

The constants K0, K1, K2 > 0 are given in (41), (42), (43) respectively so that the
right hand side of (33) remains bounded as h, ∆t → 0.



UNCONDITIONAL CONVERGENCE OF CNLE 267

Proof. See Section 4.1. �

Remark 3.2. The regularity ∂tu ∈ L2(tn0 , T ;H1) assumption in Proposition 3.1
is more than necessary. Indeed, we can replace the elliptic projection with the

L2-projection to eliminate the time-derivative term (∂n+1
∆t η,U

n+1/2
h ) (the source

of the resulting regularity restriction) in the proof of Proposition 3.1. However,
incorporation of the L2-projection from V into Vh requires additional (technical)
development and does not benefit the main error estimate in Theorem 3.5 for k > 2.

Remark 3.3. The exponential Gronwall factor exp(Cν−1||u||2l2(n0,N ;H2)) in K

above typically takes the form exp(Cν−3||∇u||4l4(n0,N ;L2)). However, a factor of
∑

n ||∇un||2 must be absorbed into
∑

n ||∇un+1/2||2 to proceed with the latter es-
timate. As discussed in Section 1.1.1, this is not possible in general for the usual
CNLE (without a great restriction on time interval length T ). In particular, since
the dissipative term for CN schemes has the form ν

∑

n ||∇un+1/2||2 and the usual
extrapolation for CNLE is ξn(u) = 3

2u
n − 1

2u
n−1 (which is not a sum of aver-

age velocities), errors manifested from the extrapolated velocity cannot be absorbed
(as usual) into the dissipative term. Consequently all errors propagated from the
extrapolated convecting velocity must be absorbed via the discrete Gronwall Lemma.

The optimal convergence rate proved in Theorem 3.5 requires that initial iterates
{

ui
h

}n0

i=0
are accurate enough. We make this precise in the following assumption.

Assumption 3.4. Fix k ≥ 0, s ≥ −1 and α > 0. Suppose
{

ui
h

}n0

i=0
satisfy

K0||e||l∞(0,n0;L2) ≤ α(Kuh
k +Kph

s+1 +Kt∆t2)

where K0, Ku, Kp, Kt > 0 are given in (41), (44), (45), (46) respectively and
remain bounded as h, ∆t → 0.

Note that Assumption 3.4 reduces to, when s = k − 1,

||e||l∞(0,n0;L2) ≤ α(hk +∆t2).

The following theorem provides sufficient conditions to ensure CNLE converges
optimally in the energy norm: e.g. under usual regularity conditions and s = k− 1

||e||l∞(n0+1,N ;L2) + ν1/2(∆t

N−1
∑

n=n0

|en+1/2|21)1/2 ≤ C(hk +∆t2)

without any ∆t-restriction!

Theorem 3.5. Fix k > 0, s > −1. Under the assumptions of Proposition 3.1,
suppose further that Assumptions 2.5, 3.4 are satisfied along with u ∈ l∞(Hk ∩
H2) ∩ l2(Hk+1), ∂tu ∈ L2(tn0 , T ;Hk−1 ∩ H1) ∩ l∞(n0, N ;H1), ∂

(2)
t u ∈ L2(L2),

∂
(3)
t u ∈ L2(tn0 , T ;W−1,2), and p ∈ l2(n0, N ;Hs+1). Then

||e||l∞(n0+1,N ;L2) + ν1/2(∆t

N−1
∑

n=n0

|en+1/2|21)1/2 ≤ GNKph
s+1

+ (C||uN ||k + Cν1/2||u||l2(n0,N ;Hk+1) +GNKu)h
k +GNKt∆t2 (34)

where GN := exp(Cν−1||u||2l2(n0,N ;H2)). The constants Ku, Kp, Kt > 0 are given

in (44), (45), (46) respectively and remain bounded as h, ∆t → 0.
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Proof. See Section 4.1. �

In the general case that the compatibility condition (4), (5) is not satisfied, the
result of Theorem 3.5 holds under a reduced convergent rate: e.g. under usual
regularity conditions and s = k − 1

||e||l∞(n0+1,N ;L2) + ν1/2(∆t

N−1
∑

n=n0

|en+1/2|21)1/2 ≤ Cσ(t1)−1(σ(t1)−(k−3)/2hk +∆t2)

Theorem 3.6. Fix k > 0, s > −1. Under the assumptions of Proposition 3.1,
suppose further that Assumptions 2.5, 3.4, and 2.6 are satisfied. Then (34) holds
with Ku, Kp, Kt replaced by σ(t1)−(k−1)/2Ku, σ(t1)−(k−2)/2Kp, and σ(t1)−1Kt

respectively where the constants Ku, Kp, Kt > 0 are given in (47), (48), (49)
respectively and remain bounded as h, ∆t → 0.

Remark 3.7. If we use the L2-projection rather than elliptic projection in proving
Theorem 3.6, the result is improvable so that Ku is replaced by σ(t1)−(k−2)/2Ku.

Proof. See Section 4.1. �

An estimate for ∆t
∑

n ||(en+1 − en)/∆t||2 is needed in the error analysis for
pressure and the drag/lift forces by the fluid on embedded obstacles. Theorem
3.8 provides sufficient regularity of (u, p) solving (81), (82), (83) to ensure uh ∈
l∞(H1) and ∂∆tuh ∈ l2(L2). Note that the regularity ∂tu ∈ L2(tn0 , T ;H1),
∂tp ∈ L2(tn0 , T ;L2) in Theorem 3.8 is a result of using the Stokes projection in
corresponding proof herein and can be relaxed. The proof of Theorem 3.8 is ob-
tained as an intermediate step in the proof of Theorem 3.10. Relaxing the regularity
assumption (by using the L2-projection or elliptic instead) leads to a suboptimal es-
timate. The additional regularity required here gives insight to the extra regularity
required for the optimal error estimate (38).

Theorem 3.8. Under the assumptions of Proposition 3.1, suppose further that u ∈
l∞(H2), p ∈ l∞(H1), ∂tu ∈ l2(n0, N ;L2)∩L2(tn0 , T ;H1), and ∂tp ∈ L2(tn0 , T ;L2)
so that

h−1∆t

N−1
∑

n=n0

|en+1/2|21 < ∞, as h, ∆t → 0. (35)

Then

||∂∆te||l2(n0+1,N ;L2) + ν1/2||∇e||l∞(n0+1,N ;L2)

≤ GN (F0||∇e||l∞(0,n0;L2) + F1 + F2) + Cν−1/2||pN ||
+ Cν1/2|uN |1 + Chν−1||∂tp||L2(tn0 ,T ;L2) + Ch||∂tu||L2(tn0 ,T ;H1) (36)

where GN := exp(Cν−1∆t
∑N−1

n=n0
(||un+1/2||22 + h−1|en+1/2|21)). The constants F0,

F1, F2 are given in (50), (51), (52) respectively so that the right hand side of (36)
remains bounded as h, ∆t → 0.

Proof. See Section 4.2. �

The optimal convergence result proved in Theorem 3.10 requires that the initial
iterates

{

ui
h

}n0

i=0
must be accurate enough. We make this precise in the following

assumption.



UNCONDITIONAL CONVERGENCE OF CNLE 269

Assumption 3.9. Fix k ≥ 0, s ≥ −1 and α > 0. Suppose
{

ui
h

}n0

i
satisfy

F0||∇e||l∞(0,n0;L2) ≤ α(Fuh
k + Fph

s+1 + Ft∆t2)

where F0, Fu, Fp, Ft > 0 are given in (50), (53), (54), (56) respectively.

Note that Assumption 3.9 reduces to, when s = k − 1,

||∇e||l∞(0,n0;L2) ≤ α(hk +∆t2).

Therefore, under usual regularity conditions we show in Theorem 3.10 that

||∂∆te||l2(n0+1,N ;L2) + ||∇e||l∞(n0+1,N ;L2) ≤ C(hk +∆t2)

as long as ∆t ≤ Mh1/4 for any arbitrary M > 0 (i.e. no ν-dependence).

Theorem 3.10. Fix k > 0, s > −1. Under the regularity of Theorem 3.8, suppose
further that Assumptions 2.5, 3.9 are satisfied along with u ∈ l∞(Hk+1), ∂tu ∈
L2(tn0 , T ;Hk∩H3)∩ l∞(n0, N ;L2), ∂

(2)
t u ∈ L2(tn0 , T ;H1), ∂

(3)
t u ∈ L2(tn0 , T ;L2),

p ∈ l∞(Hs+1), ∂tp ∈ L2(tn0 , T ;Hs), and

∆t ≤ Mh1/4, for any constant M > 0 (no ν-dependence). (37)

Then

||∂∆te||l2(n0+1,N ;L2) + ν1/2||∇e||l∞(n0+1,N ;L2)

≤ GN (Fuh
k + Fph

s+1 + Ft∆t2 + F3(∆t

N−1
∑

n=n0

|en+1/2|21)1/2) (38)

where GN := exp(Cν−1∆t
∑N−1

n=n0
(||un+1/2||22 + h−1|en+1/2|21)). The constants Fu,

Fp, F3, Ft > 0 are given in (53), (54), (55), (56) respectively and remain finite as
h, ∆t → 0.

Proof. See Section 4.2. �

In the general case that the compatibility condition (4), (5) is not satisfied, the
result of Theorem 3.10 holds under a reduced convergent rate: e.g. under usual
regularity conditions and s = k − 1

||∂∆te||l2(n0+1,N ;L2)+ν1/2||∇e||l∞(n0+1,N ;L2) ≤ Cσ(t1)−3/2(σ(t1)−(k−4)/2hk+∆t2)

Theorem 3.11. Fix k > 0, s > −1. Under the assumptions of Theorem 3.8,
suppose further that Assumptions 2.5, 3.4, and 2.6 are satisfied. Then (38) holds
with Fu, Fp, Ft replaced by σ(t1)−(k−1)/2Fu, σ(t1)−(k−1)/2F p, and σ(t1)−3/2F t

respectively where the constants Fu, F p, F t > 0 are given in (57), (58), (59)
respectively and remain bounded as h, ∆t → 0.

Proof. See Section 4.2. �

Remark 3.12. It is common to assume that u ∈ L∞(W 1,∞) in the convergence
analysis of NSE approximations (see e.g. [3, 24]). The conclusions of Proposition
3.1 3.1, Theorem 3.5, in addition to those of Theorems 3.8, 3.10 are preserved
with the regularity condition u(·, t) ∈ H2 replaced by u(·, t) ∈ W 1,∞. Regard-
less, the analysis of [24] suggests an h, ∆t-restriction for optimal convergence in
l∞(L2) ∩ l2(H1) (Theorem 3.1 in [24]) and a sub-optimal convergence estimate
||u − uh||l∞(H1) ≤ O(hk + hs+1 + h−3/2∆t4 + ∆t3/2) (Theorem 4.1 in [24]). The
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l∞(H1)-estimate in [24] requires, for instance, ∆t ≤ h(3+2k)/8 for optimal conver-
gence rate as h → 0, but still predicts suboptimal convergence rate with respect to
∆t → 0.

The error estimates of Proposition 3.1, Theorem 3.5, 3.8, 3.10 give conditions
in which ph(avg) ∈ l2(n0, N ;L2), uh ∈ l∞(n0, N ;H1), and ∂∆tuh ∈ l2(L2). In
particular, as a direct consequence of (36) and the conditions of Theorem 3.8, we
have

||∂∆tuh||l2(n0,N ;L2) + ν||∇uh||l∞(n0,N ;L2) ≤ C < ∞.

Estimates for pressure follow as well and are summarized in the next Corollary.

Corollary 3.13. Under the conditions and conclusions of Theorem 3.8,

∆t

N−1
∑

n=n0

||pn+1/2
h || ≤ C < ∞, as h, ∆t → 0. (39)

Under the conditions and conclusions of Theorem 3.10, for s = k − 1,

∆t

N−1
∑

n=n0

||pn+1/2 − p
n+1/2
h || ≤ C(hk +∆t2). (40)

Proof. See Section 4.3. �

3.1. Constant factors in convergence estimates. For Proposition 3.1, define
the spatial-modeling error in Xh×Qh by K1, time modeling-error by K2, and initial
condition modeling error by K0 so that

K0 : = C + Cν−1/2

{

||u||l2(0,2n0;H2) if n0 ≥ 1,
0 otherwise

(41)

K1 : = Cν−1/2||∇u||l∞(L2)||∇u||l2(L2) +K0||u||l∞(0,n0;L2)+

. . .+ Cν−1/2||p||l2(n0,N ;L2) + Cν−1/2h2||∂tu||L2(tn0 ,T ;H1) (42)

K2 : = Cν−1/2(||∇u||l∞(L2)||∇u||l2(n0,N ;L2) + . . .

. . .+ ||∂tu||2L2(tn0 ,T ;W−1,2) + ||∂tu||2l2(n0,N ;W−1,2)). (43)

For Theorem 3.5 fix k > 0, s > −1, k∗ = k (with k∗ = 2 if k = 1) and define the
weight of spatial modeling error in Xh by Ku, spatial modeling error in Qh by Kp,
and time modeling error by Kt so that

Ku : = C(ν−1/2||∇u||l∞(L2)||u||l2(Hk+1) + ν−1/2||∂tu||L2(tn0 ,T ;Hk∗−1) + . . .

. . .+K0||u||l∞(0,n0;Hk)) (44)

Kp : = Cν−1/2||p||l2(n0,N ;Hs+1) (45)

Kt : = Cν−1/2(||∂(3)
t u||L2(tn0 ,T ;W−1,2) + ||u||l∞(H2)||∂(2)

t u||L2(L2) + . . .

. . .+ ||∂tu||l∞(n0,N ;L2)||∂tu||L2(tn0 ,T ;H2)) (46)



UNCONDITIONAL CONVERGENCE OF CNLE 271

Ku : = C∆t1/2σ(t1)(k−1)/2ν−1/2||∇u||l∞(L2)||u0||k+1 +K0σ(t
1)(k−1)/2||u0||k

+ Cν−1/2σ(t1)1/2||∇u||l∞(L2)(∆t

N
∑

n=1

σ(tn)k−2||un||2k+1)
1/2

+ Cν−1/2(

∫ T

tn0

σ(t)k−1||∂tu(·, t)||2k−1dt)
1/2

+ Cσ(t1)1/2(K0 max
1≤n≤n0

σ(tn)(k−2)/2||un||k) (47)

Kp : = Cν−1/2(∆t

N
∑

n=n0

σ(tn)k−2||pn||2k)1/2 (48)

Kt : = Cν−1/2(

∫ T

tn0

σ(t)2 ||∂(3)
t u(·, t)||−1dt)

1/2

+ Cν−1/2σ(tn0)1/2||u||l∞(H2)(

∫ T

tn0

σ(t) ||∂(2)
t u(·, t)||dt)1/2

+ Cν−1/2σ(tn0)1/2∆t||∂tu||l∞(n0,N ;L2)(

∫ T

tn0

σ(t) ||∂tu(·, t)||2dt)1/2. (49)

Analogous to K1, K2, K0, for Theorem 3.8 define the spatial-modeling error in
Xh×Qh by F1, time modeling-error by F2, and initial condition modeling error by
F0 so that

F0 : = Cν1/2 + C











(∆t

2n0−1
∑

n=0

(||un+1/2||22 + h−1|en+1/2|21))1/2 if n0 ≥ 1,

0 otherwise

(50)

F1 : = Cν−1||u||l∞(n0,N ;H2)||p||l2(L2) + ν−1F0||p||l∞(0,n0;L2)

+ C||u||l∞(n0,N ;H2)||∇u||l2(L2) + F0||∇u||l∞(0,n0;L2)

+ Cν−1h||∂tp||L2(tn0 ,T ;L2) + Ch||∂tu||L2(tn0 ,T ;H1)

+ C(ν−1h1/2||p||l∞(H1) + ||u||l∞(H2))(∆t

N−1
∑

n=n0

|en+1/2|21)1/2 (51)

F2 : = C(||u||l∞(H2)||∂tu||L2(tn0 ,T ;H1) + ||∂(2)
t u||L2(tn0 ,T ;L2) + . . .

. . .+ ν||∂tu||L2(tn0 ,T ;H2) + ||∂tp||L2(tn0 ,T ;H1) + ||∂tf ||L2(tn0 ,T ;L2)). (52)

For Theorem 3.10, fix k > 0, s > −1 and define the weight of spatial modeling error
in Xh by Fu, spatial modeling error in Qh by Fp, the bootstrapped modeling error
of velocity in the energy norm by F3, and time modeling error by Ft so that

Fu : = C(||u||l∞(H2)||u||l2(Hk+1) + ||∂tu||L2(tn0 ,T ;Hk) + . . .

. . .+ F0||u||l∞(0,n0;Hk+1)) (53)

Fp : = Cν−1(||u||l∞(H2)||p||l2(Hs+1) + ||∂tp||L2(tn0 ,T ;Hs) + . . .

. . .+ F0||p||l∞(0,n0;Hs+1)) (54)

F3 : = C||u||l∞(H2)(||u||l∞(H2) + ν−1h1/2||p||l∞(H1)) (55)

Ft : = C(||∂(3)
t u||L2(tn0 ,T ;L2) + ||u||l∞(n0,N ;H2)||∂(2)

t u||L2(tn0 ,T ;H1) + . . .

. . .+ ||∂tu||l∞(n0,N ;L2)||∂tu||L2(tn0 ,T ;H3)) (56)
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and

Fu : = σ(t1)(k−1)/2(F0 + C∆t1/2||u||l∞(n0,N ;H2))||u0||k+1h
k

+ F0 max
1≤n≤n0

σ(tn)(k−1)/2||un||k+1h
k

+ Cσ(t1)1/2||u||l∞(n0,N ;H2)(∆t

N
∑

n=1

σ(tn)k−2||un||2k+1)
1/2hk

+ C(

∫ T

tn0

σ(t)k−1||∂tu(·, t)||2kdt)1/2hk (57)

F p : = σ(t1)(k−1)/2(F0 + C∆t1/2ν−1||u||l∞(n0,N ;H2))||p0||khk

+ F0ν
−1 max

1≤n≤n0

σ(tn)(k−1)/2||pn||k

+ Cν−1σ(t1)1/2||u||l∞(n0,N ;H2)(∆t

N
∑

n=1

σ(tn)k−2||pn||2k)1/2hk

+ Cν−1(

∫ T

tn0

σ(t)k−1||∂tp(·, t)||2k−1dt)
1/2hk (58)

F t : = C(

∫ T

tn0

σ(t)3 ||∂(3)
t u(·, t)||dt)1/2

+ Cσ(tn0 )1/2||u||l∞(n0,N ;H2)(

∫ T

tn0

σ(t)2 ||∂(2)
t u(·, t)||1dt)1/2

+ Cσ(tn0 )1/2∆t||∂tu||l∞(n0,N ;L2)(

∫ T

tn0

σ(t)2 ||∂tu(·, t)||3dt)1/2. (59)

3.2. Fundamentals of estimation. Standard error analysis for CNLE relies on
the discrete Gronwall Lemma 3.14 which leads to a ∆t-restriction of the form
∆tκn < 1 for convergence. On the other hand, we show that this ∆t-restriction
is avoidable for CNLE because the second Gronwall Lemma 3.15 can be applied
instead.

Lemma 3.14 (Gronwall, ∆t-restriction). Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for
any integer n ≥ 0 and satisfy

AN +∆t

N
∑

n=0

Bn ≤ ∆t

N
∑

n=0

κnAn +∆t

N
∑

n=0

Cn +D, ∀N ≥ 0.

Suppose that for all n
∆tκn < 1

and set λn = (1−∆tκn)−1. Then,

AN +∆t

N
∑

n=0

Bn ≤ exp(∆t

N
∑

n=0

λnκn)(∆t

N
∑

n=0

Cn +D), ∀N ≥ 0.

Lemma 3.15 (Gronwall, no ∆t-restriction). Let D ≥ 0 and κn, An, Bn, Cn ≥ 0
for any integer n ≥ 0 and satisfy

AN +∆t

N
∑

n=0

Bn ≤ ∆t

N−1
∑

n=0

κnAn +∆t

N
∑

n=0

Cn +D, ∀N ≥ 0.
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Then

AN +∆t

N
∑

n=0

Bn ≤ exp(∆t

N−1
∑

n=0

κn)(∆t

N
∑

n=0

Cn +D), ∀N ≥ 0.

Lemma 3.14 is proved in Lemma 5.1 of [20] with the proof of Lemma 3.15 ex-
plained in a subsequent remark. The following change of indices formula is required
to resolve double sums that arise in the error analysis of CNLE.

Lemma 3.16. Let κn, λn ∈ R for all n ∈ N, αi ∈ R for all i = 0, 1, . . . , n0. Then,

N−1
∑

n=n0

κn(

n0
∑

i=0

αiλn−i) =

N−1
∑

n=0

(

i1(n)
∑

i=i0(n)

αiκn+i)λn (60)

where

i0(n) :=

{

0, n ≥ n0

n0 − n, otherwise
, i1(n) :=

{

n0, n < N − 1− n0

N − n, otherwise
.

We use the fact that ||∇ · v|| ≤
√
d|v|1 throughout without further reference.

Fix q, q′ ≥ 1 so that 1/q + (1/q′) = 1. The following estimates are used frequently
in the analysis herein (for proofs see e.g. [8], Chapter II, and references therein):

• (Young) For any a > 0, b > 0, and δ > 0

ab ≤ 1

qδq/q′
aq +

δ

q′
bq

′

(61)

• (Hölder) For any v ∈ Lq, w ∈ Lq′

|(v,w)| ≤ ||v||0,q ||w||0,q′ (62)

• (Ladyzhenskaya) For any v ∈ H1,










||v||0,3 ≤ C||v||1/2||v||1/21

||v||0,4 ≤ C||v||d/4||v||(4−d)/4
1

||v||0,6 ≤ C||v||1.
(63)

• (Sobolev) H2 →֒ L∞, W 1,3 so that for any v ∈ H2,

||v||0,∞ ≤ C||v||2, ||v||1,3 ≤ C||v||2. (64)

3.3. Estimating
∫

u · ∇v · w. Formulation of a stable FE discretization of NS
and NS-type problems is subtle. We introduced the explicitly skew-symmetric
convective term in (16) so that ch(u,v,w) ≈ (u · ∇v,w) and

ch(u,v,v) = 0. (65)

In fact, ch(u,v,w) = (u · ∇v,w) only if ∇ · u = 0 when v, w 6= 0; i.e. in general,
ch(u,v,w) 6= (u·∇v,w) when ∇·u 6= 0. Consequently, it is worthwhile to carefully
derive identities and estimates associated with both the convective and explicitly
skew-symmetric forms.

Lemma 3.17. Fix u, v, w ∈ H1. Then

|(u · ∇v,w)| ≤ C















||u||1|v|1||w||1
||u|| ||v||2||w||1 ∀v ∈ H2

||u||2|v|1||w|| ∀u ∈ H2

||u|| ||v||3||w|| ∀u ∈ H3

(66)
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Proof. First, application of Hölder’s inequality (62) with 1/p+ 1/q + 1/r = 1 and
p, q, r ≥ 1 gives

|(u · ∇v,w)| ≤ ||u||0,p||∇v||0,q ||w||0,r, ∀u ∈ Lp, v ∈ W 1,q, w ∈ Lr.

For (66)(a), pick p = r = 4, q = 2 and apply (63)(b). For (66)(b), pick p = 2,
q = 3, r = 6 and apply (63)(c), (64)(b). For (66)(c), pick p = ∞, q = 2, r = 2 and
apply (64)(a). For (66)(d), pick p = 2, q = ∞, r = 2 and apply (64)(a). �

Application of integration by parts and the divergence theorem give:

(u · ∇v,w) = −(u · ∇w,v) − ((∇ · u)v,w) +

∫

∂Ω

(u · n̂)v ·w. (67)

We conclude the following from (67).

Lemma 3.18. Fix u, v, w ∈ H1. Suppose that (u · n̂)v ·w|∂Ω = 0. Then

(u · ∇v,w) = −(u · ∇w,v)− ((∇ · u)v,w). (68)

Additionally,

∇ · u = 0 ⇒ (u · ∇v,w) = −(u · ∇w,v). (69)

It follows immediately from (67) and (66) that

|(u · ∇v,w)| ≤ C||u||2 ||v|| ||w||1 ∀u ∈ H2 ∩ V·, (u · n̂)v ·w|∂Ω = 0 (70)

Next, substitute (67) into (16) to obtain an additional (equivalent) formulation of
ch(·, ·, ·):

ch(u,v,w) = (u · ∇v,w) +
1

2
((∇ · u)v,w) − 1

2

∫

∂Ω

(u · n̂)v ·w (71)

The following is an immediate consequence of (71).

Lemma 3.19. Fix u, v, w ∈ H1. Suppose that (u · n̂)v ·w|∂Ω = 0. Then

ch(u,v,w) = (u · ∇v,w) +
1

2
((∇ · u)v,w) (72)

Additionally,

∇ · u = 0 ⇒ ch(u,v,w) = (u · ∇v,w). (73)

Similar to the continuous case, we derive several important majorizations of the
discrete trilinear form ch(u,v,w) required in the analysis CNLE.

Lemma 3.20. Fix u, v, w ∈ H1. Then

|ch(u,v,w)| ≤ C

{

(||u|| ||u||1)1/2||v||1||w||1
||u|| ||v||2||w||1 ∀v ∈ H2 (74)

Additionally, when (u · n̂)v ·w|∂Ω = 0,

|ch(u,v,w)| ≤ C

{

||u||1||v||1(||w|| ||w||1)1/2
||u||1||v||2||w|| ∀v ∈ H2 (75)

Proof. First, application of Hölder’s inequality (62) to (16) with 1/p+1/q+1/r = 1
and p, q, r ≥ 1 and 1/p′ + 1/q′ + 1/r′ = 1 and p′, q′, r′ ≥ 1 gives

|ch(u,v,w)| ≤ 1

2
||u||0,p||∇v||0,q ||w||0,r +

1

2
||u||0,p′ ||∇w||0,q′ ||v||0,r′
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For (74)(a), pick p = 3, q = 2, r = 6 and p′ = 3, q′ = 2, r′ = 6 and apply (63)(a)(c).
For (74)(b), pick p = 2, q = 3, r = 6 and p′ = 2, q′ = 2, r′ = ∞ and apply (63)(c),
and (64)(a)(b). Next apply Hölder’s inequality (62) to (72) to get

|ch(u,v,w)| ≤ ||u||0,p||∇v||0,q||w||0,r +
1

2
||∇ · u||0,p′ ||v||0,q′ ||w||0,r′

For (75)(a), pick p = 6, q = 2, r = 3 and p′ = 2, q′ = 6, r′ = 3 and apply (63)(a)(c).
For (75)(b), pick p = 6, q = 3, r = 2 and p′ = 2, q′ = ∞, r′ = 2 and apply (63)(c)
and (64)(a)(b). �

3.4. Elliptic and Stokes projections. We define the elliptic and Stokes pro-
jections for approximating H1-functions in Xh,·. Estimate (76) is necessary since
the discrete pressure is eliminated from the error analysis for velocity by testing
with functions in the discretely divergence free space Vh (proved e.g. in [11], see
intermediate estimate (1.16) in Theorem II.1.1).

Lemma 3.21. Suppose that the FE space satisfies Assumption 2.4. Then, for any
u ∈ V , there exists a constant 0 < C < ∞ depending on (20) so that

inf
vh∈Vh

|u− vh|1 ≤ C inf
wh∈Xh

|u−wh|1. (76)

Define the elliptic projection Pe: fix u ∈ V so that

Pe : V → Vh, (∇(u− Pe(u)),∇v) = 0, ∀v ∈ Vh. (77)

We present an error estimate for Pe in H1
0 below as well as L2, W−1,2 for a suffi-

ciently regular domain Ω. Let | · |0 = || · || and | · |−1 = || · ||−1 throughout.

Lemma 3.22. Fix u ∈ H1
0 . Suppose that FE space satisfies Assumption 2.4. Then

Pe given by (77) is well-defined and satisfies

||u− Pe(u)||−m ≤ Chm+1 inf
vh∈Xh

|u− vh|1 (78)

for m = −1. Suppose further that Assumption 2.3 is satisfied. Then (78) also holds
for m = 0, 1.

Proof. For m = −1, apply Céa’s Lemma to get |u − ṽh|1 ≤ 2 infvh∈Vh
|u − vh|1.

To recover infimum over all vh ∈ Xh, apply estimate (76). To recover estimate for
m = 0 and 1, follow the procedure in [11] (e.g. Theorem II.1.9). �

Define the Stokes projection: let Ps : (V, L2
0) → (Vh, Qh) so that (ṽh, q̃h) :=

Ps(u, p) satisfies

∀v ∈ Xh, ν(∇(u− ṽh),∇v) − (p− q̃h,∇ · v) = 0
∀q ∈ Qh, (q,∇ · ṽh) = 0.

(79)

Write ṽh := P
(1)
s (u, p). We prove an error estimate for P

(1)
s in H1

0 below as well as
L2, W−1,2 for a sufficiently regular domain Ω.

Lemma 3.23. Fix u ∈ H1
0 , p ∈ L2

0. Suppose that FE space satisfies 2.4. Then Ps

given by (79) is well-defined so that

||u− P (1)
s (u)||−m ≤ Chm+1(ν−1 inf

qh∈Qh

||p− qh||+ inf
vh∈Xh

|u− vh|1) (80)

for m = −1. Suppose further that Assumption 2.3 is satisfied. Then (80) also holds
for m = 0, 1.
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Proof. For m = −1, a similar (but simpler) proof for the error estimate of the (non-
linear) NSE in Section 4.1 proves |u−ṽh|1 ≤ 2 infvh∈Vh

|u−vh|1+ν−1 infqh∈Qh
||p−

qh||. Take the infimum over all vh ∈ Vh and all q̃h ∈ Qh and apply (76) to prove
(80) for m = −1. To recover estimate for m = 0, 1, follow the procedure in [11]
(e.g. Theorem II.1.9). �

4. Proof of CNLE convergence estimates

For the numerical analysis that follows, we require, as is assuredly a fact for
many pertinent flows, strong solutions of (30), (31), (32) that satisfy u ∈ C0(V ),
∂tu ∈ C0([tn0 , T ];W−1,2), and p ∈ C0([tn0 , T ];L2

0) and hence, for each n = n0,
n0 + 1, . . ., N − 1,

((∂tu)
n+1/2,v) +

1

2
(un+1 · ∇un+1,v) +

1

2
(un · ∇un,v)

+ ν(∇un+1/2,∇v) − (pn+1/2,∇ · v) = (fn+1/2,v), ∀v ∈ H1
0 (81)

∇ · u = 0 (82)

u(·, 0) = u0. (83)

The consistency error for the time-discretization is given by, for any v ∈ H1
0 ,

Rn+1(v) : = (∂n+1
∆t u− (∂tu)

n+1/2,v) + R̂n+1(v) (84)

R̂n+1(v) : = ch(ξ
n(u),un+1/2,v)− 1

2
(un+1 · ∇un+1,v)− 1

2
(un · ∇un,v). (85)

Recall (73). Then (81), (84) give

(∂n+1
∆t u,v) + ch(ξ

n(u),un+1/2,v)− (pn+1/2,∇ · v)
+ ν(∇un+1/2,∇v) = (fn+1/2,v) +Rn+1(v), ∀v ∈ H1

0 . (86)

Decompose the velocity error, for some ṽn
h ∈ Vh,







en = un
h − un = Un

h − ηn

Un
h = un

h − ṽn
h ∈ Vh

ηn = un − ṽn
h .

(87)

Write

Rn+1
h (v) := ch(ξ

n(uh),u
n+1/2
h ,v)− ch(ξ

n(u),un+1/2,v). (88)

Fix q̃nh ∈ Qh. Note that (ph,∇ · v) = 0 for any v ∈ Vh. Subtract (86) from (17) to
get the error equation, for any v ∈ Vh,

(∂n+1
∆t Uh,v) + ν(∇U

n+1/2
h ,∇v) = −Rn+1(v)−Rn+1

h (v)

+ (∂n+1
∆t η,v) + ν(∇ηn+1/2,∇v) − (pn+1/2 − q̃

n+1/2
h ,∇ · v). (89)

Specifying different v in (89) results in error estimates in different norms:

v = U
n+1/2
h ∈ Vh ⇒ Theorems 3.1, 3.5

v = ∂n+1
∆t Uh ∈ Vh ⇒ Theorems 3.8, 3.10

.
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4.1. Proof of uh → u in l2(H1) ∩ l∞(L2).

Proof. (Theorems 3.1, 3.5)
Fix n = n0, n0 + 1, . . . , N − 1. Set ṽn

h = Pe(u
n) defined by (77) in (87). Set

v = U
n+1/2
h ∈ Vh in (89). Fix q̃n+1

h ∈ Qh so that (q̃n+1
h ,∇ ·Un+1

h ) = 0. Then

1

2∆t
(||Un+1

h ||2 − ||Un
h ||2) + ν|Un+1/2

h |21 = −Rn+1(U
n+1/2
h )

−Rn+1
h (U

n+1/2
h ) + (∂n+1

∆t η,U
n+1/2
h )− (pn+1/2 − q̃

n+1/2
h ,∇ ·Un+1/2

h ). (90)

Apply the duality estimate on W−1,2 ×H1
0 and Cauchy-Schwarz (62) to get

(∂n+1
∆t η,U

n+1/2
h ) ≤ ||∂n+1

∆t η||−1|Un+1/2
h |1 (91)

(pn+1/2 − q̃
n+1/2
h ,∇ ·Un+1/2

h ) ≤
√
d||pn+1/2 − q̃

n+1/2
h || |Un+1/2

h |1. (92)

The remaining terms in (90) are bounded in the next 2 lemmas.

Lemma 4.1. Suppose that the FE space satisfies Assumption 2.4. Suppose further
that u(·, t) ∈ V for any t ∈ [0, T ] and u(·, t) ∈ H2 for any t ∈ [tn0 , T ]. Then, for
each n = n0, n0 + 1, . . . , N − 1,

|Rn+1
h (U

n+1/2
h )| ≤ C(||un+1/2||2

n0
∑

i=0

||Un−i
h ||+ . . .

. . .+

n0
∑

i=0

|un−i|1|ηn+1/2|1 + |un+1/2|1
n0
∑

i=0

|ηn−i|1)|Un+1/2|1 (93)

Proof. Add/subtract ch(ξ
n(uh),u

n+1/2,U
n+1/2
h ) and apply (87), (65) to (88) to get

Rn+1
h (U

n+1/2
h ) = ch(ξ

n(Uh),u
n+1/2,U

n+1/2
h )

− ch(ξ
n(uh), η

n+1/2,U
n+1/2
h )− ch(ξ

n(η),un+1/2,U
n+1/2
h )

Apply ||
∑n0

i=0 aivi|| ≤
∑n0

i=0 |ai| ||vi|| throughout. Absorb |ai| into C. Apply
(74)(b) to get

|ch(ξn(Uh),u
n+1/2,U

n+1/2
h )| ≤ C||un+1/2||2

n0
∑

i=0

||Un−i
h || |Un+1/2

h |1. (94)

Apply (74)(a) along with u ∈ l∞(H1) and U
n+1/2
h ∈ H1

0 to get

|ch(ξn(η),un+1/2,U
n+1/2
h )| ≤ C|un+1/2|1

n0
∑

i=0

|ηn−i|1|Un+1/2
h |1. (95)

Apply (73) along with ξn(u) ∈ V and U
n+1/2
h ∈ H1

0 to rewrite the remaining
trilinear term:

ch(ξ
n(uh), η

n+1/2,U
n+1/2
h ) = (ξn(u) · ∇ηn+1/2,U

n+1/2
h )

− ch(ξ
n(η), ηn+1/2,U

n+1/2
h ) + ch(ξ

n(Uh), η
n+1/2,U

n+1/2
h ).

Estimate (66)(a) gives

|(ξn(u) · ∇ηn+1/2,U
n+1/2
h )| ≤ C

n0
∑

i=0

|un−i|1|ηn+1/2|1 |Un+1/2
h |1. (96)
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Recall that (78), (21)(a) give |η|1 ≤ Chk||u||k+1. Then (74)(a) and (78), (21)(a)
with k = 0 gives

|ch(ξn(η), ηn+1/2,U
n+1/2
h )| ≤ C

n0
∑

i=0

|un−i|1|ηn+1/2|1 |Un+1/2
h |1. (97)

Similarly (74)(a) and (78), (21)(a) with k = 1 and inverse estimate (22) give

|ch(ξn(Uh), η
n+1/2,U

n+1/2
h )| ≤ Ch1/2||un+1/2||2

n0
∑

i=0

||Un−i
h || |Un+1/2

h |1. (98)

Estimates (94), (95), (96), (97), (98) imply (93). �

Lemma 4.2. Suppose that u(·, t) ∈ H1∩V for any t ∈ [0, T ] and ∂tu(·, t) ∈ W−1,2

for any t ∈ [tn0 , T ]. Then, for each n = n0, n0 + 1, . . . , N − 1,

|Rn+1(U
n+1/2
h )| ≤ (Cn+1

1 )1/2|Un+1/2
h |1 (99)

where

Cn+1
1 := C||∂n+1

∆t u− (∂tu)
n+1/2||2−1

+ C



































||∇u||2l∞(L2)(|un+1|21 + |un|21), or

||u||2l∞(n0,N ;H2)(||un+1/2 − u(·, tn+1/2)||2 + ||ξn(u)− u(·, tn+1/2)||2)

. . .+
∆t3

tn+1/2
||u||2l∞(n0,N ;H2)

∫ tn+1

tn
t ||∂(2)

t u(·, t)||2dt

. . .+
∆t3

tn+1/2
||∂tu||2l∞(n0,N ;L2)

∫ tn+1

tn
t ||∂tu(·, t)||22dt.

(100)

Remark 4.3. If ∂
(2)
t u ∈ L2(tn0 , tN ;L2) and ∂tu ∈ L2(tn0 , tN ;H2) then (100) is

replaced by

Cn+1
1 = C||∂n+1

∆t u− (∂tu)
n+1/2||2−1

+ C||u||2l∞(n,n+1;H2)(||un+1/2 − u(·, tn+1/2)||2 + ||ξn(u)− u(·, tn+1/2)||2)

+ C∆t3||u||2l∞(n,n+1;H2)

∫ tn+1

tn
||∂(2)

t u(·, t)||2dt

+ C∆t3||∂tu||2l∞(n,n+1;L2)

∫ tn+1

tn
||∂tu(·, t)||22dt. (101)

Proof. Duality estimate on W−1,2 ×H1
0 gives

|(∂n+1
∆t u− (∂tu)

n+1/2,U
n+1/2
h )| ≤ ||∂n+1

∆t u− (∂tu)
n+1/2||−1|Un+1/2

h |1. (102)

Taylor-expansion about tn+1/2 with integral remainder gives

1

2
(un+1 · ∇un+1,v) +

1

2
(un · ∇un,v) = (u(·, tn+1/2) · ∇u(·, tn+1/2),v)

+
1

2

∫ tn+1

tn+1/2

(tn+1 − t)
d2

dt2
(u(·, t) · ∇u(·, t),v)dt

+
1

2

∫ tn+1/2

tn
(t− tn)

d2

dt2
(u(·, t) · ∇u(·, t),v)dt. (103)
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Add/subtract (ξn(u) · ∇u(·, tn+1/2),v) and apply (103) to (85) to get

R̂n+1(Un+1
h ) = (ξn(u) · ∇(un+1/2 − u(·, tn+1/2)),Un+1

h )

+ ((ξn(u)− u(·, tn+1/2)) · ∇u(·, tn+1/2),Un+1
h )

− 1

2

∫ tn+1

tn+1/2

(tn+1 − t)

∫

(∂
(2)
t u · ∇u+ u · ∇∂

(2)
t u+ 2∂tu · ∇∂tu) ·Un+1

h dt

− 1

2

∫ tn+1/2

tn
(t− tn)

∫

(∂
(2)
t u · ∇u+ u · ∇∂

(2)
t u+ 2∂tu · ∇∂tu) ·Un+1

h dt (104)

Then we majorize (85) either directly with (66)(a) to get

|R̂n+1(Un+1
h )| ≤ C||∇u||l∞(L2)(|un+1|1 + |un|1)|Un+1

h |1 (105)

or with (66)(b), (70) and Hölder’s inequality (in time) applied to (104) to get

|R̂n+1(Un+1
h )| ≤ C||u||l∞(H2) × . . .

. . .× (||un+1/2 − u(·, tn+1/2)||+ ||ξn(u)− u(·, tn+1/2)||)|Un+1
h |1

+
C∆t3/2√
tn+1/2

||u||l∞([n,n+1];H2)(

∫ tn+1

tn
t ||∂(2)

t u(·, t)||2dt)1/2|Un+1
h |1

+
C∆t3/2√
tn+1/2

||∂tu||l∞([n,n+1];L2)(

∫ tn+1

tn
t ||∂tu(·, t)||22dt)1/2|Un+1

h |1 (106)

See Appendix B for more details on the derivation. Estimates (102), (103), (105)/(106)
imply (99). �

Bound each term on the RHS of (90) with (91), (92), (93), (99). Successive
application of Young (61) gives

||Un+1
h ||2 − ||Un

h||2 + ν∆t|Un+1/2
h |21

≤ ν−1∆t(Cn+1
2 + Cn+1

1 + C||un+1/2||22
n0
∑

i=0

||Un−i
h ||2) (107)

where

Cn+1
2 := C(||∇u||2l∞(n0,N ;L2)

n0
∑

i=0

|ηn−i|21 + . . .

. . .+

n0
∑

i=0

|un−i|21|ηn+1/2|21 + ||∂n+1
∆t η||2−1 + ||pn+1/2 − q̃

n+1/2
h ||2). (108)

Lemma 4.4. Suppose that the FE space satisfies Assumption 2.4. Fix k ≥ 0, k∗ ≥
0, s ≥ −1. Suppose further that Assumption 2.3 is satisfied and u ∈ l∞(Hk ∩ V )∩
l2(Hk+1 ∩ H2), ∂tu ∈ L2(tn0 , T ;Hk∗+1) ∩ l2(n0, N ;W−1,2), p ∈ l2(n0, N ;Hs+1).
Then,

||UN
h ||2 + ν∆t

N−1
∑

n=n0

|Un+1/2
h |21 ≤ K2

0 ||e||2l∞(0,n0;L2) +K2
1

+∆t
N−1
∑

n=n0

(ν−1Cn+1
1 + Cν−1||Un

h ||2
i1(n)
∑

i=0

||un+i+1/2||22) (109)
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where

K0 : = C + Cν−1/2

{

||u||l2(0,2n0;H2) if n0 ≥ 1,
0 otherwise

K1 : = (Cν−1/2||∇u||l∞(L2)||u||l2(Hk+1) +K0||u||l∞(0,n0;Hk))h
k

+ Cν−1/2||p||l2(n0,N ;Hs+1)h
s+1 + Cν−1/2||∂tu||L2(tn0 ,T ;Hk∗+1)h

k∗+2. (110)

Proof. Recall that (78), (21)(a) give |η|1 ≤ Chk||u||k+1. Fix k∗ ≥ 0. Then (78),
(21)(a) along with (23) gives

||∂n+1
∆t η||2−1 ≤ Ch2k∗+4∆t−1

∫ tn+1

tn
||∂tu(·, t)||2k∗+1dt. (111)

Estimate (21)(b) gives

inf
q̃h∈Qh

||pn+1/2 − q̃h|| ≤ Chs+1||pn+1/2||s+1. (112)

Write

κn+1
1 : = C(||∇u||l∞(L2)

n0
∑

i=−1

||un−i||2k+1h
2k + . . .

. . .+∆t−1||∂tu||2L2(tn,tn+1;Hk∗+1)h
2k∗+4 + ||pn+1/2||2s+1h

2s+2). (113)

Application of (78), (21)(a), (111), (112) to (107), (108) proves Cn+1
2 ≤ κn+1

1 so
that

||Un+1
h ||2 − ||Un

h ||2 + ν∆t|Un+1/2
h |21

≤ ν−1∆t(κn+1
1 + Cn+1

1 + C||un+1/2||22
n0
∑

i=0

||Un−i
h ||2). (114)

Sum from n = n0 to n = N − 1 to get

||UN
h ||2 + ν∆t

N−1
∑

n=n0

|Un+1/2
h |21

≤ ||Un0

h ||2 + ν−1∆t
N−1
∑

n=n0

(κn+1
1 + Cn+1

1 + C||un+1/2||22
n0
∑

i=0

||Un−i
h ||2).

Apply the change of indices (60) to get

||UN
h ||2 + ν∆t

N−1
∑

n=n0

|Un+1/2
h |21 ≤ ||Un0

h ||2 + γ1

+ ν−1∆t

N−1
∑

n=n0

(κn+1
1 + Cn+1

1 + C||Un
h ||2

i1(n)
∑

i=0

||un+i+1/2||22)

where

γ1 : =











Cν−1∆t

2n0−1
∑

n=0

||un+1/2||22||Uh||2l∞(0,n0−1;L2) if n0 ≥ 1,

0 otherwise

(115)
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Suppose that n0 ≥ 1. Then the triangle inequality ||Uh|| ≤ ||e|| + ||η|| and (78),
(21)(a) give

||Un0

h ||2 + γ1 ≤ ||en0 ||2 + Cν−1∆t

2n0−1
∑

n=0

||un+1/2||22||e||2l∞(0,n0−1;L2)

+ C||un0 ||2kh2k + Cν−1∆t

2n0−1
∑

n=0

||un+1/2||22||u||2l∞(0,n0−1;Hk)h
2k.

Combine this estimate with κ1 defined in (113) to prove (109). �

Write
GN := exp(Cν−1||u||2l2(n0,N ;H2)). (116)

Gronwall Lemma 3.15 applied to (109) gives

||UN
h ||2 + ν∆t

N−1
∑

n=n0

|Un+1/2
h |21

≤ GN (K2
0 ||e||2l∞(0,n0;L2) +K2

1 + ν−1∆t

N−1
∑

n=n0

Cn+1
1 ) (117)

Application of the triangle inequality ||e|| ≤ ||Uh||+ ||η|| along with (78), (21)(a),
and (117) gives

||eN ||+ ν1/2(∆t

N−1
∑

n=n0

|en+1/2|21)1/2

≤ C(||uN ||k + ν1/2||u||l2(n0,N ;Hk+1)h
k

+GN (K0||e||l∞(0,n0;L2) +K1 + ν−1/2(∆t
N−1
∑

n=n0

Cn+1
1 )1/2) (118)

Consider 3 cases: the first with minimal regularity (boundedness - Proposition 3.1),
the second for optimal convergence rate (regularity matching the FE and CN ap-
proximation degree - Theorem 3.5), and the third with then compatibility condition
is not satisfied.

(Proposition 3.1): Suppose that the regularity of Lemma 4.4 is satisfied for k = 0,
k∗ = 0, and s = −1. Then

C||uN ||+ Cν1/2||u||l2(n0,N ;H1)

+GN (K0||e||l∞(0,n0;L2) +K1) < ∞, as h, ∆t → 0 (119)

where K1 = K1(k = 0, k∗ = 0, s = −1) is defined in (110). Suppose further that
∂tu ∈ L2(tn0 , T ;W−1,2) ∩ l2(n0, N ;W−1,2). The triangle inequality and (23) gives

∆t

N−1
∑

n=n0

||∂n+1
∆t u− (∂tu)

n+1/2||2−1 ≤ C(||∂tu||2L2(tn0 ,T ;W−1,2) + ||∂tu||2l2(n0,N ;W−1,2)).

Write

K2 : = Cν−1/2(||∇u||l∞(L2)||∇u||l2(n0,N ;L2) + . . .

. . .+ ||∂tu||2L2(tn0 ,T ;W−1,2) + ||∂tu||2l2(n0,N ;W−1,2)).
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Then, recalling Cn+1
1 > 0 given in (100),

ν−1/2(∆t

N−1
∑

n=n0

Cn+1
1 )1/2 ≤ K2 < ∞, as h, ∆t → 0. (120)

Estimate (33) follows from (118) with boundedness as h, ∆t → 0.

(Theorem 3.5): Suppose that the regularity of Lemma 4.4 is satisfied for k > 0,
s > −1, k∗ = k−2 (with k∗ = k−1 when k = 1). Suppose that u ∈ l∞(H2), ∂tu ∈
l∞(n0, N ;H1) ∩ L2(tn0 , T ;H1), ∂

(2)
t u ∈ L2(L2), and ∂

(3)
t u ∈ L2(tn0 , T ;W−1,2).

Write

Kt := Cν−1/2(||∂(3)
t u||L2(tn0 ,T ;W−1,2) + ||u||l∞(n0,N ;H2)||∂(2)

t u||L2(L2) + . . .

. . .+ ||∂tu||l∞(n0,N ;L2)||∂tu||L2(tn0 ,T ;H2)).

Then, (26), (27), and (28) (by Assumption 2.5) gives

ν−1/2(∆t

N−1
∑

n=n0

Cn+1
1 )1/2 ≤ Kt∆t2

Apply above to (118) to get

||eN ||+ ν1/2(∆t

N−1
∑

n=n0

|en+1/2|21)1/2 ≤ C(||uN ||k + ν1/2||u||l2(n0,N ;Hk+1)h
k

+GN (K0||e||l∞(0,n0;L2) +K1 +Kt∆t2).

Estimate (34) follows with optimal convergence rate as h, ∆t → 0 under the as-
sumed regularity. Note that Ku and Kp in the estimate are derived from K1 in
(110).

(Theorem 3.6): Suppose now that the compatibility condition (5) is not satisfied.
Suppose further that n0 > 0. Starting with (100), bound C1 via (24), (25) (28)
instead of (26), (27) (29). Then we can replace Kt with σ(tn0)−1Kt in Theorem 3.5
where Kt is given in (49). Apply estimates in Assumption 2.6. Then we can replace
Ku, Kp in Theorem 3.5 with σ(t1)−(k−1)/2Ku, σ(t

1)−(k−2)/2Kp respectively where

Ku, Kp are given in (47), (48).
�

4.2. Proof of uh → u in l∞(H1), ∂∆t(uh − u) → 0 in l2(L2).

Proof. Theorems 3.8, 3.10
Fix n = n0, n0 + 1, . . . , N − 1. Set (ṽn

h , q̃
n
h) = Ps(u

n, pn) in (87). Set v =

∆t−1(Un+1
h −Un

h) ∈ Vh in (89). Then

||∂n+1
∆t Uh||2 +

ν

2∆t
(|Un+1

h |21 − |Un
h|21)

= −Rn+1(∂n+1
∆t Uh)−Rn+1

h (∂n+1
∆t Uh) + (∂n+1

∆t η, ∂n+1
∆t Uh). (121)

Cauchy-Schwarz (62) gives

(∂n+1
∆t η, ∂n+1

∆t Uh) ≤ ||∂n+1
∆t η|| ||∂n+1

∆t Uh||. (122)

The remaining terms in (121) are bounded in the next 2 lemmas.



UNCONDITIONAL CONVERGENCE OF CNLE 283

Lemma 4.5. Suppose that the FE space satisfies Assumption 2.4 and u ∈ l∞(H2∩
V ), p ∈ l∞(H1). Then for each n = n0, n0 + 1, . . . , N − 1,

|Rn+1
h (∂n+1

∆t Uh)| ≤ C(||un+1/2||2
n0
∑

i=0

|ηn−i|1 + . . .

. . .+ (ν−1h1/2||p||l∞(H1) + ||u||l∞(H2))|en+1/2|1 + . . .

. . .+ (h−1/2|en+1/2|1 + ||un+1/2||2)
n0
∑

i=0

|Un−i
h |1)||∂n+1

∆t Uh|| (123)

Proof. Add/subtract (ξn(u) · ∇u(·, tn+1/2),v) and apply (87), (65) to (88) to get

Rn+1
h (U

n+1/2
h ) = ch(ξ

n(e),un+1/2,U
n+1/2
h )

− ch(ξ
n(u), en+1/2,U

n+1/2
h )− ch(ξ

n(e), en+1/2,U
n+1/2
h )

Apply ||∑n0

i=0 aivi|| ≤
∑n0

i=0 |ai| ||vi|| throughout. Absorb |ai| into C. Decompose
e = Uh − η to get

ch(ξ
n(e),un+1/2, ∂n+1

∆t Uh)

= ch(ξ
n(Uh),u

n+1/2, ∂n+1
∆t Uh)− ch(ξ

n(η),un+1/2, ∂n+1
∆t Uh).

Estimates (66)(c), (75)(b) with u ∈ l∞(H2) give

|(ξn(u), en+1/2, ∂n+1
∆t Uh) + ch(ξ

n(e),un+1/2, ∂n+1
∆t Uh)|

≤ C(||u||l∞(H2)|en+1/2|1 +
n0
∑

i=0

(|ηn−i|1 + |Un−i
h |1)||un+1/2||2)||∂n+1

∆t Uh||. (124)

Decompose e = Uh − η again to get

ch(ξ
n(e), en+1/2, ∂n+1

∆t Uh)

= ch(ξ
n(Uh), e

n+1/2, ∂n+1
∆t Uh)− ch(ξ

n(η), en+1/2, ∂n+1
∆t Uh).

Recall that (80), (21) gives |η|1 ≤ Ch(ν−1||p||1 + ||u||2). Then (75)(a) with inverse
estimate (22) and (80), (21) gives

|ch(ξn(e), en+1/2, ∂n+1
∆t Uh)| ≤ Ch−1/2

n0
∑

i=0

|Un−i
h |1|en+1/2|1||∂n+1

∆t Uh||

+ Ch1/2
n0
∑

i=0

(ν−1||pn−i||1 + ||un−i||2)|en+1/2|1||∂n+1
∆t Uh|| (125)

Estimates (124), (125) prove (123). �

Lemma 4.6. Suppose that u(·, t) ∈ l∞(H2 ∩ V ) and ∂tu(·, t) ∈ L2 for any t ∈
[tn0 , T ]. Then, for each n = n0, n0 + 1, . . . , N − 1,

|Rn+1(∂n+1
∆t Uh)| ≤ (Cn+1

1 )1/2||∂n+1
∆t Uh|| (126)
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where

Cn+1
1 := C||∂n+1

∆t u− (∂tu)
n+1/2||2

+ C



































||u||2l∞(H2)(|un+1|21 + |un|21), or

||u||2l∞(n,n+1;H2)(|un+1/2 − u(·, tn+1/2)|21 + |ξn(u)− u(·, tn+1/2)|21)

. . .+
∆t3

(tn+1/2)2
||u||2l∞(n,n+1;H2)

∫ tn+1

tn
t2 ||∂(2)

t u(·, t)||21dt

. . .+
∆t3

(tn+1/2)2
||∂tu||2l∞(n,n+1;L2)

∫ tn+1

tn
t2 ||∂tu(·, t)||23dt.

(127)

Remark 4.7. If ∂
(2)
t u ∈ L2(tn0 , tN ;H1) and ∂tu ∈ L2(tn0 , tN ;H3) then (127)

gives

Cn+1
1 = C||∂n+1

∆t u− (∂tu)
n+1/2||2

+ C||u||2l∞(n,n+1;H2)(|un+1/2 − u(·, tn+1/2)|21 + |ξn(u)− u(·, tn+1/2)|21)

+ C∆t3||u||2l∞(n,n+1;H2)

∫ tn+1

tn
||∂(2)

t u(·, t)||21dt

+ C∆t3||∂tu||2l∞(n,n+1;L2)

∫ tn+1

tn
||∂tu(·, t)||23dt. (128)

Proof. Application of Cauchy-Schwarz (62) gives

|(∂n+1
∆t u− (∂tu)

n+1/2, ∂n+1
∆t Uh)| ≤ ||∂n+1

∆t u− (∂tu)
n+1/2|| ||∂n+1

∆t Uh||. (129)

Then we majorize (85) either directly with (66)(a) to get

|R̂n+1(∂n+1
∆t Uh)| ≤ C||u||l∞(H2)(|un+1|1 + |un|1)||∂n+1

∆t Uh|| (130)

or with (70), (66)(a)(b)(d), and Hölder’s inequality (in time) applied to (104) (with
Un+1

h replaced by ∂n+1
∆t Uh) to get

|R̂n+1(∂n+1
∆t Uh)| ≤ C||u||l∞(H2) × . . .

. . .× (||∇(un+1/2 − u(·, tn+1/2))||+ ||∇(ξn(u)− u(·, tn+1/2))||)||∂n+1
∆t Uh||

+
C∆t3/2

tn+1/2
||u||l∞([n,n+1];H2)(

∫ tn+1

tn
t2 ||∂(2)

t u(·, t)||21dt)1/2||∂n+1
∆t Uh||

+
C∆t3/2

tn+1/2
||∂tu||l∞([n,n+1];L2)(

∫ tn+1

tn
t2 ||∂tu(·, t)||23dt)1/2||∂n+1

∆t Uh|| (131)

See Appendix B for more details on the derivation. Estimates (129), (130)/(131)
give (126). �

Bound each term on the RHS of (121) with (122), (123), (126). Apply Young
(61) to get

∆t||∂n+1
∆t Uh||2 + ν(|Un+1

h |21 − |Un
h |21)

≤ ∆t(Cn+1
2 + Cn+1

1 + C(||un+1/2||22 + h−1|en+1/2|21)
n0
∑

i=0

|Un−i
h |21) (132)
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where

Cn+1
2 : = C(||un+1/2||22

n0
∑

i=0

|ηn−i|21 + ||∂n+1
∆t η||2 + . . .

. . .+ (ν−2h||p||2l∞(H1) + ||u||2l∞(H2))|en+1/2|21). (133)

Lemma 4.8. Suppose that the FE space together satisfies Assumptions 2.4. Fix k ≥
0, k∗ ≥ 0, s ≥ −1, s∗ ≥ −1. Suppose further that Assumption 2.3 is satisfied and
u ∈ (l2∩ l∞)(Hk+1∩H2), ∂tu ∈ L2(tn0 , T ;Hk∗+1), p ∈ l∞(Hs+1∩H1)∩ l2(Hs+1),
∂tp ∈ L2(tn0 , T ;Hs∗+1). Then

∆t

N−1
∑

n=n0

||∂n+1
∆t Uh||2 + ν|UN

h |21 ≤ F 2
0 ||∇e||2l∞(0,n0;L2) + F 2

1

+∆t

N−1
∑

n=n0

(Cn+1
1 + C|Un

h |21
i1(n)
∑

i=0

(||un+i+1/2||22 + h−1|en+i+1/2|21)) (134)

where

F0 : = Cν1/2 + C











(∆t

2n0−1
∑

n=0

(||un+1/2||22 + h−1|en+1/2|21))1/2 if n0 ≥ 1,

0 otherwise

F1 : = Cν−1(||u||l∞(n0,N ;H2)||p||l2(Hs+1) + F0||p||l∞(0,n0;Hs+1))h
s+1

+ (C||u||l∞(n0,N ;H2)||u||l2(Hk+1) + F0||u||l∞(0,n0;Hk+1))h
k

+ Cν−1||∂tp||L2(tn0 ,T ;Hs∗+1)h
s∗+2 + C||∂tu||L2(tn0 ,T ;Hk∗+1)h

k∗+1

+ C(ν−1h1/2||p||l∞(H1) + ||u||l∞(H2))(∆t

N−1
∑

n=n0

|en+1/2|21)1/2. (135)

Proof. Recall that (80), (21) gives ||η|| ≤ C(ν−1hs+2||p||s+1 + hk+1||u||k+1). Fix
k∗ ≥ 0, s∗ ≥ −1. Then (80), (21) with (23) gives

||∂n+1
∆t η||2 ≤ C∆t−1

∫ tn+1

tn
(ν−2||∂tp(·, t)||2s∗+1h

2s∗+4 + . . .

. . .+ ||∂tu(·, t)||2k∗+1h
2k∗+2)dt. (136)

Write

κn+1
1 := C(||un+1/2||22

n0
∑

i=0

(ν−2||pn−i||2s+1h
2s+2 + ||un−i||2k+1h

2k) + . . .

. . .+∆t−1

∫ tn+1

tn
(ν−2||∂tp(·, t)||2s∗+1h

2s∗+4 + ||∂tu(·, t)||2k∗+1h
2k∗+2)dt+ . . .

. . .+ (ν−2h||p||2l∞(H1) + ||u||2l∞(H2))|en+1/2|21). (137)

Application of (80), (21), (136), to (132), (133) proves Cn+1
2 ≤ κn+1

1 so that

∆t||∂n+1
∆t Uh||2 + ν(|Un+1

h |21 − |Un
h|21)

≤ ∆t(κn+1
1 + Cn+1

1 + C(||un+1/2||22 + h−1|en+1/2|21)
n0
∑

i=0

|Un−i
h |21). (138)
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Sum from n = n0 to n = N − 1 in (138). Apply the change of indices (60), group
terms, and simplify to get

∆t

N−1
∑

n=n0

||∂n+1
∆t Uh||2 + ν|UN

h |21 ≤ ν|Un0

h |21 + γ1

+∆t
N−1
∑

n=n0

(κn+1
1 + Cn+1

1 + C|Un
h |21

i1(n)
∑

i=0

(||un+i+1/2||22 + h−1|en+i+1/2|21)) (139)

where

γ1 : = C



















∆t

2n0−1
∑

n=0

(||un+1/2||22 + h−1|en+1/2|21)× . . .

. . .× ||∇Uh||2l∞(0,n0−1;L2) if n0 ≥ 1,

0 otherwise

. (140)

Suppose that n0 ≥ 1. The triangle inequality |Uh|1 ≤ |e|1+ |η|1 and (80), (21) give

ν|Un0

h |21 + γ1 ≤ ν|en0 |21 + C∆t

2n0−1
∑

n=0

(||un+1/2||22 + h−1|en+1/2|21)||∇e||2l∞(0,n0−1;L2)

+ Cν(ν−2||pn0 ||2s+1h
2s+2 + ||un0 ||2k+1h

2k)

+ C∆t

2n0−1
∑

n=0

(||un+1/2||22 + h−1|en+1/2|21)× . . .

. . .× (ν−2||p||2l∞(0,n0−1;Hs+1)h
2s+2 + ||u||2l∞(0,n0−1;Hk+1)h

2k). (141)

Combine this result with κ1 defined in (137) to prove (134). �

Write

GN := exp(Cν−1∆t

N−1
∑

n=n0

(||un+1/2||22 + h−1|en+1/2|21)). (142)

The Gronwall Lemma 3.15 applied to (134) gives

∆t

N−1
∑

n=n0

||∂n+1
∆t Uh||2 + ν|UN

h |21

≤ GN (F 2
0 ||∇eh||2l∞(0,n0;L2) + F 2

1 +∆t

N−1
∑

n=n0

Cn+1
1 ). (143)

Application of the triangle inequality ||e|| ≤ ||Uh|| + ||η|| and (143), (80), (21),
(136) give

(∆t
N−1
∑

n=n0

||∂n+1
∆t e||2)1/2 + ν1/2|eN |1

≤ C(ν−1||∂tp||L2(tn0 ,T ;Hs∗+1)h
s∗+2 + ||∂tu||L2(tn0 ,T ;Hk∗+1)h

k∗+1 + . . .

. . .+ ν−1/2||pN ||s+1h
s+1 + ν1/2||uN ||k+1h

k)

+GN (F0||∇eh||l∞(0,n0;L2) + F1 + (∆t
N−1
∑

n=n0

Cn+1
1 )1/2). (144)
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Consider 3 cases: first with minimal regularity (boundedness - Theorem 3.8), sec-
ond for optimal convergence rate (regularity to match FE and CN approximation
degree - Theorem 3.10), and the third with then compatibility condition is not sat-
isfied.

(Theorem 3.8): Suppose that the regularity of Lemma 4.8 is satisfied for k = 0,
k∗ = 0, and s = −1, s∗ = −1. Then

C(ν−1||∂tp||L2(tn0 ,T ;Hs∗+1)h
s∗+2 + ||∂tu||L2(tn0 ,T ;Hk∗+1)h

k∗+1 + . . .

. . .+ ν−1/2||pN ||s+1h
s+1 + ν1/2||uN ||k+1h

k)

+GN (F0||∇eh||l∞(0,n0;L2) + F1) < ∞, as h, ∆t → 0 (145)

as long as

h−1∆t

N−1
∑

n=n0

|en+1/2|21 < ∞, as h, ∆t → 0

where F1 = F1(k = 0, k∗ = 0, s = −1, s∗ = −1) in (135). Suppose that ∂tu ∈
l2(n0, N ;L2) ∩ L2(tn0 , T ;L2). The triangle inequality and (23) gives

∆t

N−1
∑

n=n0

||∂n+1
∆t u− (∂tu)

n+1/2||2 ≤ C(||∂tu||2L2(tn0 ,T ;L2) + ||∂tu||2l2(n0,N ;L2)).

Write

F2 := C(||∂tu||2L2(tn0 ,T ;L2) + ||∂tu||2l2(n0,N ;L2) + ||u||2l∞(H2)(|un+1|21 + |un|21)).

Then

∆t

N−1
∑

n=n0

Cn+1
1 ≤ F2 < ∞, as h, ∆t → 0. (146)

Estimate (36) follows from (144) with boundedness as h, ∆t → 0 under the assumed
regularity.

(Theorem 3.10): Suppose that the regularity of Lemma 4.8 is satisfied for k > 0,
k∗ ≥ 0, s > −1, and s∗ ≥ −1. Then as long as ∆t ≤ Mh1/4 (for any arbitrary
M > 0, i.e. no ν-dependence), the result of Theorem 3.5 ensures

h−1∆t

N−1
∑

n=n0

|en+1/2|21 ≤ C(h2k−1 + h2s+1 + h−1∆t4) < ∞

as h, ∆t → 0. Suppose that u ∈ l∞(H2), ∂tu ∈ l∞(n0, N ;L2) ∩ L2(tn0 , T ;H3),

∂
(2)
t u ∈ L2(tn0 , T ;H1), and ∂

(3)
t u ∈ L2(tn0 , T ;L2). Write

Ft := C(||∂(3)
t u||L2(tn0 ,T ;L2) + . . .

+ ||u||l∞(n0,N ;H2)||∂(2)
t u||L2(tn0 ,T ;H1) + ||∂tu||l∞(n0,N ;L2)||∂tu||L2(tn0 ,T ;H3)).

Then, (26), (27), and (29) (by Assumption 2.5) gives

(∆t

N−1
∑

n=n0

Cn+1
1 )1/2 ≤ Ft∆t2
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Apply the above to (144) so that estimate (38) follows with optimal convergence
rate as h, ∆t → 0 under the assumed regularity. Note that Fu and Fp in the
estimate are derived from F1 in (135). �

(Theorem 3.11): Suppose now that the compatibility condition (5) is not satisfied.
Suppose further that n0 > 0. Starting with (127), bound C1 via (24), (25) (28) in-
stead of (26), (27) (29). Then we can replace Ft in Theorem 3.10 with σ(tn0 )−3/2F t

where F t is given in (59). Apply estimates in Assumption 2.6. Then we can replace
Fu, Fp in Theorem 3.10 with σ(t1)−(k−1)/2Fu, σ(t

1)−(k−1)/2F p respectively where

Fu, F p are given in (57), (58).

4.3. Proof of ph → p in l2(L2).

Proof. Fix n = n0, n0 + 1, . . . , N − 1. Write

Rn+1
h (v) := ch(ξ

n(e),un+1/2,v) + (ξn(u) · ∇en+1/2,v)− ch(ξ
n(e) · ∇en+1/2,v)

(147)

so that Rn+1
h (v) = ch(ξ

n(uh),u
n+1/2
h ,v) − ch(ξ

n(u),un+1/2,v). Let q̃h ∈ Qh be
the L2-projection of p. Solve for pressure in (89) to get, for any v ∈ Xh,

(q̃
n+1/2
h − p

n+1/2
h ,∇ · v) = (q̃

n+1/2
h − pn+1/2,∇ · v) + (∂n+1

∆t e,v)

+ ν(∇en+1/2,∇v)−Rn+1(v) −Rn+1
h (v). (148)

Application of Hölder’s inequality (62) and the duality estimate on W−1,2 × H1
0

gives

|(q̃n+1/2
h − p

n+1/2
h ,∇ · v)|

|v|1
≤

√
d||q̃n+1/2

h − pn+1/2||

+ ||∂n+1
∆t e||−1 + ν|en+1/2|1 +

1

|v|1
|Rn+1(v) +Rn+1

h (v)|. (149)

Supposing that u ∈ l∞(H1), apply (74)(a) to majorize each term in (149) to get

|Rn+1
h (v)| ≤ C((||ξn(e)|| |ξn(e)|1)1/2|un+1/2|1 + . . .

. . .+ (||ξn(u)|| |ξn(u)|1)1/2|en+1/2|1 + (||ξn(e)|| |ξn(e)|1)1/2|en+1/2|1)|v|1
(150)

Apply (99) to get

Rn+1(v) ≤ (Cn+1
1 )1/2|v|1 (151)

where C1 > 0 is given in (100). Apply estimates (150), (151) to (149). Apply the
discrete inf-sup condition (20) (by Assumption 2.4) to get

||pn+1/2
h − q̃

n+1/2
h || ≤ C(||pn+1/2||s+1h

s+1 + ||∂n+1
∆t e||−1 + ν|en+1/2|1 + . . .

. . .+ (||ξn(e)|| |ξn(e)|1)1/2|un+1/2|1 + (||ξn(u)|| |ξn(u)|1)1/2|en+1/2|1 + . . .

. . .+ (||ξn(e)|| |ξn(e)|1)1/2|en+1/2|1 + (Cn+1
1 )1/2). (152)

Apply the triangle inequality ||pn+1/2 − p
n+1/2
h || ≤ ||pn+1/2 − q̃

n+1/2
h ||+ ||pn+1/2

h −
q̃
n+1/2
h || and (152), (21)(b). Square each side of (152), multiply by ∆t, and sum
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from n = n0 to N − 1 to get

∆t
N−1
∑

n=n0

||pn+1/2 − p
n+1/2
h ||2

≤ C(∆t
N−1
∑

n=n0

||pn+1/2||2s+1h
2s+2 +∆t

N−1
∑

n=n0

||∂n+1
∆t e||2 + . . .

. . .+ ν∆t

N−1
∑

n=n0

|en+1/2|21 + ||e||l∞(L2)||∇e||l∞(L2)∆t

N−1
∑

n=n0

|un+1/2|21 + . . .

. . .+ ||u||l∞(L2)||∇u||l∞(L2)∆t

N−1
∑

n=n0

|en+1/2|21 + . . .

. . .+ ||e||l∞(L2)||∇e||l∞(L2)∆t

N−1
∑

n=n0

|en+1/2|21 +∆t

N−1
∑

n=n0

Cn+1
1 ). (153)

For estimate (39): bound ∆t
∑

n C
n+1
1 ≤ F2 through (146), Theorem 3.8. Bound

terms ∆t
∑

n |en+1/2|21 and ||e||l∞(L2) via Proposition 3.1 in (153). Bound terms

∆t
∑

n ||∂n+1
∆t e||2 and ||∇e||l∞(L2) via Theorem 3.8 in (153). Then u ∈ (l2∩l∞)(H1)

proves (39).

For estimate (40): bound ∆t
∑

n C
n+1
1 ≤ Ft through (??), Theorem 3.10. Bound

terms ∆t
∑

n |en+1/2|21 and ||e||l∞(L2) via Theorem 3.5 in (153). Bound terms

∆t
∑

n ||∂n+1
∆t e||2 and ||∇e||l∞(L2) via Theorem 3.10 in (153). Then u ∈ (l2 ∩

l∞)(H1) proves (40). �

5. Conclusions

The analysis in this report was performed for a linearized, fully implicit Crank-
Nicolson/finite element method (CNLE) for approximating the NSE. Our analysis
includes the general case of arbitrary arbitrary-order extrapolations:

u · ∇u ≈ ξn(u) · ∇un + un−1

2
, ξn(u) = a0u

n−1 + a1u
n−2 + . . .+ an0

un−n0 .

We proved a long-outstanding problem: i.e. CNLE converges in the energy norm
without any ∆t-restriction. We also proved that the approximating velocity and cor-
responding discrete time-derivative both converge optimally in l∞(H1) and l2(L2)
respectively under the mild ∆t-restriction ∆t ≤ Mh1/4 for any arbitrary M > 0
(e.g. no ν-dependence). Convergence in these norms is required to derive conver-
gence rates for pressure and drag/lift forces the fluid exerts on embedded obstacles.
We prove convergence of pressure in l2(L2) under similar conditions.

The full CN method is believed to be more accurate than CNLE. However, the
accuracy of CNLE is easily improvable by increasing the order of extrapolation.
Moreover, CNLE methods are linearly implicit (simple to implement and fast to
solve). The additional guarantee that CNLE approximations converge uncondition-
ally is another important property not proved for full CN methods. Consequently,
CNLE methods are of great interest in practical computations in which speed,
robustness, ease of implementation, and accuracy are required. We are currently
analyzing a new extrapolation ξn(u) = 2un−1/2−un−3/2 that avoids ∆t-restriction
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for convergence completely even in l∞(H1) (and hence, corresponding estimates for
drag/lift and pressure all without ∆t-restrictions)! It is an important open question
whether the ∆t-restriction for convergence in the energy-norm for fully nonlinear
CN and convergence in l∞(H1) for CNLE is strictly necessary (current methods of
proof fail). It is equally important to formally compare the closely related family
of nonlinear and linear CN-variants in practice. Accordingly, we are currently ini-
tiating a comparative study of CNLE (e.g. for linear and quadratic extrapolation
as well as the new extrapolation of average velocities) against fully nonlinear CN
methods and other CN-variants (e.g. Adams-Bashforth linearizations) to determine
a baseline for the robustness and accuracy of CNLE.

Appendix A. Derivation of Condition (1)

In this section, we derive (1) for CNFE. Write

κn+1 : =

{

Cν−
3−2r
1+2r h− 4r

1+2r |un+1|
4

1+2r

1 , 0 ≤ r ≤ 3/2, u ∈ L
4

1+2r (H1)

Cν−
1−r
1+r h− 2r

1+r ||un+1||
2

1+r

2 0 ≤ r ≤ 1, u ∈ L
2

1+r (H2)
. (154)

Theorem A.1. Let ξn(u) = un+1/2. Fix k > 0, s > −1. Suppose that the FE space
satisfies Assumption 2.4. Suppose further that Assumptions 2.3, 2.5, and 3.4 (with
n0 := 0) are satisfied along with ∂tf ∈ C0(W−1,2), u ∈ l2(Hk+1) ∩ C0(Hk ∩ V ),

∂tu ∈ C0(L3), ∂
(2)
t u ∈ C0(W−1,2), p ∈ l2(Hs+1), ∂tp ∈ C0(L2

0) are satisfied. If

∆tκn+1/2 < 1, ∀n = 0, 1, . . . , N − 1 (155)

then

||e||l∞(1,N ;L2) + ν1/2(∆t

N−1
∑

n=0

|en+1/2|21)1/2 ≤ GNKph
s+1

+ (C||uN ||k + Cν1/2(∆t
N−1
∑

n=0

||un+1/2||2k+1)
1/2 +GNKu)h

k +GNKt∆t2 (156)

where GN := exp(∆t
∑N−1

n=0 κn+1/2). The constants Ku, Kp, Kt > 0 are given in
(44), (45), (46) respectively (with n0 := 0) and remain bounded as h, ∆t → 0.

Remark A.2. The time-step restriction (155) from the discrete Gronwall Lemma
3.14, exactly leads to condition (1). For example,

r = 0:

∆t ≤ C

{

ν3|un+1|−4
1 , when u ∈ L4(H1)

ν||un+1||−2
2 , when u ∈ L2(H2)

(157)

r = 3/2, 1 respectively:

∆t ≤ C

{

h
3
2 |un+1|−1

1 , when u ∈ L1(H1)
h||un+1||−1

2 , when u ∈ L1(H2)
(158)

r = 1/4, 1/2 respectively:

∆t ≤ C

{

ν
5
3h

2
3 |un+1|−

8
3

1 , when u ∈ L
8
3 (H1)

ν
1
3h

2
3 ||un+1||−

4
3

2 when u ∈ L
4
3 (H2)

. (159)

CNFE is reported to converge with ∆t ≤ F in [20] (Theorem 4.1 and following
remarks) where F > 0 depends on problem data including ν, but not necessarily h. It
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is not clear, however, whether (157), (158), (159) is the best choice for ∆t < F (h, ν)
since we do not have a priori estimates for u beyond L∞(L2) ∩ L2(H1).

Proof. Fix n = 0, 1, . . . , N − 1. Set ṽn
h = Pe(u

n) defined by (77) in (87). Set

v = U
n+1/2
h ∈ Vh in (89). Fix q̃n+1

h ∈ Qh so that (q̃n+1
h ,∇ ·Un+1/2

h ) = 0 and recall
(65). Then

1

2∆t
(||Un+1

h ||2 − ||Un
h ||2) + ν|Un+1/2

h |21 = −Rn+1(U
n+1/2
h )−Rn+1

h (U
n+1/2
h )

+ (∂n+1
∆t η,U

n+1/2
h )− (pn+1/2 − q̃

n+1/2
h ,∇ ·Un+1/2

h ). (160)

Lemma A.3. Suppose that the FE space satisfies Assumption 2.4. Fix either s = 0
or 1. Suppose further that u(·, t) ∈ V for any t ∈ [0, T ] and u(·, t) ∈ Hs and for
any t ∈ [0, T ]. Then, for each n = 0, 1, . . . , N − 1,

|Rn+1
h (U

n+1/2
h )| ≤ C(|un+1/2|1|ηn+1/2|1 + |un+1/2|1|ηn+1/2|1 + . . .

. . .+ ||un+1/2||s||Un+1/2
h ||s/2|Un+1/2|

2−s
2

1 )|Un+1/2|1 (161)

Proof. Apply (74)(a) along with u ∈ l∞(H1) and U
n+1/2
h ∈ H1

0 to get

|ch(ηn+1/2,un+1/2,U
n+1/2
h )| ≤ C|un+1/2|1|ηn+1/2|1|Un+1/2

h |1. (162)

Apply (74) to get

|ch(Un+1/2
h ,un+1/2,U

n+1/2
h )| ≤ C

{

||un+1/2||2||Un+1/2
h || |Un+1/2

h |1
|un+1/2|1||Un+1/2

h ||1/2|Un+1/2
h |3/21

. (163)

Apply (73) along with u ∈ V and U
n+1/2
h ∈ H1

0 to rewrite the remaining trilinear
term:

ch(u
n+1/2
h , ηn+1/2,U

n+1/2
h ) = (un+1/2 · ∇ηn+1/2,U

n+1/2
h )

− ch(η
n+1/2, ηn+1/2,U

n+1/2
h ) + ch(U

n+1/2
h , ηn+1/2,U

n+1/2
h ).

Estimate (66)(a) gives

|(un+1/2 · ∇ηn+1/2,U
n+1/2
h )| ≤ C|un+1/2|1|ηn+1/2|1 |Un+1/2

h |1. (164)

Recall that (78), (21)(a) give |η|1 ≤ Chk||u||k+1. Then (74)(a) and (78), (21)(a)
with k = 0 gives

|ch(ηn+1/2, ηn+1/2,U
n+1/2
h )| ≤ C|un+1/2|1|ηn+1/2|1 |Un+1/2

h |1. (165)

Similarly (74)(a) and (78), (21)(a) with k = 1, 0, and inverse estimate (22) give

|ch(Un+1/2
h , ηn+1/2,U

n+1/2
h )| ≤ C

{

h1/2||un+1/2||2||Un+1/2
h || |Un+1/2

h |1
|un+1/2|1||Un+1/2

h ||1/2|Un+1/2
h |3/21

. (166)

Estimates (162), (163), (164), (165), (166) imply (161). �

We focus now on majorizing the 3rd term on the RHS of (161). Fix ε > 0.
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Case 1: Fix 0 ≤ r ≤ 3/2. Suppose that u ∈ L4/(1+2r)(H1). Fix p = 4/(3− 2r) and
1/p+ 1/q = 1 so that q = 4/(1 + 2r). First apply the inverse estimate (22) to get

|Un+1/2
h |3/21 ≤ Ch−r||Un+1/2

h ||r|Un+1/2
h |3/2−r

1 . Then apply Young (61) to get

|un+1/2|1||Un+1/2
h ||1/2|Un+1/2|

3
2

1 ≤ ν

ε
|Un+1/2

h |21

+ Cν−(3−2r)/(1+2r)h−4r/(1+2r)|un+1/2|4/(1+2r)
1 ||Un+1/2

h ||2 (167)

Case 2: Fix 0 ≤ r ≤ 1. Suppose that u ∈ L2/(1+r)(H2). Fix p = 2/(1 − r) and
1/p+ 1/q = 1 so that q = 2/(1 + r). First apply the inverse estimate (22) to get

|Un+1/2
h ||1 ≤ Ch−r||Un+1/2

h ||r|Un+1/2
h |1−r

1 . Then apply Young (61) to get

||un+1/2||2||Un+1/2
h |||Un+1/2|1 ≤ ν

ε
|Un+1/2

h |21

+ Cν−(1−r)/(1+r)h−2r/(1+r)||un+1/2||2/(1+r)
2 ||Un+1/2

h ||2 (168)

Bound each term on the RHS of (160) with (91), (92), (161), (99). Then, successive
application of Young (61) with either (167) or (168) gives

||Un+1
h ||2 − ||Un

h ||2 + ν∆t|Un+1/2
h |21

≤ ν−1∆t(Cn+1
2 + Cn+1

1 + κn+1/2||Un+1/2
h ||2) (169)

where

Cn+1
2 : = C(||∇u||2l∞(L2)|ηn+1/2|21 + |un+1/2|21|ηn+1/2|21 + . . .

. . .+ ||∂n+1
∆t η||2−1 + ||pn+1/2 − q̃

n+1/2
h ||2) (170)

κn+1 : = C

{

ν−(3−2r)/(1+2r)h−4r/(1+2r)|un+1|4/(1+2r)
1 0 ≤ r ≤ 3/2

ν−(1−r)/(1+r)h−2r/(1+r)||un+1||2/(1+r)
2 0 ≤ r ≤ 1

.

Lemma A.4. Suppose that the FE space satisfies Assumption 2.4. Fix k ≥ 0,
k∗ ≥ 0, s ≥ −1. Suppose further that Assumption 2.3 is satisfied and u ∈ l∞(Hk)∩
l2(Hk+1 ∩H2), ∂tu ∈ L2(Hk∗+1) ∩ l2(W−1,2), and p ∈ l2(Hs+1). Then,

||UN
h ||2 + ν∆t

N−1
∑

n=0

|Un+1/2
h |21 ≤ C||e0||2 +K2

1

+∆t

N−1
∑

n=0

(ν−1Cn+1
1 + κn+1/2||Un+1/2

h ||2) (171)

where

K1 : = (Cν−1/2||∇u||l∞(L2)||u||l2(Hk+1) + C||u0||k)hk

+ Cν−1/2||p||l2(Hs+1)h
s+1 + Cν−1/2||∂tu||L2(Hk∗+1)h

k∗+2. (172)

Proof. Recall that (78), (21)(a) give |η|1 ≤ Chk||u||k+1. Fix k∗ ≥ 0. Then (78),
(21)(a) along with (23) gives

||∂n+1
∆t η||2−1 ≤ Ch2k∗+4∆t−1

∫ tn+1

tn
||∂tu(·, t)||2k∗+1dt. (173)
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Estimate (21)(b) gives

inf
q̃h∈Qh

||pn+1/2 − q̃h|| ≤ Chs+1||pn+1/2||s+1. (174)

Write

κn+1
1 : = C(||∇u||l∞(L2)||un+1/2||2k+1h

2k + . . .

. . .+∆t−1||∂tu||2L2(tn,tn+1;Hk∗+1)h
2k∗+4 + ||pn+1/2||2s+1h

2s+2). (175)

Application of (78), (21)(a), (173), (174) to (169), (170) proves Cn+1
2 ≤ κn+1

1 so
that

||Un+1
h ||2 − ||Un

h||2 + ν∆t|Un+1/2
h |21

≤ ν−1∆t(κn+1
1 + Cn+1

1 + κn+1/2||Un+1/2
h ||2). (176)

Sum from n = 0 to n = N − 1 to prove (171). �

Write

GN := exp(∆t

N−1
∑

n=0

κn+1/2). (177)

Suppose that

∆tκn+1/2 < 1, ∀n = 0, 1, . . . , N − 1.

Then Gronwall Lemma 3.14 applied to (171) gives

||UN
h ||2 + ν∆t

N−1
∑

n=0

|Un+1/2
h |21 ≤ GN (C||e0||2 +K2

1 + ν−1∆t

N−1
∑

n=0

Cn+1
1 ) (178)

Application of the triangle inequality ||e|| ≤ ||Uh||+ ||η|| along with (78), (21)(a),
and (178) gives

||eN ||+ ν1/2(∆t

N−1
∑

n=0

|en+1/2|21)1/2

≤ C(||uN ||k + ν1/2(∆t

N−1
∑

n=0

||un+1/2||2k+1)
1/2)hk

+GN (C||e0||+K1 + ν−1/2(∆t

N−1
∑

n=0

Cn+1
1 )1/2) (179)

The rest of the proof follows the proof of Theorem 3.5 as presented in Section
4.1. �

Appendix B. Detailed derivation of intermediate estimates

Proof of Estimate (23). Fix n ≥ n0. Then, for k ≥ 0

|∂n+1
∆t u|2k =

∫

∣

∣

∣

∣

∣

∆t−1

∫ tn+1

tn
Dk∂tu(·, t)dt

∣

∣

∣

∣

∣

2

≤ ∆t−2

∫

(

∫ tn+1

tn
dt

∫ tn+1

tn

∣

∣Dk∂tu(·, t)
∣

∣

2
dt

)

≤ ∆t−1

∫ tn+1

tn
|∂tu(·, t)|2kdt.

Similar proof for k = −1 applied to definition of W−1,2-norm. �
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Proof of Estimate (24). Fix n ≥ n0 and k ≥ 0. A Taylor-expansion with integral
remainder gives

|un+1/2 − u(·, tn+1/2)|2k ≤ C

∫

∣

∣

∣

∣

∣

∫ tn+1/2

tn
(t− tn)Dk∂

(2)
t u(·, t)dt

∣

∣

∣

∣

∣

2

+ C

∫

∣

∣

∣

∣

∣

∫ tn+1

tn+1/2

(tn+1 − t)Dk∂
(2)
t u(·, t)dt

∣

∣

∣

∣

∣

2

(180)

where, for any r ∈ R,

∫

∣

∣

∣

∣

∣

∫ tn+1

tn+1/2

(tn+1 − t)Dk∂
(2)
t u(·, t)dt

∣

∣

∣

∣

∣

2

≤ C

∫ tn+1

tn+1/2

(tn+1 − t)2dt

∫ tn+1

tn+1/2

||∂(2)
t u(·, t)||2kdt

≤ C∆t3
∫ tn+1

tn+1/2

1

tr

(

tr ||∂(2)
t u(·, t)||2k

)

dt

≤ C∆t3

(tn+1/2)r

∫ tn+1

tn+1/2

tr ||∂(2)
t u(·, t)||2kdt. (181)

and similarly on the time interval (tn, tn+1/2) when n > 0. If n = n0 = 0, then

∫

∣

∣

∣

∣

∣

∫ ∆t/2

0

t Dku(·, t)dt
∣

∣

∣

∣

∣

2

≤ C

∫ ∆t/2

0

dt

∫ ∆t/2

0

t2 ||∂(2)
t u(·, t)||2kdt

≤ C∆t

∫ ∆t/2

0

t2||∂(2)
t u(·, t)||2kdt. (182)

Note that
√
tn+1/2 =

√

∆t/2 when n = 0. Then estimates (181), (182) applied to
(180) give

|un+1/2 − u(·, tn+1/2)|2k ≤ C∆t3

(tn+1/2)2

∫ tn+1

tn
t2||∂(2)

t u(·, t)||2kdt. (183)

�

Proof of Estimate (25). Fix n ≥ n0. First add/subtract ∂tu(·, tn+1/2) and apply
the triangle inequality to get

||∂n+1
∆t u− (∂tu)

n+1/2||2k
≤ ||∂n+1

∆t u− ∂tu(·, tn+1/2)||2k + ||∂tu(·, tn+1/2)− (∂tu)
n+1/2||2k (184)

Following a similar method used to derive (180), we get

||∂tu(·, tn+1/2)− (∂tu)
n+1/2||2k ≤ C∆t3

(tn+1/2)2

∫ tn+1

tn
t2 ||∂(3)

t u(·, t)||2kdt. (185)
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Additionally,

||∂n+1
∆t u− ∂tu(·, tn+1/2)||2k

=

∥

∥

∥

∥

∥

∫ tn+1/2

tn
(t− tn)∂

(3)
t u(·, t)dt+

∫ tn+1

tn+1/2

(tn+1 − t)∂
(3)
t u(·, t)dt

∥

∥

∥

∥

∥

2

k

≤ C∆t3

(tn+1/2)2

∫ tn+1

tn
t2||∂(3)

t u(·, t)||2kdt. (186)

Apply (185) and (186) to (187) to get

||∂n+1
∆t u− (∂tu)

n+1/2||2k ≤ C∆t3

(tn+1/2)2

∫ tn+1

tn
t2||∂(3)

t u(·, t)||2kdt. (187)

�

Proof of Estimate (28) for particular ξn(·). Let ξn(u) = 3
2u

n− 1
2u

n−1 so that Taylor-
expansion with integral remainder gives

ξn(u) = u(·, tn+1/2) +

1
∑

i=0

∫ tn+1/2

tn−i

(t− ti)∂
(2)
t u(·, t)dt.

Fix n ≥ n0. Then

|ξn(u)− u(·, tn+1/2)|2k ≤ C
1
∑

i=0

∫

∣

∣

∣

∣

∣

∫ tn+1/2

tn−i

(t− tn−i)Dk∂
(2)
t u(·, t)dt

∣

∣

∣

∣

∣

2

Following a similar method used to derive (180) we get

||ξn(u)− u(·, tn+1/2)||2k ≤ C∆t3

(tn+1/2)2

∫ tn+1

tn−1

t2 |∂(2)
t u(·, t)|2kdt (188)

�

Proof of Estimate (106) and (131). Fix n ≥ n0. Then, for any r ∈ R, and for
either i = 0 or 1,

∫ tn+1

tn+1/2

(tn+1 − t)(∂
(2)
t u · ∇u,v)dt ≤ C

∫ tn+1

tn+1/2

(tn+1 − t)||u||2||∂(2)
t u||1−i|v|i

≤ C||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn+1/2

(tn+1 − t)2dt)1/2(

∫ tn+1

tn+1/2

||∂(2)
t u||21−idt)

1/2|v|i

≤ C∆t3/2

(tn+1/2)r/2
||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn+1/2

tr ||∂(2)
t u||21−idt)

1/2|v|i. (189)

A similar estimate holds when time interval is shifted to (tn, tn+1) except when
n = n0 = 0 (note that for ∆t2 extrapolations, n0 > 0). In this case

∫ ∆t/2

0

t(∂
(2)
t u · ∇u,v)dt ≤ C

∫ ∆t/2

0

t||u||2||∂(2)
t u||1−i|v|i

≤ C||u||L∞(0,∆t;H2)(

∫ ∆t/2

0

dt)1/2(

∫ ∆t/2

0

t2 ||∂(2)
t u||21−idt)

1/2|v|i

≤ C∆t1/2||u||L∞(0,∆t;H2)(

∫ ∆t/2

0

t2 ||∂(2)
t u||21−idt)

1/2|v|i. (190)
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Note that
√
tn+1/2 =

√

∆t/2 when n = 0. Therefore, (189), (190) combine to give,
for n ≥ 0

∫ tn+1

tn+1/2

(tn+1 − t)(∂
(2)
t u · ∇u,v)dt +

∫ tn+1/2

tn
(t− tn)(∂

(2)
t u · ∇u,v)dt

≤ C∆t3/2

tn+1/2
||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn
t2 ||∂(2)

t u||21−idt)
1/2|v|i. (191)

Now recall that (u · ∇∂
(2)
t u,v) = −(u · ∇v, ∂

(2)
t u) since ∇ · u = 0 and v = 0.

Then again a similar argument used to derive (190) proves

∫ tn+1

tn+1/2

(tn+1 − t)(u · ∇∂
(2)
t u,v)dt+

∫ tn+1/2

tn
(t− tn)(u · ∇∂

(2)
t u,v)dt

≤ C∆t3/2

tn+1/2
||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn
t2 ||∂(2)

t u||21−idt)
1/2|v|i. (192)

Once again, following a similar argument used to derive (190) proves, for n ≥ n0,

∫ tn+1

tn+1/2

(tn+1 − t)(∂tu · ∇∂tu,v)dt+

∫ tn+1/2

tn
(t− tn)(∂tu · ∇∂tu,v)dt

≤ C∆t3/2

tn+1/2
||∂tu||L∞(tn,tn+1;L2)(

∫ tn+1

tn
t2 ||∂tu||23−idt)

1/2|v|i. (193)

�

References

[1] G. Apte, S. Canstantinescu, F. Ham, G. Iaccarino, and P. Mahesh, K. Moin. Large-eddy
simulation of reacting turbulent flows in complex geometries. J. Appl. Mech., 73:364–371,
May 2006.

[2] F. Armero and J.C. Simo. Long-term dissipativity of time-stepping algorithms for an abstract
evolution equation with applications to the MHD and Navier-Stokes equations. Comput.

Methods Appl. Mech. Engrg., 131:41–90, 1996.
[3] G.A. Baker. Galerkin approximations for the Navier-Stokes equations. Technical report,

Havard University, 1976.
[4] G.A. Baker, V. Dougalis, and O. Karakashian. On a higher order accurate, fully discrete

galerkin approximation to the Navier-Stokes equations. Math. Comp., 39:339–375, 1982.
[5] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer,

Berlin, second edition, 2002.
[6] Lisa G. Davis and Faranak Pahlevani. Semi-implicit schemes for transient NavierStokes equa-

tions and eddy viscosity models. Numer. Meth. Part. D. E., 25(1):212–231, 2009.
[7] Y. Duan, W. Wang, and X. Yang. The approximation of a Crank-Nicolson scheme for the

stochastic Navier-Stokes equations. J. Comput. Appl. Math., 225:31–43, 2009.
[8] G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations,

volume I. Springer-Verlag, New York, 1994.
[9] G.P Galdi. An Introduction to the Navier-Stokes Initial-Boundary Value Problem.

Birkhauser, Basel, New York, 2000.
[10] V. Girault and P.A. Raviart. Finite Element Approximations of the Navier-Stokes Equations.

Lecture Notes in Mathematics. Springer-Verlag, New York, 1979.
[11] V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-

Verlag, Berlin, 1986.

[12] Y. He. Fully discrete stabilized finite element method for the time-dependent Navier-Stokes
equations. IMA J. Numer. Anal., 23:1–27, 2003.

[13] Y. He. Two-level method based on finite element and Crank-Nicolson extrapolation for the
time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 41:1263–1285, 2003.



UNCONDITIONAL CONVERGENCE OF CNLE 297

[14] Y. He. The Euler implcit/explicit scheme for the 2D time-dependent Navier-Stokes equations
with smooth or non-smooth initial data. Math. Comp., 77:2097–2124, 2008.

[15] Y. He and J. Li. A penalty finite element method based on the Euler implciit/explicit scheme
for the time-dependent Navier-Stokes equations. J. Comput. Appl. Math., 235:708–725, 2010.

[16] Y. He and J. Li. Numerical implementation of the Crank-Nicolson/Adams-Bashforth scheme
for the time-dependent Navier-Stokes equations. Int. J. Numer. Meth. Fl., 62:647–659, 2010.

[17] Y. He andW. Sun. Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme
for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 45:837–869, Feb.
2007.

[18] Y. He and W. Sun. Stabilized finite element method based on the Crank-Nicolson extrapo-
lation scheme for the time-dependent Navier-Stokes equations. Math. Comput., 76(257):115–
136, Jan. 2007.

[19] J.G Heywood and R. Rannacher. Finite element approximation of the nonstationary Navier-
Stokes problem, I. Regularity of solutions and second-order spatial discretizations. SIAM J.

Numer. Anal., 19:275–311, 1982.
[20] J.G Heywood and R. Rannacher. Finite element approximation of the nonstationary Navier-

Stokes problem, IV. Error analysis for second-order time discretization. SIAM J. Numer.

Anal., 27(2):353–384, 1990.
[21] Y. Hou and Q. Liu. A two-level finite element method for the Navier-Stokes equations based

on a new projection. Applied Mathematical Modelling, 34:383–399, 2010.
[22] Y. Huang and M. Mu. An alternating Crank-Nicolson method for decoupling the Ginzburg-

Landau equations. SIAM J. Numer. Anal., 35(5):1740–1761, 1998.
[23] V. John. A comparison of parallel solvers for the incompressible Navier-Stokes equations.

Computing and Visualization in Science, 1(4):193–200, 1999.
[24] A. Labovsky, W. Layton, C. Manica, M. Neda, and L. Rebholz. The stabilized, extrapolated

trapezoidal finite element method for the Navier-Stokes equations. Comput. Methods Appl.

Mech. Eng., 198:958–974, 2009.
[25] W. Layton, C. Manica, M. Neda, and L.G. Rebholz. Numerical analysis and computational

comparisons of the NS-alpha and NS-omega regularizations. Computer Methods in Applied

Mechanics and Engineering, 199(13-16):916–931, 2010.
[26] C. C. Manica, M. Neda, M. Olshanskii, L. G. Rebholz, and N. E. Wilson. On an efficient

finite element metod for Navier-Stokes-ω̄ with strong mass conservation. Comput. Meth. Appl.

Math., 11(1):3–22, 2011.
[27] K. Matsuzaki, M. Munekata, H. Ohba, and Ushijima. Numerical study on particle motions

in swirlling flows in a cylinder separator. J. Therm. Sci., 15(2):181–186, 2006.
[28] M.R. Ohm, H.Y. Lee, and J.Y. Shin. L2-error estimates of the extrapolated Crank-Nicolson

discontinuous Galerkin approximations for nonlinear Sobolev equations. J. Inequal. Appl.,
2010:1–17, 2010.

[29] Maxim A. Olshanskii and Leo G. Rebholz. Velocity-vorticity-helicity formulation and a solver
for the Navier-Stokes equations. J. Comput. Phys., 229:4291–4303, June 2010.

[30] J. Shen. On error estimates of the penalty method for unsteady Navier-Stokes equations.
SIAM J. Numer. Anal., 32(2):386–403, 1995.

[31] J.N. Sorensen and W.Z Shen. Numerical modeling of wind turbine wakes. J. Fluids Eng.,
124:393–399, Jun. 2002.

[32] M. Tabata and D. Tagami. Error estimates for finite element approximations of drag and lift
in nonstationary Navier-Stokes flows. Japan J. Indust. Appli. Math., 17:371–389, 2000.

301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA and 2259 Shady
Avenue Pittsburgh PA 15217, USA, and Tel 412-818-1202

E-mail : rni1@pitt.edu and rni103@psualum.com

URL: http://www.pitt.edu/∼rni1


