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AMERICAN PUT OPTIONS ON ZERO-COUPON BONDS
AND A PARABOLIC FREE BOUNDARY PROBLEM
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Abstract. In this paper we study American put options on zero-coupon bonds

under the CIR model of short interest rates. The uniqueness of the optimal

exercise boundary and the solution existence and uniqueness of a degenerate

parabolic free boundary problem are established. Numerical examples are also

presented to confirm theoretical results.

Key Words. American put option, zero-coupon bond, optimal exercise bound-

ary, free boundary problem, uniqueness, existence

1. Introduction

In this paper, we shall study American put options on zero-coupon bonds. Since
bonds and their options are financial derivatives of interest rates, we need term
structure models of interest rates to determine the rational prices of these financial
products. In those models, the short rate of interest is considered to be a random
process governed by a stochastic differential equation. Here we adopt the CIR
model developed by Cox, Ingersoll and Ross in 1985 [8]. The prominent feature of
this model is that the short interest rate is never negative. Indeed, the stochastic
process r(t) of the short interest rate under the CIR model follows the square-root
dynamics:

(1) dr(t) = κ(θ − r(t))dt + σ
√

r(t)dW (t), t > 0,

where W (t) is a standard Brownian motion under the risk-neutral measure Q, κ is
the speed of adjustment, θ is the long-term value of interest rate, and σ is a positive
constant. It can be shown that r(t) is always positive when κθ/σ2 ≥ 1/2 and that
r(t) can reach zero when κθ/σ2 < 1/2.

Since the American option can be exercised at any time up to its expiration date,
there is an optimal exercise boundary. The optimal exercise boundary will divide
the whole domain into two regions. It is optimal to exercise the option in one region
but the option should be kept in the other region. American option problems can be
treated further by optimal stopping problems and by parabolic free boundary value
problems. While there have been extensive studies on American stock options,
American bond options have not been paid much attention in theoretical analysis.
We refer the interested reader to [7], [9], [15], [19]) and references cited therein
in this aspect. In this paper we shall show that there is a unique optimal exercise
boundary and the corresponding free boundary problem has a unique weak solution.

The outline of the paper is as follows. As in [12] for American stock put op-
tions, we use the optimal stopping problem formulation to investigate properties of
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American put options on zero-coupon bonds in Section 2. Especially, we show the
existence and uniqueness of the optimal exercise boundary. In section 3, we study
the parabolic free boundary problem by variational method. The difficulty is that
the partial differential operator is degenerate. The free boundary problem may be
investigated by using weighted Sobolev spaces in the light of the formulation for
the finite volume methods in [1] and [3]. With appropriate variable transforms, we
are able to remove the degenerate factor and then propose a variational formulation
with a coercive bilinear form in the usual Sobolev space. The solution uniqueness
follows from the coercivity of the bilinear form. The solution existence is established
by considering limit of a sequence of solutions for nonlinear variational problems
of the parabolic type. In Section 4, numerical results are presented to confirm our
theoretical results.

2. American put option and its optimal exercise boundary

Consider the American put option with exercise price $K and expiry date T ,
which is written on a zero-coupon bond with face value $1 (without loss of gener-
ality) and maturity date T ∗ (> T ). Recall that American contingent claims can be
formulated as optimal stopping problems (see [5], [14] and references cited therein).
Denote by p(r, t) the price of the put when r(t) = r at time t. Then (see [7])

(2) p(r, t) = ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

)
g(r(τ), τ)

∣∣∣∣Ft

]
,

where {Ft} is the filtration generated by W (t), T[t,T ] is the set of all stopping
times assuming values in [t, T ], g(r, t) = (K −B(r, t;T ∗))+ is the payoff of the put,
z+ = max(z, 0), and B(r, t; T ∗) is the bond price given by

(3) B(r, t; T ∗) = E

[
exp

(
−

∫ T∗

t

r(s)ds

)∣∣∣∣∣Ft

]
.

In [8], the explicit expression of B(r, t; T ∗) was found as follows:

B(r, t;T ∗) = A(T ∗ − t)e−C(T∗−t)r

where A(t) is a smooth and strictly decreasing function, C(t) is a smooth and
strictly increasing function and A(0) = 1, C(0) = 0. Therefore, B(r, t; T ∗) is an
increasing function of t and a decreasing function of r, which is as expected in
practice.

It should be pointed out that the exercise price K must be strictly less than
B(0, T ;T ∗) = A(T ∗−T ) which is the maximum of bond price B(r, t; T ∗) on [0,∞)×
[0, T ]. Otherwise, the exercise would be never optimal (see [8] for American call
options). In fact, if K ≥ B(0, T ;T ∗), then

K ≥ B(r, t;T ∗), r ≥ 0, 0 ≤ t ≤ T.

Hence it follows from (2) and (3) that
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p(r, t)

= ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

) (
K −B(r(τ), τ, T ∗)

)∣∣∣∣Ft

]

= ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

) (
K − E

[
exp

(
−

∫ T∗

τ

r(s)ds

)∣∣∣∣∣Fτ

])∣∣∣∣∣Ft

]

= ess sup
τ∈T[t,T ]

(
E

[
K exp

(
−

∫ τ

t

r(s)ds

)∣∣∣∣Ft

]
−B(r, t; T ∗)

)

= K −B(r, t; T ∗), r ≥ 0, 0 ≤ t ≤ T.

From now on, we assume that K < B(0, T ;T ∗).
By taking τ = t in (2), we get the usual constraint condition for the put price:

(4) p(r, t) ≥ g(r, t), r ≥ 0, 0 ≤ t ≤ T.

In the following theorem, we give the other bounds of put price p(r, t).

Theorem 1. For all (r, t) ∈ [0,∞)× [0, T ], we have

(5) PE(r, t) ≤ p(r, t) ≤ CE(r, t) + K −B(r, t; T ∗),

where PE(r, t) and CE(r, t) are the prices of the European put and call options,
respectively.

Proof. For τ = T in (2), we have

p(r, t) ≥ E

[
exp

(
−

∫ T

t

r(s)ds

)
g(r(T ), T )

∣∣∣∣∣Ft

]
≡ P

E
(r, t).

By using properties of conditional expectation, we get

p(r, t) + B(r, t; T ∗)

= ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

) (
g(r(τ), τ) + B(r(τ), τ)

)∣∣∣∣Ft

]

= ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

) (
(B(r(τ), τ)−K)+ + K

)∣∣∣∣Ft

]

≤ ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

)
(B(r(τ), τ)−K)+

∣∣∣∣Ft

]
+ K

≡ cE(r, t) + K,

where cE(r, t) is the price of the American call option which is the same as American
call price CE(r, t) (see [8]). To sum up, we complete the proof of (5). ¤
Remark 1. Since PE(r, t) is positive on (0,∞) × [0, T ), it follows from the first
inequality of (5) that American put price p(r, t) is also positive on (0,∞)× [0, T ).

It is easy to show the following put-call parity (see [7])

PE(r, t) = CE(r, t) + KB(r, t;T )−B(r, t; T ∗).

By combing this identity with (5), we get

PE(r, t) ≤ p(r, t) ≤ PE(r, t) + K(1−B(r, t; T )).

The above estimates suggest that there is a function φ(r, t) such that

p(r, t)− PE(r, t) = Kφ(r, t), 0 ≤ φ(r, t) ≤ 1−B(r, t; T ).
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The difference p(r, t) − PE(r, t) is usually called the early exercise premium. This
observation might be useful to derive some analytical approximation of p(r, t). The
interested reader is referred to [4] and [13] in this topic about American options on
stocks.

We need the following results to show that there is a unique optimal exercise
boundary.

Lemma 1. (i) Put price p(r, t) is a decreasing functions of t. (ii) If a/σ2 > 1/2,
then P (r, t) = p(r, t) + B(r, t; T ∗) is a decreasing function of r.

Proof. (i) It is not difficulty to check that

p(r, t) = ess sup
τ∈T[0,T−t]

E

[
exp

(
−

∫ τ

0

r(s)ds

)
g(r(τ), t + τ)

]
,

where r(s) is the solution of (1) with r(0) = r. Notice that for 0 ≤ t1 < t2 ≤ T , if
τ ∈ T[0,T−t2] then τ ∈ T[0,T−t1]. Hence, we have

p(r, t2) = ess sup
τ∈T[0,T−t2]

E

[
exp

(
−

∫ τ

0

r(s)ds

)
g(r(τ), t2 + τ)

]

≤ ess sup
τ∈T[0,T−t1]

E

[
exp

(
−

∫ τ

0

r(s)ds

)
g(r(τ), t2 + τ)

]

≤ ess sup
τ∈T[0,T−t1]

E

[
exp

(
−

∫ τ

0

r(s)ds

)
g(r(τ), t1 + τ)

]

= p(r, t1),

where we used the fact that g(r, t) is a decreasing function of t. Conclusion (i) is
true.

Since

P (r, t) = ess sup
τ∈T[t,T ]

E

[
exp

(
−

∫ τ

t

r(s)ds

)
G(r(τ), τ)

∣∣∣∣Ft

]
,

where G(r, t) = g(r, t) + B(r, t; T ∗) is a decreasing function of r, we only need
to prove the process r(s) is an increasing function of r(t) = r in order to verify
conclusion (ii). For r2 > r1 ≥ 0, let ri(s) be the solution of (1) with r(t) = ri(i =
1, 2). The process X(s) = r2(s)−r1(s) satisfies formally the long-normal dynamics:

dX(s) = X(s) (−bdt + υ(s)dW (s)) , s ∈ (t, T ],

where
υ(s) =

σ√
r1(s) +

√
r2(s)

.

Hence, if Itô integral
∫ T

t
υ(s)dW (s) is well-defined, then we have by Itô’s formula

(Theorem 4.1.2 of [18])

X(s) = X(t)eΘ(s,t) > 0, s ∈ [t, T ],

where

Θ(s, t) = −b(s− t)− 1
2

s∫

t

υ2(s)ds +
∫ s

t

υ(s)dW (s).

Therefore, r(s) is an increasing function of r(t) = r .
Recall that the probability density of the interest rate at time s, conditional on

its value at time t, is given by (see [8])

f(r(s), s; r(t), t) = φe−(u+v)
( v

u

)q/2

Iq

(
2
√

uv
)
,
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where

φ =
2b

σ2(1− e−b(s−t))
, u = φr(t)e−b(s−t), v = φr(s),

q =
2a

σ2
− 1, a = κθ, b = κ,

and Iq(z) is the modified Bessel function of the first kind of order q (see Chapter
of [20]).

Iq(z) =
(z

2

)q ∞∑
n=0

(z/2)2n

n!Γ(q + n + 1)

Then for a/σ2 > 1/2, i.e., q > 0, we have

E




∫ T

t

(
σ√

r1(s) +
√

r2(s)

)2

ds


 ≤ σ2

∫ T

t

E

[
1

r2(s)

]
ds

= σ2

∫ T

t

∫ ∞

0

1
r2(s)

f(r2(s), s; r2(t), t)dr2(s)ds

= 2
∫ ∞

2br2
σ2(eb(T−t)−1)

∫ ∞

0

e−(u+v)
∞∑

n=0

un−1vn+q−1

n!Γ(n + q + 1)
dvdu

= 2
∫ ∞

2br2
σ2(eb(T−t)−1)

e−u
∞∑

n=0

Γ(n + q)un−1

n!Γ(n + q + 1)
du

≤ 2
q

∫ ∞

2br2
σ2(eb(T−t)−1)

e−u

u
du + 2

∫ ∞

0

e−u
∞∑

n=1

un−1

n!(n + q)
du

=
2
q

∫ ∞

2br2
σ2(eb(T−t)−1)

e−u

u
du + 2

∞∑
n=1

1
n(n + q)

< ∞.

The above estimates implies that the Itô integral
∫ T

t
υ(s)dW (s) is well-defined (see

[18]). The proof of conclusion (ii) is completed. ¤

Remark 2. It is an open question to show that the Itô integral
∫ T

t
υ(s)dW (s) is

well-defined when a/σ2 ≤ 1/2. But numerical results suggest that p(r, t)+B(r, t; T ∗)
would also be a decreasing function of r in this case.

For t ∈ [0, T ], let r̃(t) be the solution to B(r, t; T ∗) = K, i.e.,

r̃(t) =
log(A(T ∗ − t)/K)

C(T ∗ − t)
.

Then r̃(t) is an increasing function and

B(r, t; T ∗) > K, r < r̃(t); B(r, t; T ∗) < K, r > r̃(t).

As in the case for American call options ((see [8]), r̃(T ) is the smallest interest rate
at which the put should be exercised at its expiration date. For t ∈ [0, T ), define

r∗(t) = inf{r : p(r, t) = g(r, t)} = inf{r : P (r, t) = G(r, t)}.
It is apparent that r∗(t) is the smallest value of the interest rate at which the
exercise of the put becomes optimal at time t. We shall call r∗(t) the early exercise
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interest rate which is the optimal exercise boundary mentioned in the introduction.
We have the following result for r∗(t).

Theorem 2. If a/σ2 > 1/2, then for each t ∈ [0, T ), we have

(6) p(r, t) > g(r, t), 0 < r < r∗(t), p(r, t) = g(r, t); r ≥ r∗(t),

which means that there is a unique optimal exercise boundary.

Proof. We first claim that r∗(t) > r̃(t) for all t ∈ [0, T ). Suppose that r∗(t) ≤ r̃(t)
for some t ∈ [0, T ). Then p(r∗(t), t) = g(r∗(t), t) = 0, which contradicts that the
put price is positive (see Remark 1). By the definition of r∗(t) and (4), we have
that P (r∗(t), t) = G(r∗(t), t) = K and P (r, t) ≥ G(r, t) = K for r > r∗(t). Thus,
by conclusion (ii) of Lemma 1, we have

(7) P (r, t) > G(r, t), 0 < r < r∗(t); P (r, t) = G(r, t) = K, r ≥ r∗(t),

which implies (6). ¤

Remark 3. By viewing Remark 2, we may assume that p(r, t) + B(r, t; T ∗) is a
decreasing function of r when a/σ2 ≤ 1/2. Under such assumption, (7) hold for
a/σ2 ≤ 1/2.

3. Solution existence and uniqueness of the free boundary problem

It is well-known that put price p(r, t) and optimal exercise boundary r∗(t) are
the solution of the following free boundary problem (see [7] and references cited
therein):

pt + Lp = 0, p(r, t) > g(r, t), 0 ≤ r < r∗(t), 0 ≤ t < T,(8)
p(r∗(t), t) = g(r∗(t), t), pr(r∗(t), t) = gr(r∗(t), t), 0 ≤ t < T,(9)
p(r, t) = g(r, t), r > r∗(t), 0 ≤ t ≤ T,(10)
p(r, T ) = g(r, T ), r ≥ 0,(11)

where

Lp =
1
2
σ2rprr + (a− br)pr − rp.

In this section, we shall prove this free boundary problem has a unique weak solu-
tion.

Remark 4. Let D = {(r, t) : 0 ≤ r ≤ r∗(t), 0 ≤ t ≤ T}. Suppose that pt,
pr(r, t), prt, prr, and prrr are continuous on D. It follows from the maximum
principle (Theorem 2.1 of [10]) that pr ≥ 0 on D. Thus p(r, t) is an increasing
function of r on D. Notice that p(r, t) = g(r, t) is an increasing function of r
outside [0,∞)× [0, T ]\D. So the put price p(r, t) is an increasing function of r.

Let R be an upper bound of r∗(t) and

p̃(r, t) = p(r, T − t), g̃(r, t) = g(r, T − t).

Then we can rewrite free boundary problem (8)–(11) into the following linear com-
plementarity problem:

p̃t − Lp̃ ≥ 0, p ≥ g̃, 0 < r < R, 0 < t ≤ T,(12)
(p̃t − Lp̃)(p̃− g̃) = 0, 0 < r < R, 0 < t ≤ T,(13)
p̃(R, t) = g̃(R, t), 0 ≤ t ≤ T,(14)
p̃(r, 0) = g̃(r, 0), 0 ≤ r ≤ R.(15)
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In order to remove that degenerate factor r in the second order derivative term of
L, we consider the following transforms:

(16) x =
√

r, p̃(r, t) = x−αeγtu(x, t),

where α and γ are positive constants to be determined to have a coercive bilinear
form. We have by calculation

p̃t − Lp̃ = x−αeγt

(
ut − σ2

8
uxx + c1(x)ux + c2(x)u

)
,

where

c1(x) = ξ1x
−1 + ξ2x, c2(x) = ξ3x

−2 + x2 + γ − αb

2
,

ξ1 =
σ2

8

(
1 + 2α− 4a

σ2

)
, ξ2 =

b

2
, ξ3 =

σ2α

8

(
4a

σ2
− α− 2

)
,

Hence (12)–(15) become

ut − σ2

8
uxx + c1(x)ux + c2(x)u ≥ 0, u ≥ F (x, t), (x, t) ∈ ΩT ,(17)

(
ut − σ2

8
uxx + c1(x)ux + c2(x)u

)
(u− F (x, t)) = 0, (x, t) ∈ ΩT ,(18)

u(0, t) = F (0, t), 0 ≤ t ≤ T,(19)
u(X, t) = F (X, t), 0 ≤ t ≤ T,(20)
u(x, 0) = F (x, 0), 0 ≤ x ≤ X,(21)

where ΩT = Ω× (0, T ), Ω = (0, X), X =
√

R, and F (x, t) = xαe−γtg̃(x2, t).
For Ω = (0, X), denote by H1

0 (Ω) the closure of all smooth functions with com-
pact support in Ω in the usual Sobolev space H1(Ω) ([17]). The norm of v ∈ H1(Ω)
is denoted by ‖v‖1,Ω. We also use (·, ·) and ‖ · ‖0,Ω to denote the inner product and
the norm on L2(Ω), respectively. Define the bilinear form

a(φ, ψ) =
σ2

8
(φx, ψx) + (c1φx + c2φ, ψ).

It can be checked by integration by parts that (see [2])

(22) ‖x−1φ‖0,Ω ≤ 2‖φx‖0,Ω, ∀φ ∈ H1
0 (Ω).

So we have
a(φ, ψ) ≤ γ1‖φ‖1,Ω‖ψ‖1,Ω, ∀φ ∈ H1

0 (Ω),
where γ1 is a positive constant, that is, a(·, ·) is bounded.

Since it is always easier to deal with homogeneous boundary conditions, letting
w = u − F , we have the following variational problem for (17)–(21): Find w ∈
W (0, T ) with w(0) = 0 such that for a.e. t ∈ (0, T ], w(t) ∈ Π and

(23) (wt, v − w) + a(w, v − w) ≥ f(t, v − w), ∀v ∈ Π

where

W (0, T ) = {v : v ∈ L2(0, T ; H1
0 (Ω)), vt ∈ L2(0, T ; H−1(Ω))},

Π = {v : v ∈ H1
0 (Ω), v ≥ 0}, f(t, v) = −(Ft, v)− a(F, v).

Since Ft ∈ L∞(Ω× (0, T )), in order to have f(t, v) well-defined, we should require
that F ∈ H1

E(Ω) = {φ ∈ H1(Ω) : φ(0) = 0} for all t ∈ [0, T ], which is true if
α > 1/2 or K ≤ B(0, 0; T ∗) = A(T ∗). Under such conditions, we have

(24) f(t, v) = −(φ, v) + (ψδ(x− x̃(t)), v),
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where x̃(t) =
√

r̃(T − t), and

φ(x, t) = Ke−γtx2+αH(x− x̃(t)), ψ(x, t) =
σ2

4
KC(T − t)e−γtx1+α.

Expression (24) of f(t, v) means that f(t, v) is well-defined regardless of any re-
strictions on α and K.

For a solution w(x, t) of the variational problem (23), we shall call

p(r, t) = r−
α
2 eγtw(

√
r, T − t) + g(r, t)

a weak solution of the free boundary problem (8)–(11). Next, we shall show that
the variational problem (23) has a unique solution. To this end, we specify α and
γ as follows:

γ =
(1 + 2α)b

4
and α ∈ (0, 1) is chosen in the following way:

(1) α ∈ (0, 1/2), if 0 < ρ < 3/8,
(2) α ∈ (4ρ− 3/2, 1/2), if 3/8 ≤ ρ < 1/2,
(3) α ∈ (1/2, 4ρ− 3/2), if 1/2 < ρ ≤ 3/4,

(4) α ∈ (1/2, 2ρ− 1/2−
√

(4ρ− 1)(4ρ− 3)/2), if ρ > 3/4.
where ρ = a/σ2.

Lemma 2. For α and γ determined above, if a/σ2 6= 1/2, then the bilinear form
a(·, ·) is coercive on H1

0 (Ω), i.e., there is a positive constant γ0 such that

(25) a(v, v) ≥ γ0‖vx‖20,Ω, ∀v ∈ H1
0 (Ω).

Proof. With γ = (1 + 2α)b/4, for v ∈ H1
0 (Ω), integration by parts gives

a(v, v) =
σ2

8
(‖vx‖20,Ω + (−ν + 2αν − α2)‖x−1v‖20,Ω

)
+ ‖xv‖20,Ω,

where ν = 2ρ− 1/2. If α is chosen such that

−ν + 2αν − α2 ≤ 0, 1 + 4(−ν + 2αν − α2) > 0,

then it follows from (22) that (25) holds with γ0 = 1 + 4(−ν + 2αν − α2). The
proof is completed by solving the above system of inequalities. ¤

For any ε ∈ (0, 1), let φε(x) = xε+1/2(X − x). The we have vε ∈ H1
0 (Ω) and

lim
ε→0+

a(φε, φε)
‖φε‖21,Ω

= −σ2

8
(2α− 1)2

when a/σ2 = 1/2. Hence, the bilinear form a(·, ·) is not coercive for any α. However,
for α = 1/2, we still have

a(v, v) ≥ ‖xv‖20,Ω, ∀v ∈ H1
0 (Ω).

Thus the solution uniqueness of (23) follows (see the proof of the following Theorem
1), but the existence of the solution is an open question.

For a/σ2 > 1/4, we may consider the following variable transforms:

x =
√

r, p(r, t) = x−αeβx2+γtu(x, t)

with
α =

2a

σ2
− 1

2
, β =

b

σ2
, γ =

ab

σ2
.

Then we have a variational inequality problem with a symmetric bilinear form,
which is also coercive if a/σ2 6= 1/2. Although α may be larger than 1, this
formulation also gives very good approximations of option prices.
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Theorem 3. For a/σ2 6= 1/2 and α and γ are chosen as in Lemma 2, (23) has a
unique solution w(x, t) in W (0, T ).

Proof. The uniqueness of the solution w(x, t) follows from the coercivity (25) of
bilinear form a(·, ·). In the following, we prove the solution existence.

For a positive integer n, define

Hn(z) =





0, x ≤ 0,
nx, 0 < x < 1

n ,
1, x ≥ 1

n .

By using the usual approach to quasi-linear parabolic equations (see [16]), we can
show that the following variational problem has a unique solution wn ∈ W (0, T )
with wn(0) = 0:

(26) (wn
t , v) + a(wn, v) + (φHn(wn), v) = ψ(t)v(x̃(t)), ∀v ∈ H1

0 (Ω).

Furthermore, {wn} is a bounded function sequence in W (0, T ). Let

p =
{

0, wn ≥ 0,
v, wn < 0.

Then p ∈ H1
0 (Ω) and

wn
t p = ptp, wn

xpx = (px)2, wn
xp = pxp, wnp = p2, Hn(wn)p = 0.

Hence, for v = p in 26, we get

(pt, p) + a(p, p) = ψ(t)p(x̃(t)) ≤ 0.

Thus, p = 0, that is, wn is nonnegative. So wn is a bounded non-negative function
sequence in W (0, T ).

Recall that a bounded sequence in a Hilbert space has a weakly convergent
subsequence and a bounded sequence in the dual space of a separable Banach space
has a weakly star convergent subsequence. We may assume that {wn} weakly
converges to a nonnegative function w in W (0, T ) and that {Hn(wn)} weakly star
converges to G in L∞((Ω)×(0, T ))(= (L1((Ω×(0, T )))′). It is clear that 0 ≤ G ≤ 1.
It follows from Lemma 5.1 of [2] that

(27) G(x, t) = 1, if w(x, t) > 0.

Then by letting n →∞ in (26), we have

(wt, v) + a(w, v) + (φG, v) = ψ(t)(δ(x− x̃(t)), v), ∀v ∈ H1
0 (Ω),

i.e., for v ∈ H1
0 (Ω),

(wt, v − w) + a(w, v − w) + (φG, v − w) = ψ(t)(δ(x− x̃(t)), v − w).

Notice that φ is a nonnegative function and that from (27)

G(v − w) ≤ v − w, ∀v ∈ Π.

We have

(wt, v − w) + a(w, v − w) + (φ, v − w) ≥ ψ(t)(δ(x− x̃(t)), v − w), ∀v ∈ Π.

Therefore, (23) has a solution w in W (0, T ). ¤

The above proof is motivated by [2] in which the American option problem is
formulated into a quasi-linear parabolic problem. We may have a similar problem:
Find w ∈ W (0, T ) with w(0) = 0 such that

(wt, v) + a(w, v) + (φH(w), v) = ψ(t)(δ(x− x̃(t)), v), ∀v ∈ Π.
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It is easy to see that the solution of this problem is also the solution of the variational
inequality problem (23). One could show that the above problem has a unique
solution in W (0, T ) by verifying G = H(w) in the above proof. It should be
pointed out that Theorem 3 may also be proved by using the approaches in [6] and
[11] for general parabolic variational inequalities.

4. Examples

In this section, we shall confirm the theoretical results numerically. The finite
element method for variational problem (23) developed in [1] will be employed in
computation. We brief the Crank–Nicholson scheme and its convergence for com-
pleteness in the following. The convergence analysis for the general finite element
schemes and the related numerical examples can be found in [1].

Let h = X/N and xi = ih for i = 0, 1, . . . , N , where N is a positive integer.
Denote by Vh the piecewise linear finite element space in H1

0 (Ω) under the above
partition of interval [0, X]. Let Πh = {v ∈ Vh : v ≥ 0}. For another positive integer
M , let τ = T/M and tm = mτ for m = −1, 0, 1, . . . , M . Then the finite element
approximations to (23) is: Find wm

h ∈ Πh for m = 1, 2, . . . , M , such that

(28) (δτwm
h , v − wm

h ) + a
(
w

m− 1
2

h , v − wm
h

)
≥ f

(
tm− 1

2
, v − wm

h

)

for all v ∈ Πh, where w0
h = 0, and

δτwm
h =

wm
h − wm−1

h

τ
, tm− 1

2
= tm − 1

2
τ, w

m− 1
2

h =
wm

h + wm−1
h

2
.

Here the time derivative is discretized by the Crank–Nicholson scheme. Note that
the discrete problem (28) has a positive definite stiffness matrix as the consequence
of Lemma 2 if ρ 6= 1/2 or ρ = α = 1/2. Concerning the stability and convergence of
(28), we have the following results according to the general framework for parabolic
variational inequalities in §6.3.3 of [11].

Theorem 4. For ρ 6= 1/2, the finite element method (28) is stable when τ
h2 < γ0

8γ2
1

and approximate solution whτ (x, t) =
∑M

m=0 wm
h (x)χ[tm−1,tm](t) has a convergent

subsequence in L2(0, T ; H1
0 (Ω)) as h → 0, τ → 0, τ

h2 → 0, where χ[tm−1,tm] is the
characteristic function of interval [tm−1, tm].

In the following examples, we consider 1-year put options on a 5-year zero-coupon
bond with face value $100. The exercise price K of the option is $70. For θ = 0.08
and κ = 0.4, we take σ = 0.5 (Case I) and σ = 0.1 (Case II). Then we have two
special situations: ρ = κθ/σ2 = 0.128 < 0.5 for Case I and ρ = 3.2 > 0.5 for
Case II. The upper bound of the early exercise interest rates is chosen as R = 0.5,
M = 2000, and N = 1000.

In Figure 1 – Figure 4, we display graphs of put price p(r, t) and put price plus
bond price P (r, t). As expected from the results in Section 2, we observed that
p(r, t) is an increasing function of r and a decreasing function of t and that P (r, t)
is a decreasing function of r. But the left picture of Figure 3 shows that P (r, t)
is not a monotone function of t. Figure 5 shows that early exercise prices are
concave downward functions but not a monotone function. We observed that the
early exercise prices in Case I and Case II behave quite different. More numerical
experiments have shown that as a/σ2 increases, the shape of the early exercise
prices changes from the shape as in the left picture of Figure 5 to the shape as
in the right picture of Figure 5. It seems that r∗(t) is only a concave downward
function. As expected, we also observed that r∗(t) > r̃(t) for t ∈ [0, T ).
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Figure 1. American put prices: σ = 0.5
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Figure 2. American put prices: σ = 0.1
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Figure 3. American put plus bond prices: σ = 0.5
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