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JUMP-DIFFUSION MODEL FOR THE GLOBAL SPREAD OF AN
AMPHIBIAN DISEASE

EDWARD J. ALLEN

Abstract. A system of jump-diffusion stochastic differential equations is con-

sidered for modelling the dynamics of the spread of an amphibian disease. In

this investigation, it is assumed that the amphibians are located in M regions

which are widely and uniformly spaced on the surface of the earth and that the

disease is present initially in only one region. Within each region, the amphib-

ians live in N separate patches. A jump-diffusion stochastic system is derived

for the number of infected patches in each of the M regions. Computational

simulations are performed and compared with results predicted by a determin-

istic SIS model, a continuous-trajectory stochastic differential equation model,

and Monte Carlo calculations. It is seen that the rate of spread predicted by

the jump-diffusion model agrees well with that predicted by Monte Carlo cal-

culations. Indeed, if there is a step increase in the transmission rates or a step

decrease in the recovery rates, then the disease can spread globally from region

to region at an exponential rate.

Key Words. amphibian disease, stochastic differential equation, jump diffu-

sion, chytridiomycosis

1. Introduction

Since the 1970’s, populations of amphibians have declined or vanished worldwide
(see, e.g., Berger et al., 1998, Carey et al., 1999, Daszak et al., 1999, Morell, 1999).
Mass mortalities have been reported in North America, Central America, South
America, Europe, and Australia. The severity, the rapid rate, and the abruptness
of the amphibian population declines have led to much scientific interest and several
hypotheses for the causes of the population declines have been proposed. It was
hypothesized that changes in the global environment, such as increased ultraviolet
light, global warming, and pollutants, were responsible (see, e.g. Alexander and
Eisched, 2001, Corn and Muths, 2002, Stallard 2001). After the amphibian chytrid
fungus (Batrachochytrium dendrobatidis) was found at sites of mass mortality in
Australia and Central America (Daszak et al., 2001), it was hypothesized that
emerging infectious diseases (EIDs) were responsible for the amphibian die-offs.
In addition, it has been hypothesized that a combination of factors is responsible
(Daszak, et al., 2001, Rollins-Smith, et al., 2002). For example, global warming may
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have changed the behavior of montane amphibians resulting in increased transmis-
sion rates of a disease or, possibly, increased ultraviolet light has decreased the
resistance of the amphibians to infections (Daszak et al., 2001).

Of particular interest has been the global spread of chytrid fungus with the fungus
recorded in the United States in the 1970’s, Australia, Central America, and South
America in the 1980’s, and Europe and Africa in the 1990’s (Berger et al., 1999,
Speare and Berger, 2000). Chytrid fungus is interesting as it has emerged in pristine
sites, infected a wide variety of hosts, and has caused severe population declines
in disparate regions (Daszak et al., 1999, 2000). Chytrid fungus spreads through
waterborne zoospores and apparently prefers cool temperatures for optimal growth
(Daszak et al., 2001, Sparrow, 1968). As a result, montane amphibians have been
the most susceptible to the disease (Berger et al., 1999, Bosch, et al., 2001) even
though the populations are generally located at widely separated regions on the
earth. The international trade in amphibians, which has undoubtedly increased
since the 1970’s, has been a possible mechanism for the introduction of chytrid
fungus (Daszak et al., 2001).

In the present investigation, the dynamics of the global spread of an amphibian
disease are studied. Of particular interest is determining how increased transmission
rates or increased susceptibility affect the rate of global spread of a disease. To
study these effects, the assumption is made that the disease initially is present at
only one location on the earth’s surface. (For example, a virulent strain may evolve
at a certain location.) Unfortunately, with regard to a particular disease such as
chytrid fungus, appropriate data may never be obtained to support or disprove
such an assumption. For example, one may argue that chytrid fungus has been
distributed worldwide for thousands of years and we have just recently begun to
identify the effects of the fungus.

In addition to the assumption that the disease originates at one location, it
is also assumed that the amphibian populations susceptible to the disease are lo-
cated at disparate regions on the surface of the earth. With these assumptions,
a stochastic model is formulated for the global spread of an amphibian disease,
in particular, a jump-diffusion model is introduced and studied. Often, in math-
ematical models for dispersal and growth, small fractions of the population can
immediately diffuse with the result that migrated populations can quickly increase.
However, a jump-diffusion model realizes that the populations are discrete and
that migrated populations cannot undergo growth unless at least one individual
has moved. Jump-diffusion models have recently become popular in mathematical
finance in order to account for random discrete jumps in prices (see, e.g., Hanson
and Westman, 2002, Runggaldier, 2003). In the present investigation, a jump-
diffusion model is considered for modelling the spread of amphibian infections. (In
addition, it is worthwhile to note that the mathematical model developed here is
not a small-world network (Collins and Chow, 1998, Watts and Strogatz, 1998) as
all regions are interconnected. However, the problem studied may be considered as
a metapopulation since a collection of amphibian subpopulations exist on a system
of habitat patches (Hanski, 1999, Marsh and Trenham, 2001).) The purpose of
the investigation is to assess the impact of increased transmission coefficients and
decreased recovery coefficients on the rate that an amphibian disease can spread
globally. The model may help improve our understanding of how a disease spreads
rapidly through widely separated populations and whether changing global condi-
tions are partly responsible for the amphibian population declines.
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2. Mathematical Model

2.1. Introduction. It is first useful to explain the geometrical assumptions made
concerning the amphibian populations. A rather simple set of geometric assump-
tions are made in the present investigation. One advantage of such simple as-
sumptions is that they readily allow the calculational results to be duplicated and
compared using different mathematical models for the spread of the disease. First,
it is assumed that the amphibian populations are located in M regions which are
approximately uniformly spaced on the surface of the earth. Within each region
the amphibians live in N patches. Hence, the amphibians are located in a total of
NM patches. In each patch, more than one species of amphibian may be present
that is susceptible to the disease. The transmission and recovery rates are assumed
to be the same for all the susceptible species. For the computational simulations,
described in a later section, M is taken as 30 and N is taken as 25 and each region
is assumed to be 250 km by 250 km. Four regions are located at 60◦ North, four
at 60◦ South, seven at 30◦ North, seven at 30◦ South, and eight at 0◦. At each
latitude, the regions are evenly spaced with respect to longitude. For example, the
eight regions at the equator have longitudes: 0◦, 45◦, 90◦, 135◦, 180◦ East, and 45◦,
90◦, and 135◦ West. The regions are thus uniformly distributed on the surface of
the earth and the average distance between the 30 regions is 9999 km. (For com-
parison, the average distance between two randomly chosen points on the earth’s
surface is π

2 ×6378 km = 10019 km.) In addition, it is assumed that the 25 patches
are randomly spaced within each region.

2.2. A Deterministic SIS Model. Before deriving a stochastic jump-diffusion
model, it is useful to consider a standard deterministic metapopulation mathemat-
ical model (see, e.g. Hanski, 1999) for the spread of the infection. Let Sj(t) and
Ij(t) be the number of susceptible patches and infected patches, respectively, in the
jth region at time t. In the present investigation, the disease is assumed to spread
rapidly and vigorously within a patch and the population of each patch is therefore
assumed at any time to be either totally susceptible or totally infected. That is,
the population in each patch is never partially infected or partially susceptible. In
addition, it is assumed that a patch may recover from the infection albeit with
perhaps a significant loss of the amphibian population from the patch. However, it
is assumed that a patch cannot disappear or completely die out; a patch is either
susceptible or infected. It follows then that Ij(t) + Sj(t) = N for j = 1, 2, . . . , M
as there are N patches for each region.

Now, let γjIj(t) be the rate that an infected patch recovers from the infection,
i.e., a patch changes from infected to susceptible at this rate. Let αjIj(t)Sj(t)
be the rate that infected patches infect susceptible patches in the jth region. Let
βkjIk(t)Sj(t) be the rate that infected patches in region k infect patches in region j.
An SIS (see, e.g., Allen, 2003, Brauer and Castillo-Chávez, 2001, Hethcote, 2000,
Hethcote and Yorke, 1984) deterministic model for the rate of change of the number
of infected and susceptible patches has the form:

(1)





dSj(t)
dt

= γjIj(t)− αjIj(t)Sj(t)− (
∑M

k=1,k 6=j βkjIk(t))Sj(t)

dIj(t)
dt

= −γjIj(t) + αjIj(t)Sj(t) + (
∑M

k=1,k 6=j βkjIk(t))Sj(t)
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for j = 1, 2, . . . , M . Notice that

d(Sj(t) + Ij(t))
dt

= 0

so that Sj(t) + Ij(t) = Sj(0) + Ij(0) = N for each j. Also, notice that the infection
spreads between patches within the jth region at a rate determined by the parame-
ter αj . That is, each infected patch in a region is equally effective at spreading the
disease to any susceptible patch in the region. However, the rate that the infection
spreads between two regions, say regions j and k, is determined by the parameter
βjk. Thus, regions may not be equally effective in spreading the disease. Indeed,
it is assumed, in the present investigation, that βjk = βR/djk where djk is the
distance on the earth’s surface between regions j and k and βR is a constant. Also,
it is assumed in the computational examples that αj is the same for each region,
specifically, αj = βP /davg where βP is a constant and davg = 130 km is the average
distance between patches in the region. (The average distance between two ran-
domly chosen points in a square of side length 250 km is approximately .52 × 250
km = 130 km.)

Before developing a stochastic model for the dynamics of the infection, it is useful
to understand the equilibrium solutions of (1). If N − γj/αj > 0 then the disease
persists in region j independently of the presence or absence of the infection in the
other regions and the equilibrium number of infected patches in region j is greater
than or equal to N − γj/αj . Indeed, for the SIS model, the basic reproduction
number is a useful parameter. The basic reproduction number is defined to be
the average number of secondary infections produced when an infected individual
is introduced into a population where everyone is susceptible (Anderson and May,
1991, Dietz, 1975, and Hethcote, 2000). For only one region M = 1, the basic
reproduction number is R0 = α1N

γ1
. If R0 > 1, then the disease can persist in

the region in the absence of inter-regional spread. However, if R0 < 1, then the
disease-free equilibrium is locally asymptotically stable. For the full SIS epidemic
model (1) with M > 1, the basic reproduction number is the spectral radius of the
following matrix (Diekmann, 1990, and van den Driessche and Watmough, 2002):

N




α1
γ1

β21
γ2

β31
γ3

· · · βM1
γM

β12
γ1

α2
γ2

β32
γ3

· · · βM2
γM

...
...

... · · · ...
β1M

γ1

β2M

γ2

β3M

γ3
· · · αM

γM




,

which indicates the importance of the ratios αj

γj
and βjk

γj
. Furthermore, assuming

that N > γj/αj , good approximations to the equilibrium numbers of susceptible
and infected patches in the jth region are given by:

(2)





Seq
j ≈ (N − γj

αj
)/

(
αj

γj
(N − γj

αj
) +

∑M
k=1,k 6=j

βkj

γj
(N − γk

αk
)
)

Ieq
j ≈ N − Seq

j

for j = 1, 2, . . . , M .
Now suppose that at some time there is a step increase in the transmission

coefficient βR or a step decrease in the recovery coefficient γj for all regions. That
is, at some time, the transmission rate of the disease has increased or the recovery
rate has decreased. Then (1) predicts that the disease will spread rapidly at an
exponential rate at least initially. To see this, suppose, for simplicity, that αj =
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α, γj = γ and βkj = β for all j and k and the initial conditions for each region are
the same so that Ij(t) = Ik(t) for t ≥ 0 and 1 ≤ j, k ≤ M . Then the equation for
the number of infected patches in the jth region has the form:

(3)
dIj

dt
= −γIj + αIj(N − Ij) + β̃Ij(N − Ij)

where β̃ = (M − 1)β. This equation can be solved exactly to yield:

(4) Ij(t) =
(

aIj(0)
a− bIj(0)

exp(at)
)

/

((
bIj(0)

a− bIj(0)
exp(at)

)
+ 1

)

where a = αN +β̃N−γ and b = α+β̃. For Ij(0) small compared with a/b, equation
(4) exhibits an exponential rate of increase before approaching the equilibrium value
of a/b.

Although the deterministic model (1) is useful for estimating equilibrium values
and for developing an understanding of the approximate dynamics of the infection,
equation (1) considerably overestimates the rate that the disease spreads among the
widely separated regions for a given set of transmission and recovery coefficients. To
see why, suppose that the disease is initially only present in one region, say region
1. (Such an assumption is made later in the computational simulations.) The
deterministic model (1) predicts that immediately for any time t > 0, the disease
has spread to every region from region 1. This is due to the inherent assumption
in (1) that Ij(t) and Sj(t), j = 1, 2 . . . , M , are continuous variables. Therefore,
although Ij(t) + Sj(t) = N for each j, Ij(t) and Sj(t) are fractional quantities for
t > 0. Hence, for t > 0, Ij(t) > 0 for each region j and the infection builds up
exponentially as indicated by (4) for each region. The infection thus increases at
an unrealistically rapid rate because there is only a small probability in any given
time interval that the disease actually spreads from region 1 to the other regions.
To remedy this problem, a stochastic model is required. One way to formulate a
stochastic model is to add the appropriate stochastic terms to (1) as in Allen (1999),
Allen and Victory, (2003), or Allen (2003) to account properly for the randomness
in the disease transmission and recovery. The result is a system of Itô stochastic
differential equations (Øksendahl, 1985) involving an M-dimensional Wiener process
and which can be approximately computed using various numerical procedures
(Kloeden et al., 1997, Schurz, 2002, Talay, 1995). However, this approach only
partially remedies the problem as fractional increases in the infection from one
region to another still occur. However, by considering the problem using Poisson
processes as in the next section, a jump-diffusion stochastic differential equation
system is obtained that accurately takes into account the random nature of the
disease propagation and, indeed, agrees consistently with Monte Carlo simulations.

2.3. A Jump-Diffusion Model. A jump-diffusion stochastic model for the spread
of the infection is developed in this section. The model consists of a system of sto-
chastic differential equations and models the random nature of the discrete jumps
in the dynamics of the infection. Let ∆t be a small interval in time. During this
time interval, there are three possibilities: no change occurs, an infected patch in
some region recovers, or a susceptible patch becomes infected. Before deriving the
jump-diffusion model, it is useful to understand a Monte Carlo approach. In a
Monte Carlo procedure, at each time step, each patch in every region is individu-
ally considered. The probability for the patch to change its status (e.g., infected
to susceptible) is computed and this probability is compared with an appropriately
selected random number generated uniformly on [0, 1]. If the random number is
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smaller in magnitude than the probability, then the status of the patch is changed,
otherwise, no change is made for that patch. This continues for all patches for each
time step until the final time is reached. Although the Monte Carlo approach is
accurate, simple, and straightforward, the approach provides little insight into the
dynamics of the spread of the infection and Monte Carlo computations are generally
slow.

In the present investigation, the random process is modelled by a system of
jump-diffusion stochastic equations which give some insight into the phenomenon
and can be rapidly approximately computed. Consider the two possibilities for a

change in time ∆t. Let
[

∆Sj

∆Ij

](1)

=
[

1
−1

]
represent the recovery of an infected

patch in region j during time interval ∆t. Furthermore, let
[

∆Sj

∆Ij

](2)

=
[ −1

1

]

represent a susceptible patch becoming infected in region j during time interval ∆t.
These are Poisson processes and the probabilities for the changes in a small time
interval ∆t are (to order (∆t)2), respectively,

p
(1)
j = λ

(1)
j (t)∆t = γjIj(t)∆t

and

p
(2)
j = λ

(2)
j (t)∆t = αjIj(t)Sj(t)∆t +




M∑

k=1,k 6=j

βkjIk(t)


Sj(t)∆t.

where the above equations also define λ
(1)
j (t) and λ

(2)
j (t). Finding the mean and

covariance matrix of the change, one obtains:

E
[

∆Sj

∆Ij

]
= p

(1)
j

[
∆Sj

∆Ij

](1)

+ p
(2)
j

[
∆Sj

∆Ij

](2)

=

[
λ

(1)
j (t)− λ

(2)
j (t)

λ
(2)
j (t)− λ

(1)
j (t)

]
∆t

and

E
[[

∆Sj

∆Ij

]
[∆Sj ∆Ij ]

]
=

[
λ

(1)
j (t) + λ

(2)
j (t) − λ

(1)
j (t)− λ

(2)
j (t)

−λ
(1)
j (t)− λ

(2)
j (t) λ

(1)
j (t) + λ

(2)
j (t)

]
∆t.

The above considerations imply that the number of susceptible patches and
infected patches in region j satisfy the following equations for small ∆t:

(5)





Sj(t + ∆t) = Sj(t) + ∆q
(1)
j (t)−∆q

(2)
j (t)

Ij(t + ∆t) = Ij(t)−∆q
(1)
j (t) + ∆q

(2)
j (t)

for j = 1, 2, . . . , M where ∆q
(1)
j (t) and ∆q

(2)
j (t) are Poisson processes with intensi-

ties λ
(1)
j (t) and λ

(2)
j (t). That is, for a small time interval ∆t,

∆q
(1)
j (t) =





1 with probability λ
(1)
j (t)∆t

0 with probability 1− λ
(1)
j (t)∆t

and

∆q
(2)
j (t) =





1 with probability λ
(2)
j (t)∆t

0 with probability 1− λ
(2)
j (t)∆t.
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As ∆t → 0, equation (5) has the form of a jump-diffusion stochastic system:

(6)





dSj(t)
dt

=
dq

(1)
j (t)
dt

− dq
(2)
j (t)
dt

dIj(t)
dt

= −dq
(1)
j (t)
dt

+
dq

(2)
j (t)
dt

for j = 1, 2, . . . , M where q
(1)
j (t) and q

(2)
j (t) are doubly stochastic Poisson processes

(Runggaldier, 2003) with time-dependent random intensities

(7) λ
(1)
j (t) = γjIj(t)

and

(8) λ
(2)
j (t) = αjIj(t)Sj(t) +




M∑

k=1,k 6=j

βkjIk(t)


Sj(t).

Equation (6) is a jump-diffusion system of stochastic differential equations. It is
called jump-diffusion as the values of Sj(t) and Ij(t) experience jump changes at
random times determined by the intensities. In addition, as the intensities λ

(1)
j (t)

and λ
(2)
j (t) depend on the stochastic quantities Sj(t) and Ij(t), q

(1)
j (t) and q

(2)
j (t) are

referred to as doubly stochastic Poisson processes. System (6) can be approximated
in a stepwise manner for small ∆t using equation (5) which is a form of Euler’s
method (Hausenblaus, 2002, Kubilius and Platen, 2002, Liu and Li, 2000, Protter
and Talay, 1997) for solving (6).

Equation (6) will be simplified by noticing that d(Ij(t) + Sj(t))/dt = 0 for
j = 1, 2, . . . ,M . However, it is first worthwhile to compare (6) with a contin-
uous trajectory stochastic differential system that agrees with (6) in having the
identical values of E[Ij(t+∆t)− Ij(t)] , E[Ij(t+∆t)− Ij(t)]2, E[Sj(t+∆t)−Sj(t)]
, E[Sj(t + ∆t) − Sj(t)]2 to order (∆t)2. Indeed, using the procedure described in
(Allen, 1999, Allen and Victory, 2003, Allen, 2003), one obtains the continuous-
trajectory Itô stochastic differential equation system:

(9)





dSj

dt
= λ

(1)
j − λ

(2)
j +

√
1
2 (λ(1)

j + λ
(2)
j )

(
dW

(1)
j

dt
− dW

(2)
j

dt

)

dIj

dt
= −λ

(1)
j + λ

(2)
j +

√
1
2 (λ(1)

j + λ
(2)
j )

(
−dW

(1)
j

dt
+

dW
(2)
j

dt

)

for j = 1, 2, . . . , M where λ
(1)
j (t) and λ

(2)
j (t) are given by (7) and (8) and W

(1)
j (t) and

W
(2)
j (t) are independent Wiener processes for each j. Notice that (9) also satisfies

d(Ij(t)+Sj(t))/dt = 0 for j = 1, 2, . . . , M . Generally, under most initial conditions,
the continuous-trajectory stochastic system (9) would agree well with Monte Carlo
simulations as discussed, for example, in (Allen and Allen, 2003). However, if the
infected population sizes in many regions are initially zero, then stochastic system
(9) overestimates the rate of spread of the infection. This is because Sj(t) and
Ij(t) are continuous variables in (9) rather than discrete variables as in (6) and
changes occur continuously rather than discretely allowing the infection to spread
too rapidly. For small initial population sizes, the jump-diffusion model (6) agrees
better with Monte Carlo calculations than model (9).
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One can simplify (6) by using the fact that Ij(t) + Sj(t) = N for t ≥ 0 and
j = 1, 2, . . . ,M . Indeed, setting Sj(t) = N − Ij(t) in (6), one obtains that:

(10)
dIj(t)

dt
= −dq

(1)
j (t)
dt

+
dq

(2)
j (t)
dt

for j = 1, 2, . . . , M where q
(1)
j (t) and q

(2)
j (t) are doubly stochastic Poisson processes

with intensities:

(11)





λ
(1)
j (t) = γjIj(t)

λ
(2)
j (t) = αjIj(t)(N − Ij(t)) + (

∑M
k=1,k 6=j βkjIk(t))(N − Ij(t)).

Using Euler’s method, stochastic system (10) can be approximated in a stepwise
manner using

(12) Ij(t + ∆t) = Ij(t)−∆q
(1)
j (t) + ∆q

(2)
j (t)

for j = 1, 2, . . . , M where for small ∆t,

(13) ∆q
(m)
j (t) =





1 with probability λ
(m)
j (t)∆t

0 with probability 1− λ
(m)
j (t)∆t

for m = 1, 2.
In the next section, model (10) is compared with Monte Carlo simulations and

with the deterministic SIS system (1).

3. Computational Simulations

Several computations were made to see how well model (10) compares with
Monte Carlo calculations and with the deterministic model. In addition, compu-
tations were carried out to determine if the jump-diffusion model could predict
a rapid global expansion in an infection if the transmission rates undergo a step
increase or if the recovery rates undergo a step decrease at some time. The param-
eters in the model were set equal to the values given in Table 1 for two different
sets of calculations. Unless explicitly specified in the table, the parameter values
are constant for t ≥ 0. In addition, ∆t = 1

15 in the calculations as smaller values
of ∆t produced only small changes in the results. To better understand the val-
ues given, recall that βk,j = βR/djk is the transmission rate for the spread of the
disease between patches in regions k and j where djk is the (great-circle) distance
in kilometers between the two regions. Recall that the latitudes and longitudes of
the 30 regions are given in the second section and the average distance between
the regions is 9999 km. Recall also that αj = βP /davg is the transmission rate for
the infection between patches in region j and γj is the recovery rate. Also, the
rate of spread of the infection between regions is related to the value of the ratio
βR/γj and the rate of spread between patches is related to the value of the ratio
βP /γj . Consider again the values in Table 1 for the two sets of calculations. In
the first set of calculations, the region-to-region transmission rate undergoes a step
increase at time t = 10. (Although the time units are not specified here, time could
be regarded, for example, having units of years.) Initially, Sj(0) = N = 25 for
j 6= 1 and S1(0) = 0. That is, the infection begins in region 1, where the recovery
rate is lowest, and I1(0) = 25 for this region. (Region 1 has latitude 60◦ North
and longitude 0◦. Although the infection is assumed to originate in region 1 in the
present investigation, similar calculational results would be expected if the infection
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is assumed to originate in another region.) In the second set of calculations, the
transmission rates remain fixed. However, the recovery rates, for all regions other
than region 1, undergo a step decrease at time t = 10. This change also produces
a rapid global expansion in the disease.

In Figures 1-3, the results of the calculations are displayed for calculational
set 1 in which the transmission rates have a step increase at time t = 10. In
each figure, the total number of infected patches is given versus time. Notice
that the total number of infected patches is bounded above by NM = 750. Two
of the curves in each figure are for individual sample paths of the spread of the
infection. The smooth curve in each figure is the average of 400 independent sample
paths. The average number of infected patches estimated by the jump-diffusion
model given in Figure 2 agree quite well with those estimated by the Monte Carlo
calculations. In comparison, the continuous-trajectory stochastic model (9), with
the calculated results given in Figure 3, overestimates the rate that the disease
progresses. For example, at time t = 18, the Monte Carlo, jump-diffusion, and
continuous-trajectory stochastic models estimate the average number of infected
patches to be 393.5, 378.6, and 520.7, respectively.

Parameter Value (Set 1) Value (Set 2)
βP 3.25 3.25

βR, t < 10 0.1625 3.25
βR, t ≥ 10 3.25 3.25

davg 130.0 130.0
γj , j 6= 1, t < 10 0.25 2.0
γj , j 6= 1, t ≥ 10 0.25 0.25

γ1 0.125 0.125
Ij(0), j 6= 1 0 0

I1(0) 25 25
N 25 25
M 30 30

Table 1. The values of the parameters used in the calculations
for set 1 and set 2.

In Figure 4, the deterministic model (1) is compared with the average num-
ber of infected patches predicted by the Monte Carlo calculations, the continuous-
trajectory stochastic model, and the jump-diffusion model. The deterministic model
and the continuous-trajectory stochastic model clearly overestimate the rate of
spread of the infection. Based on Figures 1-4, the jump-diffusion equations (10)
accurately estimate, in comparison with Monte Carlo simulations, the spread of the
infection. A least squares fit to the total number of infected patches for time t ≥ 10
is given by

Î(t) =
M∑

j=1

Ij(t) ≈ 535 exp(0.512t)/(exp(0.512t) + 3350),

where Î(t) is the total number of patches infected. This relation indicates that,
after a step increase in the transmission rates, the infection spreads initially at an
exponential rate of increase and approaches an equilibrium value of approximately
535. For comparison, the deterministic model predicts an equilibrium value of
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Figure 1. Number of infected patches as predicted by Monte
Carlo simulations when a step increase in transmission rates is
introduced at t = 10. The smooth curve is the average of 400
trajectories.

about 546 infected patches. (Recall that the total number of infected patches
cannot exceed NM = 750.)

Notice that the susceptibility/resistance of the amphibians to the disease is re-
lated to the values of βP and βR as well as to the values of γj . In other words, if the
susceptibilty of the amphibians to the disease decreases, then the values of βP and
βR may increase as the likelihood of contracting the disease after exposure increases
with reduced resistance. However, the values of βP and βR are also related to the
transmission rate of the disease. Hence, global environmental changes, such as in-
creased ultraviolet light, increased pollution levels, or global warming, may affect
the values of βP and βR. In addition, the increased ability for a viable infection
to spread from region to region due to increasingly rapid means of transportation
affects the values of βP and βR. However, the recovery rates γj for 1 ≤ j ≤ M
are independent of the transmission rates. The recovery rate can also be related to
the susceptibility/resistance of the infection with the values of γj increasing with
resistivity to the infection. A large value of γj would signify rapid recovery and
hence, γj is kind of measure of resistance to the infection. Therefore, in the second
set of calculations, the transmission rates βP and βR were held constant for time
t ≥ 0. However, the recovery rate γj , for regions 2 ≤ j ≤ M , underwent a step
decrease at t = 10 to model a change in environmental conditions that affected the
ability of the amphibians to recover from the infection. The total number of in-
fected patches as estimated by the jump-diffusion model are given in Figure 5. The
smooth curve is again the average of 400 different sample paths whereas the two
rough curves are for two individual sample paths for comparison. The interesting
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Figure 2. Number of infected patches as predicted by the jump-
diffusion model (10) when a step increase in transmission rates is
introduced at t = 10. The smooth curve is the average of 400
trajectories.

feature of Figure (5) is the close similarity of its curves with the curves given in
Figures 1 and 2. Indeed, the values of the parameters for this set of calculations
were adjusted so that the number of infected patches after a step decrease in the
recovery rates would be similar to the number of infected patches following a step
increase in the transmission rates. The conclusion reached, based on the results of
the two sets of calculations, is that given only information regarding population size
decreases, the model would not be able to accurately differentiate between amphib-
ian population declines due to changes in transmission rates, changes in recovery
rates, or to changes in a combination of factors.

4. Discussion

A jump-diffusion stochastic model was developed in the present investigation for
modelling the global spread of an amphibian infection. The jump-diffusion model is
a stochastic version of a deterministic SIS model for the spread of the disease. In the
present investigation, the disease spread was modelled in terms of 30 regions widely
dispersed on the earth’s surface with 25 patches in each region. Each patch was
assumed to consist of one or more populations of amphibians equally susceptible
to the disease. It was assumed that the infection was initially present only in one
region while the other regions were free of the disease. At time t = 10, it was
assumed that there was a step change in the transmission rates or a step change in
the recovery rates of the infection. The deterministic SIS model overestimated the
rate of spread of the disease in comparison with Monte Carlo simulations while the
jump-diffusion model and the Monte Carlo simulations were in good agreement.
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Figure 3. Number of infected patches as predicted by the
continuous-trajectory stochastic model (9) when a step increase
in transmission rates is introduced at t = 10. The smooth curve is
the average of 400 trajectories.

The calculational results indicate that the disease can spread globally at an
exponential rate following a step change in the transmission or recovery rates. Un-
fortunately, given the spread of a particular disease, the mathematical model, as
presently formulated, cannot differentiate between the two effects. That is, although
the mathematical model predicts that an infection can rapidly spread through a
system of disparate regions, the model cannot be used to determine whether the
spread of the infection is due to changes in the transmission rates of the infection,
to changes in the recovery rates of the infection, or to some combination of changes
in the transmission and recovery rates.
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