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A LEVEL SET METHOD FOR SOLVING FREE BOUNDARY
PROBLEMS ASSOCIATED WITH OBSTACLES
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Abstract. A level set method is proposed for solving free boundary problems
coming from contact with obstacles. Two different approaches are described and
applied for solving an unilateral obstacle problem. The cost functionals coming
from the new approach are nonsmooth. For solving the nonsmooth minimiza-
tion problems, two methods are applied: firstly, a proximal bundle method,
which is a method for solving general nonsmooth optimization problems. Sec-
ondly, a gradient method is proposed for solving the regularized problems.
Numerical experiments are included to verify the convergence of the methods
and the quality of the results.
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1. Introduction

The level set method initiated by Osher and Sethian [14] has proven to be an
efficient numerical device for capturing moving fronts, see [11, 12, 17]. There are
many industrial problems where interfaces need to be identified, which can be for-
mulated as moving front problems. We mention, for example, image segmentation
problems [2], inverse problems [1, 3], and optimal shape design problem [13, 15]. In
free boundary problems, it is often needed to find the boundary of some domains.
It is natural to use level set method for this kind of applications. In [12, 18], the
level set method was used for Stefan type of free boundary problems. In this work,
we shall propose an alternative approach for the level set idea of [14, 12, 18] and
use it for tracing the free boundaries from obstacle contact type of problems.

The contents of the paper are as follows. In Section 2, a model free bound-
ary problem is described and the proposed level set approaches are introduced for
solving the problem. In Section 3, the solution algorithms are described that are
applied for realizing the proposed level set approaches. In Section 4, numerical
experiments are presented to verify the convergence of the methods and the quality
of the results. Finally, in Section 5, the conclusions are stated.

2. A modified level set method

Consider a model free boundary problem which comes from the minimization
problem:

(1) min
v∈K

F (v),
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with

(2) F (v) =
∫

Ω

(
1
2
|∇v|2 − fv

)
dx, K = {v| v ∈ H1

0 (Ω), v ≥ ψ}.

In the above, Ω ⊂ Rp, p = 1, 2, ψ is the obstacle function satisfying ψ ≤ 0 on ∂Ω,
and f typically represents external force for physical problems. The solution u for
(2) is unique and it can be formally written as the function satisfying

−∆u ≥ f, u ≥ ψ, (−∆u− f) · (u− ψ) = 0.

To find the solution u, we need to find the contact region Ω+ = {x| u(x) =
ψ(x), x ∈ Ω}. Once we know Ω+, the value of u in Ω\Ω+ can be obtained from
solving

−∆u = f in Ω\Ω+, u = 0 on ∂Ω, u = ψ on ∂Ω+.

In order to find u, we essentially just need to find Γ = ∂Ω+. Inside Γ, u = ψ and
outside Γ, u is the solution of the Poisson equation.

Based on the above observation, we see that it is essentially enough to find the
curve in order to solve the free boundary problem (1). Starting with an initial
curve, we shall slowly evolve the curve to the true free boundary. We can use the
level set method to represent the curve, i.e., we try to find a function ϕ(t, x) such
that

Γ(t) = {x| ϕ(t, x) = 0}.

In the above, Γ(0) is the initial curve and Γ(t) converges to the true free boundary,
when t→∞. One of the essential ingredient of the level set method is to find the
velocity field Vn(t, x) in the normal direction of Γ(t), which is then used to move
the level set function ϕ(t, x) by solving

ϕt − Vn|∇ϕ| = 0, ϕ(0, x) = ϕ0(x) = ±distance(x,Γ(0)).

In this work, we propose an alternative approach, which seems to be simpler
than the approach outlined above. Define the Heaviside function H(ϕ) as

H(ϕ) =
{

1, ϕ > 0,
0, ϕ ≤ 0.

For any v ∈ K, there is exists ϕ ∈ H1(Ω) such that

(3) v = ψ + ϕH(ϕ).

It is easy to see that

(4) v =

{
ψ, if ϕ ≤ 0 (i.e., in the contact region)
ψ + ϕ, if ϕ > 0 (i.e., outside the contact region).

Thus, the sign of the function ϕ tells the information of the contact region. The
curve, which separates the regions where ϕ is positive or negative, gives the free
boundary. In the traditional level set method, the function ϕ is only used to
represent the curve Γ. In our approach, ϕ is not only used to represent the curve,
but also to carry information about the solution u outside the contact region, i.e.,
ϕ is used to indicate that u = ψ inside the contact region and its value outside the
contact region shall be ϕ = u − ψ. We use iterative type of methods to find the
correct values of ϕ both inside and outside the contact region. Note that the value
of ϕ inside the contact region is not unique.
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Representation (3) is not the only formulation that can be used to express the
value of a function v ∈ K as a function of ϕ ∈ H1(Ω). In fact, there exists a
function ϕ ∈ H1(Ω) for every v ∈ K such that

(5) v = ψ +
1
2
(ϕ+ |ϕ|).

For the above representation for v, we see that (4) is also correct. From now on,
we use a shortened notation

(6) Ji(ϕ) := F (vi(ϕ)), for i = 1, 2,

where

(7) v1(ϕ) = ψ + ϕH(ϕ) and v2(ϕ) = ψ +
1
2
(ϕ+ |ϕ|).

On the boundary ∂Ω, we have ϕ = −ψ for both of the approaches (i.e., for i = 1, 2).
Thus, the function ϕ assumes a Dirichlet boundary condition. For simplicity, we
assume from now on that ψ = 0 on ∂Ω so that we have ϕ ∈ H1

0 (Ω) for both of the
approaches.

Consider now the following unconstrained minimization problem

(8) min
ϕ∈H1

0 (Ω)
Ji(ϕ), i = 1, 2.

Due to the use of the Heaviside function and absolute value of functions in ap-
proaches 1 and 2, the cost functional Ji is not differentiable. However, we can
prove that the problem has a solution:

Theorem 2.1. The non-smooth minimization problem (8) has a minimizer for
i = 1, 2. The minimizer may not be unique.

Proof. For the minimization problem (1), the cost functional is strictly convex and
continuous in H1

0 (Ω) and K is closed in H1
0 (Ω), see [5, p.29]. Thus, there exists a

unique u ∈ K such that

(9) F (u) ≤ F (v) ∀v ∈ K.
Associated with this unique solution u, let us define

(10) ϕ∗(x) =

{
u(x)− ψ(x), if u(x) > ψ(x) (i.e., outside the contact region)
0, if u(x) = ψ(x) (i.e., inside the contact region).

With ϕ∗ given above, we have u = vi(ϕ∗), i = 1, 2. For any ϕ ∈ H1
0 (Ω), we have

vi(ϕ) ∈ K. Thus, we get from (9) that

(11) Ji(ϕ∗) ≤ Ji(ϕ) ∀ϕ ∈ H1
0 (Ω), i = 1, 2.

This means that ϕ∗ is a minimizer for (8). The value of ϕ∗ inside the contact region
can be any negative value, which means that the minimizer is non-unique. �

3. Solution algorithms

Minimization problem (8) has a minimizer. However, the minimizer is non-
unique and the cost functional Ji is non-convex. In order to find a minimizer
for it, we shall use two algorithms. The first one is the proximal bundle method,
which is a popular method for finding local minimizers for non-smooth and non-
convex minimization problems. For the second algorithm, we turn the non-smooth
minimization problem into a differentiable problem by regularizing the non-smooth
functions used in the cost functionals and then use a gradient method to find a
minimizer for the smoothed problem.
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3.1. Proximal bundle method (PB). In what follows, we introduce shortly
the proximal bundle method, which is a method for finding a local minimum of a
general unconstrained nonlinear optimization problem

(12) min
x∈Rn

J (x),

where J : Rn → R. We assume that J in (12) is a locally Lipschitz continuous
function. Thus, J may be non-differentiable but it has a subdifferential at each
point x. The subdifferential ∂J (of Clarke [4]) of J at x ∈ Rn is defined by

∂J (x) = conv{ξ ∈ Rn : xi → x, ∃∇J (xi) and ∇J (xi) → ξ}.
Element ξ ∈ ∂J (x) is called a subgradient. If J is differentiable at x, then ∂J (x) =
{∇J (x)}.

The basic idea in bundle methods is to approximate the whole subdifferential
by collecting subgradients calculated in a neighbourhood of the considered point
x. At each iterate, this approximation of the subdifferential is used to build up
a local model of the original problem. The origin of the methods is the classical
cutting plane method [6], where a piecewise linear approximation of the objective
function is formed. In bundle methods, a stabilizing quadratic term is added to the
polyhedral approximation in order to accumulate some second order information
about the curvature of the objective function.

PB method assumes that at each point x ∈ Rn, we can evaluate the function
value J (x) and an arbitrary subgradient g(x) from the subdifferential ∂J (x). For
the convergence of the method, in the nonconvex case, J is further assumed to be
upper semismooth [9, 16]. For more details of the PB method, see [9, 7, 10].

The tested proximal bundle algorithm is from the software package NSOLIB.
The code utilizes the subgradient aggregation strategy of [7] to keep the storage
requirements bounded, and the safeguarded quadratic interpolation algorithm of [9]
to control the size of the search region. For solving the quadratic subproblem, the
code employs the quadratic solver QPDF4, which is based on the dual active-set
method described in [8].

3.2. Smoothed approximations and the gradient method. Because the Heav-
iside function is nondifferentiable at ϕ = 0, we replace it by a smooth approximation

Hε(ϕ) =
1
π
tan−1ϕ

ε
+

1
2
,

for small positive ε. The gradient of Hε(ϕ) is denoted by δε(ϕ) (the smoothed Dirac
delta function):

δε(ϕ) =
ε

π(ϕ2 + ε2)
.

For approach 1, i.e., for i = 1 in (6)–(7), we then have
∂F

∂v1
= −∆v1 − f and

∂v1
∂ϕ

= Hε(ϕ) + ϕδε(ϕ).

Correspondingly, we have

(13)
∂J1

∂ϕ
=
∂F

∂v1

∂v1
∂ϕ

= (−∆v1 − f)(Hε(ϕ) + ϕδε(ϕ)).

Since also |ϕ| is nondifferentiable at 0, we use again a smooth approximation
|ϕ| ≈

√
ϕ2 + ε̂, for small positive ε̂ for approach 2, i.e., for i = 2 in (6)–(7). Then,

∂v2
∂ϕ

=
1
2

(
1 +

ϕ√
ϕ2 + ε̂

)
,
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Figure 1. The obstacle (left) and the analytical solution (right)
for n = 100.

and, altogether, we have

(14)
∂J2

∂ϕ
=
∂F

∂v2

∂v2
∂ϕ

=
1
2
(−∆v2 − f)

(
1 +

ϕ√
ϕ2 + ε̂

)
.

Let J ε
i denote the corresponding cost functionals with the smoothed functions.

We shall use the following gradient method (GR) to find a function ϕ, which ap-
proximates the minimizers of (8):

ϕn+1 = ϕn − α
∂J ε

i

∂ϕ
(ϕn), i = 1, 2.

The step size α is fixed and is obtained by trial and error approach.

4. Numerical experiments

In this section, we present the results of the numerical experiments that were
computed using the proposed algorithms. All experiments are performed on an
HP9000/J5600 workstation (2 × 552 MHz PA8600 CPU) and the algorithms are
implemented with Fortran 77.

4.1. General issues about the experiments. The following example problems
were considered. All problems have f = 0.

Example 4.1. In this one-dimensional example, we chose Ω = [0, 1]. The obstacle
and the analytical solution are shown in Figure 1.

Example 4.2. In this example, we chose Ω = [−2, 2]× [−2, 2] and

(15) ψ(x, y) =

{√
1− x2 − y2, for x2 + y2 ≤ 1,

−1, elsewhere.

With the consistent Dirichlet boundary condition, problem (1) with ψ introduced in
(15) has an analytical solution of the form

u(x, y) =

{√
1− x2 − y2, for r ≤ r∗,

−(r∗)2ln(r/R)/
√

1− (r∗)2, for r ≥ r∗,

where r =
√
x2 + y2, R = 2, and R∗ = 0.6979651482 . . . , which satisfies

(r∗)2(1− ln(r∗/R)) = 1.
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Figure 2. The obstacle (left) and the analytical solution (right)
for n̄ = 100.
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Figure 3. The obstacle (solid line) and the obtained result
(dashed line) for n = 50 in Example 4.3 (left). The obstacle in
Example 4.4 (right)

The obstacle and the analytical solution are illustrated in Figure 2. The same
example has been considered, e.g., in [19].

Example 4.3. In this example, we added to Example 4.1 an obstacle that does not
touch the true solution. The obstacle and the obtained result are shown in Figure
3 (left).

Example 4.4. In this example, we chose Ω = [−2, 2] × [−2, 2]. The obstacle is
shown in Figure 3 (right).

4.1.1. Discretization of the problems. In the one-dimensional case, Ω = [0, 1]
is divided into n subintervals, and we denote h = 1/(n+1). In the two-dimensional
case, Ω = [−2, 2] × [−2, 2] is divided into n̄ subintervals in x-direction and y-
direction. We denote n = n̄2 and h = (4/(n̄+1). Then, u, f, ϕ, and ψ denote vectors
in Rn, whose components correspond to the values of the unknown functions in the
equidistant discretization points in Ω. A finite difference approximation is used for
−∆ with Dirichlet boundary conditions.



A LEVEL SET METHOD FOR SOLVING FREE BOUNDARY PROBLEMS 163

n Appr Alg it CPU e(u∗, ū) α F (u∗)

30 1 GR 225729 16.11 2.01 · 10−2 10−4 10.389331
PB 3534 1.79 2.01 · 10−2 10.389239

30 2 GR 1859277 29.63 1.30 · 10−2 10−4 10.507347
PB 34523 16.52 1.30 · 10−2 10.506380

50 1 GR 163496 19.10 2.54 · 10−2 10−4 10.583929
PB 2968 2.44 2.54 · 10−2 10.583918

50 2 GR 14608221 376.77 2.20 · 10−2 10−5 10.656211
PB 34320 26.14 2.20 · 10−2 10.655964

100 1 GR 1054158 242.09 6.37 · 10−3 10−5 11.049151
PB 2125 3.30 6.38 · 10−3 11.049157

100 2 GR 10583641 529.16 4.21 · 10−3 10−5 11.087094
PB 47293 75.11 4.21 · 10−3 11.087025

Table 1. Results for Example 4.1.

4.1.2. How to apply PB for solving (8). Even if it is possible to apply PB
for solving problem (8) with ε, ε̂ = 0, our main focus in this paper is to solve the
problems with ε, ε̂ > 0. In numerical simulations, the level set function ϕ is seldom
exactly zero at a nodal point. Hence, special care needs to be taken to deal with
the case, where ϕ at a given node has different sign than at one of the neighbouring
nodes. Our numerical tests also show that the cost of PB for large problem sizes
is much more expensive than the cost of GR (gradient) method. Hence, PB is
primarily used only as a tool to justify that the results obtained using GR are
correct. However, we have applied PB also with ε̂ = 0 for approach 2.

In order to apply PB for realizing the level set approaches of Section 2, i.e., for
solving problem (8), we need to be able to compute the cost function value Ji(ϕ)
and a subgradient g(ϕ) ∈ ∂Ji(ϕ) at each point ϕ ∈ Rn. In the nonsmooth case (i.e.,
without the regularization using ε̂), we only need to supply one of the subgradients
at each ϕ. For the smoothed cases, i.e., for ε, ε̂ > 0, the cost functional Ji(ϕ) is
differentiable, so that instead of calculating a subgradient, we set g(ϕ) = ∂

∂ϕJi(ϕ)
due to (13) or (14).

4.1.3. Initial values and stopping criteria. In the experiments, we chose ϕ0 =
1 for the initial value and the boundary condition needs to be properly supplied.
PB with ε̂ = 0 converged to a different solution when the initial value ϕ0 = 0
was used. However, during the experiments, a surprising observation was made.
Despite the nonconvexity of the problems, when ε, ε̂ > 0 were chosen properly, both
PB and GR converged to the same result, regardless of the value ϕ0 ≥ 0.

We have used the stopping criterion || ∂
∂ϕnJi(ϕn)|| < 10−2 for GR. For PB, the

stopping criteria were chosen such that the same accuracy is obtained as using GR.

4.2. Results of the experiments.

4.2.1. GR vs. PB. In the first experiments, we tested if GR obtains the same
results as PB for ε, ε̂ > 0. For this purpose, we considered three different problem
sizes for Examples 4.1 and 4.2. In Example 4.1, n = 30, 50, 100 and in Example
4.2, n̄ = 10, 30, 50. PB is not able to solve problems larger than n = 50 × 50 due
to memory problems. The values of the smoothing parameters ε, ε̂ were chosen to
be the smallest ones (as powers of h) for which both algorithms converged to the
same solution from both ϕ0 = 0 and ϕ0 = 1. In the one-dimensional case, we chose
ε = h, ε̂ = h2, and in the two-dimensional case, ε = h2, ε̂ = h4.
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n Appr Alg it CPU e(u∗, ū) α F (u∗) e(u∗, U)

10*10 1 GR 7124 1.03 2.73 · 10−2 10−2 3.476744
PB 2222 3.68 2.78 · 10−2 3.474095

10*10 2 GR 344365 16.96 5.15 · 10−3 10−3 3.842950
PB 48173 56.41 6.01 · 10−3 3.826969

30*30 1 GR 34991 39.84 3.54 · 10−3 10−3 3.872834
PB 4742 38.00 3.55 · 10−3 3.872785

30*30 2 GR 200238 66.85 8.93 · 10−4 10−3 3.919601
PB 48509 422.62 8.83 · 10−4 3.919754

50*50 1 GR 24599 76.00 1.27 · 10−3 10−3 3.916609
PB 18135 285.30 1.27 · 10−3 3.916593

50*50 2 GR 1535794 1340.53 3.40 · 10−4 10−4 3.933813
PB 204773 2924.01 3.40 · 10−4 3.933813

63*63 1 GR 212296 1038.48 7.27 · 10−4 10−4 3.926376 5.95 · 10−4

63*63 2 GR 1374101 1862.80 1.32 · 10−4 10−4 3.937281 2.09 · 10−5

127*127 1 GR 132984 2615.49 1.90 · 10−4 10−4 3.940715 1.50 · 10−4

127*127 2 GR 9633471 51064.97 4.47 · 10−5 10−5 3.943423 3.65 · 10−6

Table 2. Results for Example 4.2.

The results are given in Tables 1–2, where in the first column, the size of the
problem is given. In the next column, we state which of the level set approaches is
considered. Then, the solution algorithm used is given. In the next two columns,
it denotes the number of iterations needed and CPU the elapsed CPU time in sec-
onds. In the sixth column, e(u∗, ū) denotes the average error between the analytical
solution ū and the obtained result u∗ :

e(u∗, ū) =

√√√√ 1
n

n∑
i=1

(u∗ − ū)2i .

In the seventh column, the value of the constant step size α is given for GR. We
always chose the largest value of α for which the algorithms converged. In the next
column, F (u∗) denotes the value of the cost functional for the obtained result.

From the tables, we conclude that with the chosen values of ε, ε̂, GR obtains the
same results as PB, so that we can trust that GR is able to solve the problems. PB
is faster than GR for small problems, but it gets slow when the size of the problem
gets large.

4.2.2. Quality of the results with ε, ε̂ > 0. PB is not able to solve larger
problems than n = 50 × 50. However, from the above experiments we know that
GR is able to solve the considered problems for ε, ε̂ > 0. Hence, we solved Example
4.2 with GR also for n̄ = 63, 127, in order to be able to compare the obtained
results with the finite element results of [19]. The results are presented Table 2,
where e(u∗, U) in the last column denotes the average error between the obtained
result u∗ and the finite element result U of [19].

In Figure 4, the differences between the computed solution u∗ and the analytical
solution u are presented for Example 4.1 with n = 50 and n = 100. In Figure 5, the
same differences are presented for Example 4.2 with n̄ = 63 and n̄ = 127. Finally,
in Figure 6, the differences between the obtained result u∗ and the finite element
result U are presented for Example 4.2.

Both the tables and the difference plots clearly indicate that the results of ap-
proach 2 are more accurate than results of approach 1. The reason for this is that



A LEVEL SET METHOD FOR SOLVING FREE BOUNDARY PROBLEMS 165

0 0.2 0.4 0.6 0.8 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0 0.2 0.4 0.6 0.8 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.2 0.4 0.6 0.8 1
−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2 x 10−3

Figure 4. Difference (u∗ − u) between the computed solution u∗
and the analytical solution u. Top: n = 50, bottom n = 100. Left:
approach 1, right: approach 2.

a smaller value of the smoothing parameter ε̂ can be used. In fact, we observe from
Table 2, that the result of approach 1 is approximately equally far away from the
analytical solution and from the result of [19], whereas the result of approach 2 is
clearly closer to the results of [19] than to the analytical solution.

The plots in Figure 4 clearly show the fact which is not so visible in Figure 5: The
result of approach 1 is below the analytical solution at the contact region, whereas
the result of approach 2 is slightly above the analytical solution at the contact
region. This is due to different type of smoothing used in the two formulations.
The results U of [19] are closer to the analytical solution at the contact region than
the results of our approaches with ε, ε̂ > 0. This is why u∗ − U is plotted on the
left and U − u∗ on the right in Figure 6.

Figures 7–8 show the result u∗ of approach 2 and the corresponding level set
function ϕ∗ with n̄ = 63 for Examples 4.2 and 4.4, respectively. Moreover, Figure
3 shows the result of approach 2 for Example 4.3 with n = 50.

4.2.3. Convergence with respect to the smoothing parameters. In Tables
3–4, the error e(u∗, ū) is given for different values of ε, ε̂, and n̄ for Example 4.2.
Here, PB was used as a solution algorithm and we only considered the values of
ε, ε̂ > 0 for which PB converged to the same solution from both ϕ0 = 0 and ϕ0 = 1.

For approach 1, only the values ε = h, h2 were considered. As can be expected,
the results are less accurate for larger value of ε, see Table 3.
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Figure 5. Difference between the obtained result u∗ and the an-
alytical solution u. Top: n̄ = 63, bottom: n̄ = 127. Left: approach
1, right: approach 2.

For approach 2, the values ε̂ = h2, h3, h4, h5, h6, 0 were considered. The results
in Table 4 show that the value of ε̂ does not have a significant effect on the average
error between the obtained result and the analytical solution. Actually, the average
error seems to grow slightly when ε̂ gets smaller. In Figure 9, the differences between
the computed solution u∗ and the analytical solution u are plotted for n̄ = 50 and
for different values of ε̂. It can be seen that for large value of ε̂, the result is far
away from the analytical solution at the contact region but close to it outside the
contact region. As ε̂ gets smaller, the result gets closer to the analytical solution
at the contact region but goes further away outside the contact region.

For ε, ε̂ > 0, the results of our new approaches are always below or above the
analytical solution at the contact region, due to the smoothing used in the two
formulations. However, for ε, ε̂ = 0, no error is introduced and hence, the results
will be exact at the contact region. In Figure 9, also a plot for ε̂ = 0 is included.

ε /n̄ 10 30 50
h 6.54 · 10−2 2.14 · 10−2 1.25 · 10−2

h2 2.78 · 10−2 3.55 · 10−3 1.27 · 10−3

Table 3. Error e(u∗, ū) with respect to ε for approach 1.
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Figure 6. Difference between the obtained result u∗ and the finite
element result U of [19]. Top: n̄ = 63, bottom: n̄ = 127. Left:
approach 1, right: approach 2.
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Figure 7. Obtained result u∗ of approach 2 (left) and the plot of
the corresponding function ϕ∗ (right) for example 4.2 with n̄ = 63.

There is no visible error between this result and the one with ε̂ = h6, but a closer
examination shows that the result with ε̂ = 0 is really exact at the contact region.
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Figure 8. Obtained result u∗ of approach 2 (left) and the plot of
the corresponding function ϕ∗ (right) for example 4.4 with n̄ = 63.

ε̂ /n̄ 10 30 50
h2 4.93 · 10−3 6.92 · 10−4 2.84 · 10−4

h3 5.62 · 10−3 6.59 · 10−4 2.68 · 10−4

h4 6.01 · 10−3 8.83 · 10−4 3.40 · 10−4

h5 5.82 · 10−3 9.83 · 10−4 3.63 · 10−4

h6 6.34 · 10−3 1.02 · 10−3 3.70 · 10−4

0 6.68 · 10−3 1.01 · 10−3 3.56 · 10−4

Table 4. Error e(u∗, ū) with respect to ε̂ for approach 2.

4.2.4. Other conclusions from the numerical experiments. Using both so-
lution algorithms (i.e. PB and GR), it takes considerably more time to solve the
problem of approach 2 than that of approach 1. For GR, this is due to the fact that
smaller value of α must be used for the solution of the minimization problem of
approach 2. Moreover, both the algorithms become even slower when the value of
the smoothing parameter ε, ε̂ is increased. This is a surprising observation, because
usually, when this kind of smoothing is used, the opposite behaviour is observed.
Finally, Figure 10 illustrates how the contact region develops during the GR itera-
tions of approach 2 in Examples 4.2 and 4.4 with n̄ = 63. The contact region does
not change anymore after the final iteration number presented.

5. Conclusion

A level set related method was proposed for solving free boundary problems com-
ing from contact with obstacles. Two different approaches were described and ap-
plied for solving an unilateral obstacle problem. The results obtained were promis-
ing: even if the considered problems are nonsmooth and nonconvex, we obtained
the same results using two different solution algorithms. Also the accuracy of the
results was reasonable, taken into account that a small regularization error was
introduced in the methods, in order to make the problems differentiable. In this
work, we have only tested the proposed methods for solving the obstacle problem
(1). The idea is applicable also for other free boundary problems dealing with
contact regions.
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Figure 9. Difference (u∗ − u) between the result of PB and the
analytical solution for different values of ε: Top: left: ε = h2, right:
ε = h3; Middle: left: ε = h4, right: ε = h5; Bottom: left: ε = h6,
right: ε = 0.
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