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Abstract. Practical QR algorithm for the real unsymmetric algebraic eigen-

value problem is considered. The global convergence of shifted QR algorithm

in finite precision arithmetic is addressed based on a model of the dynamics of

QR algorithm in a neighborhood of an unreduced Hessenberg fixed point. The

QR algorithm fails at a “stable” unreduced fixed point. Prior analyses have

either determined some unstable unreduced Hessenberg fixed points or have

addressed stability to perturbations of the reduced Hessenberg fixed points.

The model states that sufficient criteria for stability (e.g. failure) in finite pre-

cision arithmetic are that a fixed point be neutrally stable both with respect

to perturbations that are constrained to the orthogonal similarity class and to

general perturbations from the full matrix space. The theoretical analysis pre-

sented herein shows that at an arbitrary unreduced fixed point “most” of the

eigenvalues of the Jacobian(s) are of unit modulus. A framework for the anal-

ysis of special cases is developed that also sheds some light on the robustness

of the QR algorithm.
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1. Background

QR iteration is the standard method for computing the eigenvalues of an un-
symmetric matrix [13, 16, 9, 2]. The global convergence properties of unshifted QR
iteration are well established [14, 5]. For the shifted QR iteration there is no proof
of convergence, and yet in practice failure is extremely rare.

A brief review of QR iteration follows. Please see [9] for a comprehensive discus-
sion. The matrix A = [ai,j ] has lower bandwidth k if i > j +k implies that ai,j = 0.
A matrix with unit lower bandwidth is called an (upper) Hessenberg matrix. Any
square matrix is orthogonally similar to a Hessenberg matrix.

In the eigenvalue problem, a given matrix is first reduced by orthogonal similarity
transformations to Hessenberg form. A Hessenberg matrix is unreduced if no entry
on the first subdiagonal vanishes. QR iteration is applied to the irreducible diagonal
blocks consecutively.

Shifted QR iteration from H0 with shift function p(·) is defined by

p(Bm) = QmRm and p(Bm+1) = RmQm.
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The matrices Qm and Rm are orthogonal and upper triangular respectively. In the
unshifted iteration, p(x) = x. QR iteration preserves the lower bandwidth of B.

The goal of QR iteration is to reduce a matrix by a sequence of orthogonal
similarity transformations to a block upper triangular matrix, with one by one and
two by two diagonal blocks. The decomposition is called a real Schur form.

QR iteration defines a matrix valued function whose singularities are the reduced
Hessenberg matrices. In [3, 1]. the unshifted QR algorithm is viewed as a fixed-
point iteration on the flag manifold, and the stability properties of the reduced
fixed points are studied. Unreduced Hessenberg fixed points are always degenerate
critical points (not obvious, see for example Theorem E), and are not structurally
stable.

Though QR iteration has unreduced fixed points, in the cases considered for
example in [4], convergence at an unreduced fixed point is nice in floating point
arithmetic because the unreduced fixed points are strongly repelling. The observed
robustness of the shifted iteration in finite precision arithmetic is due in part to the
scarcity of “stable” fixed points.

Consider for example f(x) = x + x2 − x3. The fixed point zero is not strongly
repelling and fk(x) = x + kx2 + O(x3). If x is slightly larger than the square root
of the machine precision, then the number of iterations required for convergence
(to x = 1) is inversely proportional to the machine precision.

QR iteration fails if the number of iterations to decouple a given matrix exceeds
a maximum value. Herein the dynamics of QR iteration near unreduced Hessenberg
fixed points in finite precision arithmetic are studied. The use of finite precision
arithmetic introduces perturbations. At “unstable” fixed points, iteration amplifies
the perturbations and the iterates escape the fixed point.

The convergence properties of the shifted QR iteration depend on the shift strat-
egy (the map from the Hessenberg matrix and the iteration number to the shift
polynomial). The implementations [13, 16, 2] all have evolved subtly different shift
strategies in the attempt to enhance the convergence properties. The present study
develops general results that apply to any shift strategy.

The current work relies on the first author’s study of the 4 × 4 Hamiltonian
fixed points of shifted QR iteration as implemented in [16] or [2]. The connection
between integrable flows and the QR algorithm is well known (see [12], page 59
or [17, 7]). The elementary explanations in [8] are inherently lengthy and provide
only a relatively limited insight into the problem at hand.

The basis for our analysis is an empirical model of the dynamics of the QR
algorithm implemented in finite precision arithmetic and applied to matrices near to
a fixed point. The dynamics of the QR algorithm in exact arithmetic is much more
complicated. For instance, the stability on center manifolds must be addressed.
The empirical model was derived in [8], and is the simplest model whose predictions
coincide with all the observations known to the first author.

In finite precision arithmetic, QR iteration is backward stable [9] but forward
unstable [11]. Consecutive QR iterates are nearly orthogonally similar, to within
machine precision, but the computed iterate is not necessarily near to the iterate
determined in exact arithmetic. The term orthogonal similarity class refers to the
set of Hessenberg matrices orthogonally similar to a given matrix. The deriva-
tive along the orthogonal similarity class (which is low dimensional and tractable)
predicts the dynamics in many situations, but not near to the unreduced fixed
points [8]. Suppose that QR iteration is applied to a n by n matrix. There the
difference between consecutive iterates is transverse to the orthogonal similarity



NEUTRALLY STABLE FIXED POINTS OF THE QR ALGORITHM 149

class, and the derivative over matrix space, a map from Rn2
to Rn2

, also influences
the dynamics near to unreduced fixed points.

Our empirical criteria is the following. In QR iteration applied to an n × n
matrix, if the derivative along the orthogonal similarity has no eigenvalues outside
the closed unit disk, and furthermore the derivative over matrix space, a map from
Rn2

to Rn2
, also has no eigenvalues outside the closed unit disk, then QR iteration

in finite precision arithmetic will fail for matrices sufficiently near to the exact fixed
point. Matrices satisfying the stringent criteria for the implementations [16, 2] are
described in [8].

1.1. Summary. The theoretical analysis is presented for use in selecting shift
strategies the enhance the convergence properties of the shifted QR iteration. some
general results with short proofs about the spectrum of the Jacobian at a fixed
point. The results make tractable the problem of checking whether the empirical
criteria are satisfied both for the map within the orthogonal similarity class in §2
and for the map over matrix space in §6. Low dimensional problems are tractable.
The orthogonal similarity class is low dimensional. In general maps over matrices
are much less tractable. Here we prove a result that the degenerate manifold has
some special structure. Theorem E proves that over matrix space, the Jacobian has
at least 1

2n(n + 1) eigenvalues of unit modulus. The complimentary space is low
dimensional, making the problem tractable.

Prerequisite results on unshifted QR iteration are also established. QR iteration
restricted to the orthogonal similarity class is considered in §2, and Theorem A
shows that for unshifted QR, the derivative along the orthogonal similarity class
at any unreduced fixed point is an orthogonal matrix. In §4, the derivative of the
unshifted QR iteration as a transformation of matrices is analyzed. Theorem B
shows that over matrix space, all of the eigenvalues of the Jacobian are of unit
modulus. In other words, the stringent empirical criteria for a fixed point to cause
the QR iteration to fail in finite precision arithmetic are automatically satisfied by
all fixed points of unshifted QR iteration.

1.2. Notation and Preliminaries. The space of n × n real matrices is de-
noted Mn, and may be identified with Rn2

under a fixed (but arbitrary) indexing
of entries. The Frobenius inner product on Mn, defined by 〈X ,Y 〉 = tr(XTY ),
corresponds to the Euclidean inner product on Rn2

. Denote by Up(n), Sym(n),
and Skew(n) the spaces of n×n upper triangular, symmetric, and skew-symmetric
real matrices. Each of these subspaces is a closed submanifold of Mn, and each is
canonically identified with its own tangent space at the zero matrix.

The set of invertible n× n matrices with real entries is denoted GL(n), and the
orthogonal group On is the set of elements of GL(n) that preserve the Euclidean
inner product on Rn. As is well-known, On is a compact Lie subgroup of GL(n)
(itself an open subset of Mn), whose tangent space at In is Skew(n). If A ∈ Mn,
then the adjoint orbit of A is the set {QTAQ | Q ∈ On} of conjugates of A
by orthogonal matrices. The remarks above imply that every adjoint orbit is a
compact subset of Mn.

Generally, Q denotes an orthogonal matrix, R and U denote upper triangular
matrices (R has non-negative diagonal entries, U is general), and S denotes a skew-
symmetric matrix.
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2. An Equivalent Vector Iteration

QR iteration is applied to unreduced Hessenberg matrices. The unreduced Hes-
senberg fixed points of unshifted QR iteration in Gl(n) for n > 2 are multiples of
orthogonal matrices [15].

Questions about the dynamics of QR iteration may be addressed through an
equivalent vector iteration (see [5]).

QR iteration is equivalent to a vector iteration, f(·), (the power method) [6].
Next the derivative Df of the QR iteration map along the orthogonal similarity
class is reviewed. Such expressions are known [3]. We evaluate Df at an unreduced
fixed point with unit lower bandwidth, and study the sensitivity of the equivalence
between the vector and matrix iterations.

For a given n×n matrix C, one defines the function Γ(v, C) from a unit n-vector
v as follows: Let P (v) denote the n by n matrix whose ith column is Ci−1v:

(2.1) P (v) = [v, Cv, . . . , Cn−1v]

Next decompose P (v) = V R as a product of an orthogonal matrix and an upper
triangular matrix with nonnegative diagonal entries. Finally

(2.2) Γ(v, C) = V TCV

The function Γ(·, C) is well-defined and by [6] maps onto the set of matrices with
unit lower bandwidth that are orthogonally similar to C. If R is singular, then
Γ(v, C) is reduced,

Unshifted QR iteration is semiconjugate to a power method [5]. For

(2.3) f(v) = Cv/‖Cv‖,
if Γ(v, C) = B = QR, then Γ(f(v), C) = QTBQ and the following diagram com-
mutes:

B
QR−→ QTBQ

↑ ↑
{v} Cq−→ {f(v)}

In exact arithmetic, Dvf governs the dynamics of QR iteration.

Theorem A. For unshifted QR iteration the vector iteration f(·) at a point x that
corresponds to an unreduced fixed point C = Tγ of the unshifted QR algorithm, has
derivative Dvf , that is orthogonal Dvf = ±T |x⊥ .

Proof. One may show that Dxf(x) = (I − ffT )C/‖Cx‖. If B is a fixed point,
then by [15], C = Tγ is a multiple, γ, of an orthogonal matrix T . The domain of
f(.) is n− 1 dimensional. The tangent space to the domain at the unit vector x is
x⊥ = {h : xh = 0}. At first glance,

Dvf = ±(I − ffT )T |x⊥ ,

but that xT h = 0 implies f(x)T Tx = 0. ¤

Remark 2.1 An unreduced fixed point of QR iteration does not correspond to a
unreduced fixed point of an equivalent vector iteration. To interpret the derivative
of the equivalent vector iteration at a unreduced fixed point of QR iteration, the
tangent space of the vector iteration must be lifted up to the tangent space of QR
iteration.



NEUTRALLY STABLE FIXED POINTS OF THE QR ALGORITHM 151

3. The Adjoint Action and (Skew-)Symmetric Matrices

This section is devoted to a proof of the following more-or-less standard fact:

Proposition 3.1. Let Q ∈ On. The linear transformation AdQ : Mn → Mn de-
fined by AdQ X = QTXQ is orthogonal with respect to the Frobenius inner product,
and preserves the spaces Skew(n) and Sym(n).

Note that while Q ∈ Mn, AdQ acts on a space of dimension n2. In words,
conjugation by an orthogonal matrix is an orthogonal transformation on the space
of matrices. The proof is broken into three lemmas.

Lemma 3.2. If Q is orthogonal, then AdQ preserves the Frobenius inner product.

Proof. If X and Y are n× n matrices, then

〈AdQ X , AdQ Y 〉 = tr
(
(QTXQ)TQTY Q

)

= tr
(
(QTXT)(Y Q)

)
= tr

(
(Y Q)(QTXT)

)

= tr(XTY ) = 〈X ,Y 〉.
¤

The maps skew and sym, projectors from Mn to the space of (skew-)symmetric
matrices, are given by the polarization identities

symA = 1
2 (A + AT) and skew A = 1

2 (A−AT).

The image of each map is the kernel of the other, and a short calculation shows
that the spaces of symmetric and skew-symmetric matrices are perpendicular under
the Frobenius norm. Further, conjugation by an orthogonal matrix commutes with
sym and skew:

Lemma 3.3. If Q is orthogonal, then AdQ(symX) = sym(AdQ X) for all X, and
similarly for skew.

Proof. If X ∈ Mn, then

AdQ(XT) = QTXTQ = (QTXQ)T = (AdQ X)T.

Since AdQ commutes with transposition, it commutes with the (skew-)symmetric
projector. ¤

Lemma 3.4. If Q is orthogonal, then AdQ preserves the spaces of symmetric and
skew-symmetric matrices, and therefore defines an orthogonal transformation on
each.

Proof. Clearly, a matrix X is symmetric iff skewX = 0. Lemma 3.3 implies that
skew(AdQ X) = AdQ(skewX), so X is symmetric iff AdQ X is symmetric. The
same argument works if X is skew-symmetric. ¤

This completes the proof of Proposition 3.1.

4. Eigenvalues of the Derivative of Unshifted QR Iteration

Next we will show that any fixed point of the unshifted QR iteration automati-
cally satisfies the criteria for stability in finite precision arithmetic (see Section 1).

Unshifted QR iteration is the mapping F : Gl(n) → Gl(n) defined by

F(QR) = RQ = QT(QR)Q = AdQ(QR).
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A fixed point of F is a matrix H such that F (H) = H. A fixed point that is also
Hessenberg must be a scalar multiple of an orthogonal matrix: R = γIn.

First we establish the differentiability of F. The singular value decomposition of
an invertible matrix H gives a lower bound on the distance from H to the set of
singular matrices: The distance is the smallest absolute value of a singular value.
In a sufficiently small ball about H, the Gram-Schmidt factorization is given by
real-analytic functions of the entries of H—rational functions, and square roots
with radicand bounded away from 0. It follows that the QR iteration map F is
real-analytic in the standard coordinates on Mn.

To compute the derivative of F at H0 = Q0R0, consider a path

H(t) = H0 + Ḣ0t + O(t2) = Q0

(
In + St + O(t2)

)
R0

(
In + Ut + O(t2)

)

through H0 with velocity Ḣ0, and differentiate:

DF(H0)(Ḣ0) =
d

dt

∣∣∣
t=0

F
(
H(t)

)
=

d

dt

∣∣∣
t=0

R(t)Q(t).

Short calculations show that

(4.1) Ḣ0 = Q0(SR0 + R0U), DF(H0)(Ḣ0) = R0(Q0S + UQ0).

Recall that at a fixed point, R0 = γIn; assume without loss of generality that γ = 1.
With this notation, the derivative at a fixed point becomes

(4.2) DF(Q0)
(
Q0(S + U)

)
= Q0S + UQ0 = Q0(S + AdQ0 U).

The derivative mapping (which is not orthogonal) bears a strong formal resemblance
to the mappings considered in Section 3. In detail, we have a direct sum decompo-
sition Mn = Skew(n) ⊕Up(n) and a map that acts by Id + AdQ. The technical
snag is that the summand AdQ U is not upper triangular; the map does not respect
the decomposition. However, the same formal definition, regarded as a function
of a skew-symmetric matrix S and a symmetric matrix X, is both orthogonal and
similar to the map of interest, as we now show.

Theorem B. Let Q be an n × n orthogonal matrix. The linear transformation
fQ(S + U) = S + QTUQ = S + AdQ U is similar to an orthogonal transformation.

Proof. Lemmas 3.2 and 3.4 imply that if S is skew-symmetric and X is symmetric,
then the mapping A : S + X 7→ S + AdQ X is an orthogonal transformation on
Mn = Skew(n) ⊕ Sym(n). Now, let U be upper triangular, and consider the
isomorphism

P : S + U ∈ Skew(n)⊕Up(n) 7→ S + symU ∈ Skew(n)⊕ Sym(n)

that symmetrizes the triangular summand. Since sym commutes with AdQ by
Lemma 3.3, P−1AP (S + U) = S + AdQ U . Thus fQ is therefore similar to the
orthogonal transformation A, see Figure 4.1. ¤

5. Shifted QR Iteration

The practical QR iteration is more complicated than the unshifted iteration.
Selected computational details are reviewed here, and some theoretical results are
strengthened.
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Sym

Skew

UpU

S

symU

skew U

S + U

S + symU = P (S + U)

Figure 4.1. The (skew-)symmetrization projectors, and the isomorphism P .

Schur form. A matrix is unitarily similar to at least one complex upper triangular
matrix. A real matrix is orthogonally similar to a real quasi-upper triangular matrix
with 1× 1 blocks corresponding to real eigenvalues and 2× 2 blocks corresponding
to complex conjugate pairs of eigenvalues. The matrices are also called Schur forms.
Definition 5.1 A matrix A ∈ Mn is derogatory if at least one eigenvalue of A has
geometric multiplicity greater than one. Otherwise, A is nonderogatory.

Remark 5.2 An unreduced Hessenberg matrix is nonderogatory.

Lemma 5.3. AMn is nonderogatory if and only if every matrix that commutes
with A is a polynomial in A.

Proof. See [10], Corollary 4.4.18, pages 275–276. ¤

Definition 5.4 The centralizer of A ∈ Mn is the set Z(A) ⊂ Mn of matrices that
commute with A.
Adjoint orbits. The set of unreduced Hessenberg matrices orthogonally similar to
a given matrix is a smooth manifold. There is a smooth map G(, ) from real projec-
tive space onto the orthogonal similarity class. Define a map G from (RPn−1,Mn)
to Mn by [x, Sx, S2x, . . .] = QR, Q in On, R in Up(n),

(5.1) SQ = QH,

and G(x, S) = H. The following facts are well known in numerical analysis: G(·, S)
is onto the orthogonal similarity class (this is called the Implicit Q theorem), H is
Hessenberg, and furthermore R is nonsingular if and only if H is unreduced.

Next we show that G(·, S) is one to one modulo Z(S) ∩On.

Theorem C. Suppose S is nonderogatory and G(x, S) is unreduced. If G(x, S) =
G(y, S), then there exists a polynomial p() of degree < n such that p(S)x = y and
p(S) ∈ On.

Proof. To fix notation, let [y, Sy, ...] = PU , P in On, U in Up(n), and SP = PH
or equivalently

(5.2) PTS = HPT
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Substitute equations (1) and (2) to find that QPT is in the centralizer of S: SQPT =
QHPT = QPTS. By Lemma 5.3 there is a polynomial p() of degree < n so that
p(S) = QPT. ¤

Shifts. The fundamental theorem of algebra states that a polynomial factors into
a product of translations or shifts. In QR iteration a sequence of shift polynomials
is equivalent to one shift by the product of the shift polynomials.
Convergence. A sequence of QR iterates determined by a shift strategy has at
least one convergent subsequence, by compactness. The subsequence corresponds
to QR iteration from the same matrix with an induced shift strategy that allows
shifts of variable degree, and the limit point is a fixed point. For matrices with
distinct eigenvalues, QR iteration is quadratically convergent, see [18].

If the shift strategy detects that the limit point is reduced, then the limit point
is an attracting fixed point. We will work hard to show that the unreduced fixed
points are never attracting.
Shifts revisited. QR iteration shift strategies, the reasonable ones at least, have
two invariance properties. For any matrix, there is a sequence of shifts. If the
matrix is translated, then the shifts are also translated. If the matrix is multiplied
by a scalar, then the shifts are also multiplied by a scalar.

Next a result from [15] is strengthened.
For n > 2, an irreducible matrix with unit lower bandwidth is nonderogatory

(eigenvalues have unit geometric multiplicity). The matrix B = QR is invariant
under QR iteration if QB = BQ. For n > 2, an irreducible n×n matrix B with unit
lower bandwidth is invariant under unshifted QR iteration if and only if B = Qr1,1

where R = [ri,j ], see [15].

Theorem D. If an unreduced Hessenberg H in Mn is a cyclic point under QR
with some shift strategy, i.e. there exists a shift polynomial such that p(H) = QR
and [H, Q] = 0, then R must be a multiple of the identity.

Proof. [H, R] = 0 and the Lemma 5.3 imply that there exists a polynomial q()
of degree less than n such that q(H) = R. The only possibility is for q() to be
constant. ¤

Remark 5.5 A shift polynomial that differs from the characteristic polynomial
only in the constant term always generates a fixed point.

Fixed Points. The preimage of On under polynomials has the following charac-
terization with respect to the Schur form.

Lemma 5.6. Given H in Gl(n) and a polynomial p() such that p(H) is in On.
Suppose that the spectrum of p(H) consists of q distinct complex conjugate pairs.
Then H admits a real Schur form diag(H1, ..., Hq) such that the spectrum of each
Hk is the preimage under p() of the kth pair of eigenvalues of p(H).

Proof. There exists an orthogonal similarity transform with respect to which p(H)
becomes quasi-diagonal. The orthogonal similarity transforms H to the desired
form. ¤

Fixed points satisfy a geometric constraint and a combinatoric constraint. The
geometric constraint is that the spectrum of the Hessenberg matrix must be on a
lemniscate with foci at the shifts (the roots of the shift polynomial). The combina-
toric constraint is that each group of non-orthogonal eigenvectors must be mapped
by the shift polynomial to the same value.
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Remark 5.7 If the shift polynomial is of degree one, then it is a bijection, and
the fixed points are the linear combinations of an orthogonal matrix and the iden-
tity. Similarly some computational scientists have reported that the complex QR
iteration (with a linear shift polynomial) is more robust than the real QR iteration
(with a quadratic shift polynomial).

Remark 5.8 The dimension of the orthogonal similarity class is generically the
maximum number of coefficients that one may hope to match in a monic shift
polynomial. The dimension of the orthogonality similarity class is at most n− 1.

6. The Derivative of Shifted QR Iteration

A QR iteration on the space of Hessenberg matrices is defined as follows. the
matrix Hi determines a shift polynomial pi, and the iteration is defined by

pi(Hi) = QiRi, Hi + 1 = F(Hi) = QT
i HiQi.

For example, H0 determines p0, next p0(H0) = Q0R0, and F(H0) = QT
0 H0Q0.

Recall that by Theorem D at a fixed point, R0 = γI here.
To differentiate F at a fixed point, write H(t) = H0 + tḢ0, and by abuse of

notation let pt be the shift polynomial associated to H(t). Then

pt

(
H(t)

)
= Q(t)R(t), Q(t) = Q0(In + tS + . . .), R(t) = γ(In + tU + · · · ).

As in the unshifted case,

DF(H0)(Ḣ0) = QT
0 Ḣ0Q0 + H0S − SH0 = QT

0 Ḣ0Q0 + [H0, S].

Theorem E. The derivative DF (H0) of the shifted QR iteration map F : Gl(n) →
Gl(n) at an unreduced Hessenberg fixed point H0 has at least 1

2n(n+1) eigenvalues
of unit modulus.

Proof. DF (H0) is the sum of the isometry AdQ0 and the bracket [H0, S]. As in the
unshifted case, DF (H0) acts orthogonally on the space of tangent vectors for which
“S = 0”. There may be tangent vectors for which S 6= 0 and yet [H0, S] = 0, but
this only increases the dimension of the space on which DF (H0) acts orthogonally.
It suffices to establish the claim that in the shifted case, the space of such tangent
vectors has dimension at least 1

2n(n + 1).
The justification of the claim depends on a more precise representation of the

derivative. In the shifted case, the shift polynomial contains a derivative in the
direction Ḣ0, or in other words

pt = p0 + tDp0(Ḣ0) + · · · .

Define S and U by Dp0(H0)(Ḣ0) = γQ0(S + U). Fix H0 and let Dp0(H0) : Mn →
Mn be the derivative of the shift map at H0.

If rank Dp0(H0) = k, then nullDp0(H0) = n2 − k. Decompose the image
of Dp0(H0) using Mn ' Q0 ·

(
Skew(n) ⊕ Up(n)

)
, and let k1 and k2 be the di-

mensions of the respective spaces, so that k1 + k2 = k. The first space is contained
in Q0 · Skew(n), so k1 ≤ dimSkew(n) = 1

2n(n− 1).
Consider the preimages under Dp0(H0) of the two spaces:

V1 = Dp0(H0)−1
(
Q0 · Skew(n)

)
, V2 = Dp0(H0)−1

(
Q0 ·Up(n)

)
.

Thus V1 + V2 = Mn as vector spaces, and V1 ∩ V2 = ker Dp0(H0). By the rank
theorem,

dimV2 = (n2 − k) + k2 = n2 − k1 ≥ n2 − 1
2n(n− 1) = 1

2n(n + 1).
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However, if Ḣ0 ∈ V2, then Dp(H0)(Ḣ0) = γQ0U , so

DF(H0)(Ḣ0) = QT
0 Ḣ0Q0 = AdQ0 Ḣ0.

Therefore DF(H0) acts orthogonally on V2, which establishes the theorem. ¤

Remark 6.1 Some of the eigenvalues of the derivative of the shifted QR map,
DF (H0), may not have unit modulus.
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