
INTERNATIONAL JOURNAL OF c© 2004 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 1, Number 2, Pages 131–145

CONVERGENCE AND STABILITY OF EXPLICIT/IMPLICIT
SCHEMES FOR PARABOLIC EQUATIONS WITH

DISCONTINUOUS COEFFICIENTS

SHAOHONG ZHU, GUANGWEI YUAN, AND WEIWEI SUN

Abstract. In this paper an explicit/implicit schemes for parabolic equations

with discontinuous coefficients is analyzed. We show that the error of the

solution in L∞ norm and the error of the discrete flux in L2 norm are in order

O(τ + h2) and O(τ + h
3
2 ), respectively and the scheme is stable under some

weaker conditions, while the difference scheme has the truncation error O(1)

at the neighboring points of the discontinuity of the coefficient. Numerical

experiments, which are given for both linear and nonlinear problems, show

that our theoretical estimates are optimal in some sense. The comparison with

some classical scheme is presented.

Key Words. Domain decomposition, parabolic equations, discontinuous co-

efficient, parallel difference schemes, convergence.

1. Introduction

Multi–material systems are considered in many physical applications, e.g., the
heat conduction procedure. When there are several materials in contact with each
other, the conductivity coefficient can be varying, and discontinuous on the interface
of the contact. Sometimes the conductivity coefficients differ in quantity order very
much from one another.

Consider the initial–boundary value problem

(1)
∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
+ f(x, t), 0 < x < 1, 0 < t ≤ T,

(2) u(0, t) = β1(t), u(1, t) = β2(t), 0 < t ≤ T,

(3) u(x, 0) = α(x), 0 < x < 1,

where the positive function a(x) is the conductive coefficient, and f(x, t) is the
source term. We suppose that the functions are piecewise–smooth with disconti-
nuity of first kind at x = ξ, where ξ ∈ (0, 1) be a fixed point. Denote Ω− = {0 ≤
x ≤ ξ, 0 ≤ t ≤ T}, Ω+ = {ξ ≤ x ≤ 1, 0 ≤ t ≤ T} and l = Ω− ∩ Ω+. The value of
a function at x = ξ is denoted by subscript ξ, and the left and right limit at ξ are
denoted by subscript L and R respectively. For example, define

uξ(t) = u(ξ, t), uL(t) = lim
x→ξ−

u(x, t), uR(t) = lim
x→ξ+

u(x, t).
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Assume the following conditions hold.
(I) There are positive constants σ, σL, σR and C such that

a(x) ≥ σ, ∀x ∈ [0, 1],

sup
0≤x≤ξ

a(x) = σL, sup
ξ≤x≤1

a(x) = σR, sup
(x,t)∈Ω−∪Ω+

|f(x, t)| ≤ C.

(II) α(x), a(x) and f(x, t) are smooth on Ω− and Ω+ respectively, but have
discontinuity of the first kind on l. And there holds aL

∂αL

∂x = aR
∂αR

∂x .
(III) Let β1(t) and β2(t) be smooth functions for t ∈ [0, T ], and the consistent

conditions hold, e.g., α(0) = β1(0), α(1) = β2(0).

Then, it is well known (e.g., see [7,8]) that (1)–(3) has an unique weak solution
u = u(x, t), which is smooth on Ω− and Ω+ respectively, and satisfy the joint
condition uξ = uL = uR and Kξ = KL = KR, where K is the flux defined by
K = K(x, t) = a(x)∂u

∂x .
There has been numerous work on numerical solution of the initial-boundary

problem (1)–(3). The difficulty lies on the discontinuity of material coefficient. It
has been proved in [11,12] that truncation errors for many finite difference schemes
are the order O(1) for such discontinuous problems. Samarskii [12,13] studied the
classical θ-scheme

∂tU
n
j = ∂x(aj− 1

2
∂x̄Un+θ

j ), j = 1, · · · , J − 1,

where Un+θ
j = θUn+1

j + (1− θ)Un
j . By an energy method, he proved for 1

2 ≤ θ ≤ 1
that

‖Un − un‖∞ ≤




C(τ + h), if θ = 1,

C(τ + h
1
2 ), if 1

2 < θ < 1,

C(τ2 + h
1
2 ), if θ = 1

2 .

.

For 1
2 > θ > 0, no similar convergence result for the θ-scheme was obtained. To

attain a higher rate of convergence, a modified scheme was proposed in [12,13] by us-

ing the harmonic mean over intervals of length h, ah(x) =
(∫ 1

2
− 1

2
a(x + sh)−1ds

)−1

,
and replacing a by ah in the θ–scheme to obtain

∂tU
n
j = ∂x(ah,j− 1

2
∂x̄Un+θ

j ), j = 1, · · · , J − 1.

For this modified scheme it was proved that

‖Un − un‖∞ ≤




C(τ + h2), if θ = 1,

C(τ + h
3
2 ), if 1

2 < θ < 1,

C(τ2 + h
3
2 ), if θ = 1

2 .

An alternative approach is the so-called immersed method, which has been de-
veloped for solving elliptic interface problems with finite difference approximations
[6] and with finite element approximations [4,10]. The main idea in the immersed
type methods is to use the interface conditions in those interface elements. In the
recent work [10], an immersed finite element space is introduced. The IFE space is
nonconforming and its partition is independent of the interface.

There are two types of schemes for time-dependent problems in general, implicit
and explicit schemes. The former has no restriction on its time stepping. But in
each time step one has to solve a global system of equations. The implementation
on parallel computers is not straightforward due to its global nature. The latter
is easy to program and implement on parallel computers. However, it suffers the
severely restricted time stepsize from stability requirement. The classical θ-scheme
is explicit for 0 < θ < 1/2 and implicit for 1/2 ≤ θ ≤ 1. Recently, a so-called
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explicit/implicit scheme has been studied by many authors, which is based on the
concept of domain decomposition and a combination of implicit scheme and explicit
scheme [1-3, 14, 16-18]. In these approaches, a physical domain is divided into sev-
eral subdomains. The problem is solved in some subdomains implicitly and others
explicitly. The main advantage of explicit/implicit scheme is its parallelism. The
scheme still give rise to a restriction involving the time step, conductive coefficient
and discretization parameter; however, this restriction is much less severe than for
a fully explicit scheme, particularly for problems involving in multi-medium with
significantly different conductivities. An explicit/implicit scheme based on a block
finite difference was proposed in [3] for a heat equation. In this procedure, inter-
face values or fluxes at the subdomain interface are calculated by explicit formulas
with space stepsize H, and then interior values are determined by implicit differ-
encing with space stepsize h, where H = kh and k is an integer. It is proved both
theoretically and numerically that the error of this scheme is O(τ + h2 + H3) in
one-dimensional case. Amitai, et al [1] proposed a new algorithm in which a high
order asynchronous explicit scheme is applied only at subdomains’ boundary, and
then any known higher–order implicit finite difference scheme can be applied with
each subdomain. The high order asynchronous explicit scheme is derived based on
Green’s function. The scheme is specifically suitable for parallel computer. A block
hopscotch scheme was presented in [5] for solving linear parabolic PDEs. It has
been noted that all these works focus on the problems with smooth conductivity.
It is more natural and more convenience to apply the technique for multi-medium
problems in which one can solve a sub-problem with a continuous conductivity on
each process. However, theoretical analysis on convergence and stability for the
explicit/implicit schemes with discontinuous conductivity is unknown.

For positive integers J and N , let h = 1/J and τ = T/N be space and time
step sizes. Let D = {(xj , t

n)|xj = jh , j = 0, 1, · · · , J , tn = nτ , n = 0, 1, · · · , N}
be the set of net points. Denote xj+ 1

2
= 1

2 (xj + xj+1), j = 0, 1, · · · , J − 1. Let the
discontinuity point x = ξ = xs + κh, (0 < κ < 1).

For a function g(x, t), let gn
j = g(xj , t

n). For the discrete function U(x, t) on D,
define the difference quotients

∂x̄Un
j =

1
h

(
Un

j − Un
j−1

)
, ∂xUn

j =
1
h

(
Un

j+1 − Un
j

)
, ∂tU

n
j =

1
τ

(
Un+1

j − Un
j

)

and the maximum norm
‖Un‖∞ = max

0≤j≤J
|Un

j |.
In this paper, we study the following explicit/implicit difference scheme

(4) ∂tU
n
j = ∂x(aj− 1

2
∂x̄Un+1

j ) + Fn+1
j , j = 1, · · · , s + 1; n = 0, 1, · · · , N − 1,

(5) ∂tU
n
j = ∂x(aj− 1

2
∂x̄Un

j ) + Fn
j , j = s + 2, · · · , J − 1; n = 0, 1, · · · , N − 1,

(6) U0
j = α(xj), j = 0, 1, · · · , J,

(7) Un
0 = β1(tn), Un

J = β2(tn), n = 0, 1, · · · , N,

where
aj− 1

2
= a(xj− 1

2
), j = 1, · · · , s, s + 2, · · · , J,

as+ 1
2

=
(

κ

aL
+

1− κ

aR

)−1

,
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Fn
j =

1
h

∫ x
j+ 1

2

x
j− 1

2

f(x, tn)dx, j = 1, · · · , J − 1.

The convergence of above scheme was analyzed in [9], in which they derived the
error estimate of order O(τ + h

3
2 ) in L∞-norm for solution of (1)-(3) and order

O(τ + h) in L2 norm for flux. No numerical results were given there.
The primary purpose of this paper is to present an optimal error estimate of the

explicit/implicit scheme for problems in one-dimensional space with discontinuous
conductivity. We prove that the error for the solution of problem is the order
O(τ +h2) in L∞ norm and the error for the flux is the order O(τ +h

3
2 ) in L2 norm,

while the truncation error of the scheme is the order O(1). The stability condition
of this scheme is much better than for a fully explicit scheme, when the explicit
scheme is applied for subdomains with smaller conductive coefficients. Numerical
experiments, including on a nonlinear problem and a problem in multi-dimensional
space, illustrate that our theoretical estimates are optimal and this method can be
applied for a wider range of physical problems.

2. Truncation error.

It is easy to show that, for j = 1, · · · , s− 1, s + 2, · · · , J − 1,

Fn
j − fn

j = O(h2), n = 0, 1, · · · , N.

When κ = 1
2 , the above equality is also true for j = s and s + 1. When κ ∈ (0, 1

2 ),
there holds

Fn
s − fn

s =
1
h




∫ ξ

x
s− 1

2

f(x, tn)dx +
∫ x

s+ 1
2

ξ

f(x, tn)dx


− f(xs, t

n)

=
(

1
2

+ κ

)
fn

L +
(

1
2
− κ

)
fn

R − fn
L + O(h)

=
(

1
2
− κ

)
(fn

R − fn
L) + O(h).

Since ξ is not in (xs+ 1
2
, xs+ 3

2
) for κ ∈ (0, 1

2 ), we have Fn
s+1 − fn

s+1 = O(h2).
Similarly, when κ ∈ ( 1

2 , 1), there hold

Fn
s − fn

s = O(h2), Fn
s+1 − fn

s+1 =
(

1
2
− κ

)
(fn

R − fn
L) + O(h).

For (x, t) ∈ D, set e(x, t) = U(x, t)− u(x, t). Then en
j = e(xj , t

n) satisfies

(8) ∂te
n
j = ∂x(aj− 1

2
∂x̄en+1

j ) + Gn+1
j , j = 1, · · · , s + 1; n = 0, 1, · · · , N − 1;

(9) ∂te
n
j = ∂x(aj− 1

2
∂x̄en

j ) + Gn+1
j , j = s + 2, · · · , J − 1; n = 0, 1, · · · , N − 1;

(10) e0
j = 0, j = 0, 1, · · · , J ;

(11) en
0 = 0, en

J = 0, n = 0, 1, · · · , N ,

where Gn+1
j is the truncation error, i.e.,

Gn+1
j = −∂tu

n
j + ∂x(aj− 1

2
∂x̄un+1

j ) + Fn+1
j , j = 1, · · · , s + 1; n = 0, 1, · · · , N − 1;

Gn+1
j = −∂tu

n
j + ∂x(aj− 1

2
∂x̄un

j ) + Fn
j , j = s + 2, · · · , J − 1;n = 0, 1, · · · , N − 1.

By direct calculation we get

Gn+1
j = O(τ + h2), j = 1, · · · , s− 1, s + 2, · · · , J − 1; n = 0, 1, · · · , N.
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Let

φ(t) =





1
2as+ 1

2
(κ2u′′L − (1− κ)2u′′R) +

(
1
2 − κ

)
K ′

R, κ ∈ (
0, 1

2

]
1
2as+ 1

2
(κ2u′′L − (1− κ)2u′′R) +

(
1
2 − κ

)
K ′

R

+
(

1
2 − κ

)
(fR − fL), κ ∈ [

1
2 , 1

)
.

Truncation errors at j = s and s + 1 are given by

Gn+1
s = −φn+1 + O(τ + h), Gn+1

s+1 = φn+1 + O(τ + h), n = 0, 1, · · · , N − 1,

respectively, where φn+1 = φ(tn+1). It follows that the truncation error can be
rewritten as

Gn+1
j = pn+1

j + qn+1
j + rn+1

j , j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1,

where
pn+1

j = O(τ + h2), j = 1, 2, · · · , J − 1;

qn+1
j = rn+1

j = 0, j = 1, 2, · · · , s− 1, s + 2, · · · , J − 1;
and

qn+1
s = −φn+1, qn+1

s+1 = φn+1;

rn+1
s = O(h), rn+1

s+1 = O(h).

3. Convergence and Stability. The following lemma will be used later.
Lemma 1 (Discrete Green Formula, see [15]) Let y(x) and z(x) be discrete

functions on {xj |j = 0, 1, · · · , J}. Then
q∑

j=p

yj∂xzjh = −
q+1∑

j=p+1

∂x̄yjzjh− ypzp + yq+1zq+1.

Lemma 2 (Discrete Gronwall inequality, see [15]) Let wn be a discrete function
on {tn|n = 0, 1, · · · , N} satisfying

wn ≤ C1

n∑

k=0

wkτ + C2, n = 0, 1, · · · , N.

Then
wn ≤ C2e

2C1nτ , n = 0, 1, · · · , N,

where τ is sufficiently small such that C1τ ≤ 1
2 .

Lemma 3 (Discrete maximum principle) Suppose that the discrete function wn
j

on D satisfies

(12) ∂tw
n
j − ∂x(aj− 1

2
∂x̄wn+1

j ) ≤ 0, j = 1, · · · , s + 1; n = 0, 1, · · · , N − 1;

(13) ∂tw
n
j − ∂x(aj− 1

2
∂x̄wn

j ) ≤ 0, j = s + 2, · · · , J − 1; n = 0, 1, · · · , N − 1;

(14) w0
j ≤ 0, j = 0, 1, · · · , J ;

(15) wn
0 ≤ 0, wn

J ≤ 0, n = 1, 2, · · · , N.

Assume that

(16)
τ

h2
(aj+ 1

2
+ aj− 1

2
) < 1, j = s + 2, · · · , J − 1.

Then there holds wn
j ≤ 0 for j = 0, 1, · · · , J ; n = 0, 1, · · · , N .

Proof. We prove the lemma by induction on n. Let wn
j ≤ 0 for j = 0, 1, · · · , J .

From (13) it follows that

wn+1
j ≤ τ

h2

(
aj+ 1

2
wn

j+1 + aj− 1
2
wn

j−1

)
+

(
1− τ

h2
(aj+ 1

2
+ aj− 1

2
)
)

wn
j ≤ 0,
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for j = s + 2, · · · , J − 1, provided that (16) holds. Let 0 ≤ j1 ≤ s + 2 such that
wn+1

j1
= max

0≤j≤s+2
wn+1

j . If j1 = 0 or j1 = s + 2, then wn+1
j ≤ 0 for j = 1, · · · , s + 1.

If 1 ≤ j1 ≤ s + 1, then from (12)

wn+1
j1

≤ wn
j1 +

τ

h2

(
aj1+

1
2
(wn+1

j1+1 − wn+1
j1

)− aj1− 1
2
(wn+1

j1
− wn+1

j1−1)
)
≤ wn

j1 ≤ 0,

for j = 1, · · · , s + 1. The lemma 3 is proved.
We denote the discrete flux by

V n
j = aj− 1

2
∂x̄Un

j .

Its error in a discrete L2 norm is defined by

‖en
x‖2a =

J∑

j=1

aj− 1
2
|∂x̄en

j |2h.

Our main result is as follows.
Theorem 1 Suppose the conditions (I)–(III) are fulfilled. Then

(i) ‖en‖∞ ≤ O(τ + h2)

and

(ii) ‖en
x‖a ≤ O(τ + h3/2)

if the condition (16) is satisfied.

Remarks In the scheme (4)–(7) only two subdomains are used for simplicity;
however, the arguments employed in this paper can be easily extended to the case
of multiple subdomains.

The restriction condition (16) obtained here for the discontinuous problem is
similar to those conditions in classical work for smooth problems. It is worth to
emphasize in the discontinuous case that, for the consideration of stability, we
should use explicit scheme only in those subdomains on which the coefficient a(x)
is small, and implicit scheme in those subdomains on which a(x) is large.

Let f̃(x, t), α̃(x), β̃1(t) and β̃2(t) satisfy (I) and (II). Let Ũn
j be the solution

of (4)–(7) with the corresponding initial and boundary data α̃ and β̃i (i = 1, 2).
Denote

B = max
{

max
0≤j≤J

|α(xj)− α̃(xj)|, max
0≤n≤N

|β1(tn)− β̃1(tn)|, max
0≤n≤N

|β2(tn)− β̃2(tn)|
}

.

We have the following result.
Theorem 2 Under the same conditions of Theorem 1, the difference scheme

(4)–(7) is L∞ stable, i.e., there holds

max
j,n

|Un
j − Ũn

j | ≤ T max
j,n

|Fn
j − F̃n

j |+ B.

4. Proof of Theorem 1 and 2. First we prove Theorem 1. Denote χs =
χ{j=s,s+1} be the characteristic function of the discrete point set {j = s, s + 1}.

Let Pj , Qn
j and Rj be the solutions of the following difference systems respec-

tively

(17)
{ −∂x(aj− 1

2
∂x̄Pj) = 1, j = 1, 2, · · · , J − 1,

P0 = PJ = 0,
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(18)
{ −∂x(aj− 1

2
∂x̄Qn

j ) = qn
j , j = 1, 2, · · · , J − 1,

Qn
0 = Qn

J = 0,

(19)
{ −∂x(aj− 1

2
∂x̄Rj) = χs, j = 1, · · · , J − 1

R0 = RJ = 0
.

A straightforward calculation yields explicit expressions of Pj , Qn
j and Rj as follows

P1 =
1
a 1

2

·
∑J

k=2
k−1

a
k− 1

2∑J
k=1

1
a

k− 1
2

h2,

Pj =




∑J
k=2

k−1
a

k− 1
2∑J

k=1
1

a
k− 1

2

·
j∑

k=1

1
ak− 1

2

−
j∑

k=2

k − 1
ak− 1

2


h2, j = 2, · · · , J.

Qn
k = −

φnh2
∑k

m=1
1

a
m− 1

2

as+ 1
2

∑J
m=1

1
a

m− 1
2

, k = 1, · · · , s

Qn
k =

φnh2
∑J

m=k+1
1

a
m− 1

2

as+ 1
2

∑J
m=1

1
a

m− 1
2

, k = s + 1, · · · , J − 1

Rk =

∑k
m=1

1
a

m− 1
2∑J

m=1
1

a
m− 1

2

·
(

2
J∑

m=s+2

1
am− 1

2

+
1

as+ 1
2

)
h2, k = 1, · · · , s,

Rk =

∑J
m=k+1

1
a

m− 1
2∑J

m=1
1

a
m− 1

2

·
(

2
s∑

m=1

1
am− 1

2

+
1

as+ 1
2

)
h2, k = s + 1, · · · , J − 1.

Then we can get

Pj = O(1), Qn
j = O(h2), ∂tQ

n
j = O(h2), Rj = O(h).

Set En
j = en

j − C1Pj(τ + h2)−Qn
j − C2Rjh, where C1 and C2 are constants to be

determined. Note that

∂tE
n
j −∂x(aj− 1

2
∂x̄En+1

j ) = pn+1
j −∂tQ

n
j−C1(τ+h2)+rn+1

j −C2hχs, j = 1, · · · , s+1;

∂tE
n
j −∂x(aj− 1

2
∂x̄En

j ) = pn+1
j −∂tQ

n
j−C1(τ+h2)+rn+1

j −C2hχs, j = s+2, · · · , J−1.

By choosing C1 and C2 sufficiently large, we obtain

∂tE
n
j − ∂x(aj− 1

2
∂x̄En+1

j ) ≤ 0, j = 1, · · · , s + 1;

∂tE
n
j − ∂x(aj− 1

2
∂x̄En

j ) ≤ 0, j = s + 2, · · · , J − 1.

Obviously there are E0
j ≤ 0 (j = 0, 1, · · · , J) and En

0 ≤ 0, En
J ≤ 0 (n = 0, 1, · · · , N).

By using lemma 3 we get

En
j ≤ 0, j = 0, 1, · · · , J ; n = 0, 1, · · · , N.

Then

en
j ≤ C1Pj(τ + h2) + Qn

j + C2Rjh , j = 0, 1, · · · , J ;n = 0, 1, · · · , N.

Similarly we can obtain

en
j ≥ −(C1Pj(τ + h2) + Qn

j + C2Rjh) , j = 0, 1, · · · , J ;n = 0, 1, · · · , N .
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The part (i) of Theorem 1 is proved.

Now we prove (ii) of theorem 1. Multiplying (8)–(9) by ∂te
n
j h and summing up

them over j = 1, 2, · · · , J − 1, we have
J−1∑

j=1

|∂te
n
j |2h =

J−1∑

j=1

∂x(aj− 1
2
∂x̄en+1

j )∂te
n
j h− τ

J−1∑

j=s+2

∂t∂x(aj− 1
2
∂x̄en

j )∂te
n
j h

(20) +
J−1∑

j=1

Gn+1
j ∂te

n
j h ≡ I + II + III.

¿From lemma 1 and the boundary conditions (11), it follows that

I = −
J∑

j=1

aj− 1
2
∂x̄en+1

j ∂t∂x̄en
j h = − 1

2τ

(‖en+1
x ‖2a − ‖en

x‖2a
)− τ

2

J∑

j=1

aj− 1
2
|∂t∂x̄en

j |2h,

where the following elementary identity is used,

gn+1
j (gn+1

j − gn
j ) =

1
2

(|gn+1
j |2 − |gn

j |2 + |gn+1
j − gn

j |2
)
.

By lemma 1 there holds

II = τ




J∑

j=s+3

aj− 1
2
|∂x̄∂te

n
j |2h + as+ 3

2
∂t∂x̄en

s+2∂te
n
s+2


 .

It follows that

I + II ≤ − 1
2τ

(‖en+1
x ‖2a − ‖en

x‖2a
)− τ

2

s+2∑

j=1

aj− 1
2
|∂x̄∂te

n
j |2h

+
τ

2

J∑

j=s+3

aj− 1
2
|∂x̄∂te

n
j |2h + τas+ 3

2

(
1

2h2
|∂te

n
s+2|2 +

1
2
|∂x̄∂te

n
s+2|2

)
h.

Note that

τ

2

J∑

j=s+3

aj− 1
2
|∂x̄∂te

n
j |2h ≤

τ

h2

J−1∑

j=s+3

(aj+ 1
2

+ aj− 1
2
)|∂te

n
j |2h +

τ

h2
as+ 5

2
|∂te

n
s+2|2h.

Then

(21) I + II ≤ − 1
2τ

(‖en+1
x ‖2a − ‖en

x‖2a
)

+
τ

h2

J−1∑

j=s+2

(aj+ 1
2

+ aj− 1
2
)|∂te

n
j |2h.

It remains to estimate the last term III in (20). We have

(22) III =
J−1∑

j=1

pn+1
j ∂te

n
j h+

J−1∑

j=1

qn+1
j ∂te

n
j h+

J−1∑

j=1

rn+1
j ∂te

n
j h ≡ III1 + III2 + III3.

For any ε > 0, |ab| ≤ ε|a|2 + 1
4ε |b|2. Then

(23) III1 ≤ ε

8

J−1∑

j=1

|∂te
n
j |2h +

2
ε

J−1∑

j=1

|pn+1
j |2h =

ε

8

J−1∑

j=1

|∂te
n
j |2h + O(τ2 + h4),

and
III2 = −φn+1∂te

n
s h + φn+1∂te

n
s+1h
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=
1
τ

[
φn+1(en+1

s+1 − en+1
s )− φn(en

s+1 − en
s )

]
h− ∂tφ

n∂xen
s h2

(24) ≤ 1
τ

[
φn+1(en+1

s+1 − en+1
s )− φn(en

s+1 − en
s )

]
h + as− 1

2
|∂xen

s |2h + O(h3) .

Moreover,

(25) III3 = rn+1
s ∂te

n
s h + rn+1

s+1 ∂te
n
s+1h ≤

ε

8
(|∂te

n
s |2 + |∂te

n
s+1|2

)
h + O(h3).

Combining (20)–(25) yields

1
2τ

(‖en+1
x ‖2a − ‖en

x‖2a
)− 1

τ

[
φn+1(en+1

s+1 − en+1
s )− φn(en

s+1 − en
s )

]
h

+(1− ε)
s+1∑

j=1

|∂te
n
j |2h +

J−1∑

j=s+2

[
1− ε− τ

h2
(aj+ 1

2
+ aj− 1

2
)
]
|∂te

n
j |2h

(26) ≤ C‖en
x‖2a + O(τ2 + h3).

Notice the initial data (10). It follows from (26) that, for n = 0, 1, · · · , N − 1,

(27)
1
2
‖en+1

x ‖2a ≤ φn+1∂x̄en+1
s+1 h2 + C

n+1∑

k=1

‖ek
x‖2aτ + O(τ2 + h3).

Obviously there holds

∣∣φn+1∂x̄en+1
s+1

∣∣ h2 ≤ 1
4
as+ 1

2
|∂x̄en+1

s+1 |2h + O(h3).

Substituting the above inequality into (27), we get

(28) ‖en+1
x ‖2a ≤ C

n+1∑

k=1

‖ek
x‖2aτ + O(τ2 + h3).

Therefore, by lemma 2, it follows that

(29) ‖en+1
x ‖2a ≤ O(τ2 + h3), n = 0, 1, · · · , N − 1.

The proof of Theorem 1 is completed.

For the proof of theorem 2, we set vn
j = Un

j −Ũn
j , gn

j = Fn
j −F̃n

j , and g = max
j,n

|gn
j |.

Introduce an auxiliary function wn
j = vn

j −(gtn+B). It is easy to see that wn
j satisfy

the condition of lemma 3. Then wn
j ≤ 0 for j = 0, 1, · · · , J and n = 0, 1, · · · , N .

Again, let w̄n
j = vn

j +(gtn+B), then w̄n
j ≥ 0 for j = 0, 1, · · · , J and n = 0, 1, · · · , N .

So it follows that

max
j,n

|Un
j − Ũn

j | ≤ T max
j,n

|Fn
j − F̃n

j |+ B.

Theorem 2 is proved.
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3. More general cases.

In this section, we extend the explicit/implicit scheme (4)-(7) to the following
nonlinear parabolic PDEs in two-dimensional space.

(30)
∂u

∂t
=

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
+ f(ux, uy, u, x, y, t),

(x, y) ∈ Ω, 0 < t ≤ T,

(31) u(x, y, 0) = α(x, y), (x, y) ∈ Ω,

(32) u(x, y, t) = β(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ]

where Ω = (0, 1)× (0, 1). Denote Ω− = {(x, y, t)|0 ≤ x ≤ ξ, 0 ≤ y ≤ 1, 0 ≤ t ≤ T},
Ω+ = {(x, y, t)|ξ ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ t ≤ T},

uξ(y, t) = u(ξ, y, t), uL(y, t) = lim
x→ξ−

u(x, y, t), uR(y, t) = lim
x→ξ+

u(x, y, t).

Analogous to the one–dimensional problem, we assume that the known data are
smooth on Ω− and Ω+ respectively, but have discontinuity of first kind on x = ξ.
Also assume the initial flux is continuous at x = ξ. It follows that there holds

lim
x→ξ−

a(x, y)
∂u

∂x
(x, y, t) = lim

x→ξ+
a(x, y)

∂u

∂x
(x, y, t).

Denote xi = ih1, yj = jh2, where i = 0, 1, · · · , I; j = 0, 1, · · · , J ; Ih1 = 1, Jh2 = 1.
Let xi+ 1

2
= 1

2 (xi + xi+1), yj+ 1
2

= 1
2 (yj + yj+1). The discontinuous point x = ξ =

xs + κh1, 0 < κ < 1, 1 < s < J − 1.
For a function f(x, y) on Ω, let fij = f(xi, yj), fi+ 1

2 ,j = f(xi+ 1
2
, yj), fi,j+ 1

2
=

f(xi, yj+ 1
2
). Define the difference operator

∂tU
n
ij =

1
τ

(Un+1
ij − Un

ij), ∂ȳUn
ij =

1
h2

(Un
ij − Un

ij−1), ∂yUn
ij =

1
h2

(Un
ij+1 − Un

ij),

and ∂x̄Un
ij and ∂xUn

ij similarly.
Construct an explicit/implicit scheme for (30)–(32) as follows:

(33) ∂tU
n
ij = ∂x(ai− 1

2 ,j∂x̄Un+1
ij ) + ∂y(ai,j− 1

2
∂ȳUn+1

ij ) + Fn+1
ij ,

i = 1, 2, · · · , s + 1; j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1

(34) ∂tU
n
ij = ∂x(ai− 1

2 ,j∂x̄Un
ij) + ∂y(ai,j− 1

2
∂ȳUn

ij) + Fn
ij ,

i = s + 2, · · · , J − 1; j = 1, 2, · · · , J − 1;n = 0, 1, · · · , N − 1
with the discrete version of the initial–boundary condition (31)–(32), where

ai− 1
2 ,j = a(xi− 1

2
, yj) i = 1, · · · , s, s + 2, · · · , I; j = 1, · · · , J − 1;

as+ 1
2 ,j =

(
κ

aLj
+ 1−κ

aRj

)−1

, aLj = aL(yj), aRj = aR(yj), j = 1, · · · , J − 1,

ai,j− 1
2

= a(xi, yj− 1
2
) i = 1, · · · , I − 1; j = 1, · · · , J − 1,

and

Fn
ij =

1
h1h2

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

f(un
x , un

y , un, x, y, tn)dxdy .

By the same method as mentioned in section 2, the truncation error Gn+1
ij of the

difference scheme (33)–(34) can be given by

Gn+1
ij = O(τ + h2

1 + h2
2), i = 1, · · · , s− 1, s + 2, · · · , I − 1; j = 1, · · · , J − 1;

Gn+1
sj = −Gn+1

s+1j + O(τ + h1 + h2) = O(1), j = 1, · · · , J − 1.
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Table 1. Numerical results at T = 1 with r = τ/h2, h = 1/J
(example 1)

r = 1.0 r = 20.0
J ‖en‖∞ ‖en‖∞/(τ + h2) ‖en‖∞ ‖en‖∞/(τ + h2)

25 6.905D-3 2.2 1.181D-2 0.35
50 1.883D-3 2.4 3.313D-3 0.39
100 4.298D-4 2.1 6.960D-4 0.33
200 1.225D-4 2.4 2.061D-4 0.39

However, it seems difficult to present the optimal error estimates for the nonlinear
case. We shall present some numerical examples in next section.

4. Numerical experiments

In this section, we apply the explicit/implicit scheme to three examples. All nu-
merical computations were done on a SUN SPARC station 1 with double precision.

Example 6.1 (linear equation). First, we consider a simple linear problem defined
in (1)-(3) with

a(x) =
{

0.1− 0.09x, x ∈ (0, 2
3 ]

0.01, x ∈ ( 2
3 , 1) ,

f(x, t) =
{

0.09π exp(−0.1π2t)(cos πx− πx sin πx), x ∈ (0, 2
3 ]

0.06π2 exp(−0.1π2t) sin 4πx, x ∈ ( 2
3 , 1) ,

α(x) =
{

sin πx, x ∈ (0, 2
3 ]

sin 4πx, x ∈ ( 2
3 , 1) ,

and β1(t) = β2(t) = 0. The exact solution of the problem is

u(x, t) =
{

exp(−0.1π2t) sin πx, x ∈ (0, 2
3 ]

exp(−0.1π2t) sin 4πx, x ∈ (2
3 , 1) .

We set r = τ/h2. The scheme is tested with r = 1.0 and r = 20.0, respectively.
Numerical results for different values of h (or J) and T = 1 are presented in Table
1. The scheme is stable for both r = 1.0 and r = 20.0. It can be observed from
Table 1 that ‖en‖∞/(τ + h2) approximately is a constant in different stepsizes,
which confirm our theoretical analysis in Theorem 1. To test the error on flux, we
have to take a different way due to the restriction (16). We solve the problem with
a very small τ such that the error on the discretization of time direction can be
ignored. Numerical results with τ = 10−5 are presented in Table 2.

We also solve the linear problem by using the θ-scheme given in [12,13]. The
comparison with the θ-scheme with θ = 0 and θ = 1 is given in Tables 3-4. Theoret-
ically, all three schemes are of first-order accuracy in time discretization. Compared
with the classical θ-scheme the explicit/implicit scheme gives better accuracy for all
the values of r and h. When r = 10, the forward Euler scheme (θ = 0) is unstable.
We present in Figure 1 numerical results with different values of r to examine the
stability of scheme. It is obvious that in this case, the scheme is stable until r = 50.

Example 6.2 (nonlinear problem). The second example is a nonlinear parabolic
PDE defined by

ut = (a(x)ux)x + uux + f(x, t)
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Table 2. Numerical results at T = 1 with τ = 10−5, h = 1/J
(example 1)

J ‖en
x‖a ‖en

x‖a/(τ + h
3
2 )

25 4.982D-3 0.62
50 1.781D-3 0.63
100 4.563D-4 0.45

Table 3. The comparison of the error ‖en‖∞ at T = 1 for h = 0.01
(example 1).

θ-scheme(Samarskii) explicit/implicit
r θ = 0 θ = 1 scheme

1 4.440D-3 4.477D-3 4.298D-4
5 4.365D-3 4.552D-3 4.264D-4
10 blow-up 4.646D-3 5.163D-4

Table 4. The comparison of ‖en‖∞ at T = 1 for h = 0.005 (ex-
ample 1)

θ-scheme(Samarskii) explicit/implicit
r θ = 0 θ = 1 scheme

1 1.988D-3 1.979D-3 1.225D-4
5 2.005D-3 1.962D-3 1.401D-4
10 blow-up 1.941D-3 1.621D-4
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Figure 1. The plot of log‖en‖∞ with T = 1 and h = 0.01 versus
r (example 1)

where

a(x) =
{

0.04, x ∈ (0, 2
3 ]

0.01, x ∈ ( 2
3 , 1) ,

f(x, t) =
{ −π

2 exp(−0.08π2t) sin 2πx, x ∈ (0, 2
3 ]

0.12π2 exp(−0.04π2t) sin 4πx− 2π exp(−0.08π2t) sin 8πx, x ∈ ( 2
3 , 1) ,

α(x) =
{

sin πx, x ∈ (0, 2
3 ]

sin 4πx, x ∈ ( 2
3 , 1) ,
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Table 5. Numerical results at T = 1 with r = τ/h2, h = 1/J
(example 2)

r = 1.0 r = 10.0
J ‖en‖∞ ‖en‖∞/(τ + h2) ‖en‖∞ |en‖∞/(τ + h2)

25 3.158D-2 9.9 2.926D-2 1.7
50 8.259D-3 10.3 7.707D-3 1.8
100 2.002D-3 10.0 1.843D-3 1.7
200 5.119D-4 10.2 4.709D-4 1.7

and β1(t) = β2(t) = 0. The exact solution of the problem is

u(x, t) =
{

exp(−0.04π2t) sin πx, x ∈ (0, 2
3 ]

exp(−0.04π2t) sin 4πx, x ∈ (2
3 , 1) .

The scheme used here for the nonlinear problem is obtained from (4)-(7) with the
lower order term

uj
uj+1 − uj−1

2h
+ Fn

j

which is similar to the approximation in (33)-(34).
We present the error of solution in Table 5. It seems that our error estimates

in Theorem 1 are also true for nonlinear problems, although theoretical analysis is
only given for linear cases.

Example 6.3 (2-D problem). Finally, we consider the two-dimensional problem
(30)–(32) with

a(x, y) =
{

0.1, (x, y) ∈ (0, 1
3 )× (0, 1)

0.01, (x, y) ∈ ( 1
3 , 1)× (0, 1) ,

f(x, y, t) =
{

0, (x, y, t) ∈ (0, 1
3 ]× (0, 1)× (0, T )

−0.81π2 exp(−0.2π2t) sin 10πx sin πy, (x, y, t) ∈ ( 1
3 , 1)× (0, 1)× (0, T ) ,

α(x, y) =
{

sin πx sin πy, (x, y) ∈ (0, 1
3 ]× (0, 1)

sin 10πx sin πy, (x, y) ∈ ( 1
3 , 1)× (0, 1) ,

and β(x, y, t) = 0. The exact solution of the problem is

u(x, y, t) =
{

exp(−0.2π2t) sin πx sin πx, (x, y, t) ∈ (0, 1
3 ]× (0, 1)× (0, T )

exp(−0.2π2t) sin 10πx sin πy, (x, y, t) ∈ ( 1
3 , 1)× (0, 1)× (0, T ) .

The error measure used here is
‖en‖∞ = max

i,j
|en

ij |

‖en‖a =

√√√√
J∑

j=1

I∑

i=1

[
ai− 1

2 ,j(∂x̄en
ij)2 + ai,j− 1

2
(∂ȳen

ij)2
]
h1h2 .

We present numerical results in Table 6 where we take h = h1 = h2. Some features
can be observed from Table 6 which are similar to those in Example 1.

5. Conclusions

We have proved convergence and stability of the explicit/implicit scheme for
parabolic equations with discontinuous coefficients. The convergent rates are proved
to be sharp. Numerical experiments indicate that the explicit/implicit scheme
indeed is of the convergence rates given in theorem 1, and can be extended to
apply for nonlinear parabolic equations and two dimensional parabolic problems.
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Table 6. Numerical results at T = 0.1 with r = τ/h2, h = 1/J
(example 3)

r = 1.0 r = 10.0
J ‖en‖∞ ‖en‖∞/(τ + 2h2) ‖en‖∞ ‖en‖∞/(τ + 2h2)

25 8.191D-2 17.1 7.815D-2 4.1
50 1.721D-2 14.3 1.746D-2 3.6
100 5.404D-3 18.0 5.459D-3 4.5
200 1.380D-3 18.4 1.426D-3 4.8

¿From the restriction condition (16) of the meshstep for the explicit/implicit scheme
we can see that if one uses implicit schemes in the domain where the conductive
coefficient is large, and uses explicit schemes in the domain where the conductive
coefficient is small, then the stability condition of the explicit/implicit scheme is
less restrictive than that of the fully explicit scheme. Moreover, in principle we can
construct parallel schemes with several explicit/implicit blocks such as (4)–(5). The
convergence and stability results can be obtained in the same way as the discussion
above.
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