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Abstract. An H1- Galerkin mixed finite element method is discussed for

a class of second order hyperbolic problems. It is proved that the Galerkin

approximations have the same rates of convergence as in the classical mixed

method, but without LBB stability condition and quasi-uniformity require-

ment on the finite element mesh. Compared to the results proved for one space

variable, the L∞(L2)-estimate of the stress is not optimal with respect to the

approximation property for the problems in two and three space dimensions.

It is further noted that if the Raviart- Thomas spaces are used for approximat-

ing the stress, then optimal estimate in L∞(L2)-norm is achieved using the

new formulation. Finally, without restricting the approximating spaces for the

stress, a modification of the method is proposed and analyzed. This confirms

the findings in a single space variable and also improves upon the order of con-

vergence of the classical mixed procedure under an extra regularity assumption

on the exact solution.
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1. Introduction

In this paper, we discuss a new mixed finite element method for the following
second order hyperbolic initial and boundary value problem

(1.1) utt −∇ · (a(x)∇u) + c(x)u = f(x, t), (x, t) ∈ Ω× J,

u = 0, (x, t) ∈ ∂Ω× J,

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω,

where Ω is a bounded domain in IRd, d = 2, 3 with boundary ∂Ω, utt = ∂2u
∂t2 and

J = (0, T ] with T < ∞. Assume that the coefficients a, c, initial functions u0, u1

and the forcing function f are sufficiently smooth with a ≥ a0 for some positive
constant a0, and c ≥ 0 ∀x ∈ Ω.

When our primary concern is to obtain both displacement, i.e., u and the stress
that is, σ = a∇u, we first split (1.1) into a system of two equations and then
apply classical mixed methods, see [5], [8] and [9]. However, this procedure has
to satisfy the LBB-stability condition on the approximating subspaces and this
restricts the choice of finite element spaces. For example, the Raviart-Thomas
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spaces of index r ≥ 1 are usually used for the standard mixed methods. In order
to avoid using LBB-stability condition, we introduce, in this paper, an alternate
mixed finite element procedure. The proposed method is a non-symmetric version
of least square method and we shall call it as H1- Galerkin mixed finite element
procedure. It takes advantage of the least-square method and yields a better rate
of convergence for the stress than the conventional use of linear elements.

In recent years, substantial progress has been made in the least-square mixed
methods applied mainly to the elliptic equations, see [4], [7], [10]–[11], [15]–[18], and
references, there in. These procedures that circumvent the LBB stability conditions
are considered as alternatives to the classical mixed formulations. So far, there
has been hardly any analysis for the least square methods applied to parabolic
and second order hyperbolic initial and boundary value problems. In an attempt
to extend least-square mixed methods to parabolic equations, one of the authors
[12] has introduced an H1-Galerkin mixed procedure ,i.e., a non-symmetric version
of least square method and has derived optimal error estimates in L∞(L2) and
L∞(H1)-norms. For more applications of this alternate mixed formulation, see
[13]–[14].

In the present article, the proposed mixed method is applied to a system con-
sisting of displacement u and stress σ. The approximating finite element spaces Vh

and Wh are allowed to be of differing polynomial degrees. Hence, estimations have
been obtained which distinguish the better approximation properties of Vh and Wh.
Compared to classical mixed methods, the present method is not subject to LBB
stability condition. While in classical method, the L∞(L2)-estimate of the stress
is suboptimal, optimal estimate is derived for the problems in one space dimension
using this new mixed formulation. It is noted that if the finite element spaces for
approximating the stress are of Raviart-Thomas type, then optimal estimates are
achieved for the stress. Finally, without restricting the finite dimensional spaces,
a modification of the H1-Galerkin method is proposed and analyzed. Although an
extra regularity condition is required on the exact solution, yet an optimal order of
convergence with respect to the approximation property for the stress in L∞(L2)-
norm is established (see, Remarks 2.1, 3.1 and Section 4 below). Moreover, it is
noted that the quasi-uniformity condition is not imposed on the finite element mesh
for the error estimates in L2 and H1-norms.

The layout of the paper is as follows. In Section 2, a second order hyperbolic
equation in a single space variable is considered and optimal error estimates are
discussed for the semidiscrete case. In two- and three space dimensions, a similar
analysis is carried out in Section 3. Moreover, the rates of convergence obtained
coincide with those in [5], [8] using classical mixed method. But compared to
one dimensional case, the L∞(L2)- estimate of the stress in this section is not
optimal. It is, further, noted that if the Raviart-Thomas finite element spaces are
used for approximating the stress, then we obtain optimal estimate. In Section 4,
a modification of H1- Galerkin mixed finite element method is examined without
resricting the approximating spaces for the stress and semidiscrete error estimates
are established. In Section 5, a completely discrete scheme is briefly described and
a priori error bounds are derived only for the modified H1- Galerkin mixed method.

Throughout this paper, C will denote a generic positive constant which does not
depend on the spatial mesh parameter h and time discretization parameter ∆t.
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2. Hyperbolic Equation in One Space Dimension

In this Section, we consider the following one dimensional second order hyper-
bolic equation

(2.1a) utt − (aux)x + cu = f(x, t), (x, t) ∈ (0, 1)× J,

with Dirichlet boundary conditions

(2.1b) u(0, t) = u(1, t) = 0, t ∈ J,

and initial conditions

(2.1c) u(x, 0) = u0, ut(x, 0) = u1, x ∈ I = (0, 1),

where utt = ∂2u
∂t2 , ux = ∂u

∂x and J = (0, T ] with T < ∞. The coefficients a, c
are smooth functions of x and a is bounded below by a positive constant say a0.
Moreover, f is a given smooth function which is defined on (0, 1)× J .

For H1-Galerkin mixed finite element procedure, we first split (2.1a) into the
following system of two equations

(2.2) ux = α(x)σ, utt − σx + cu = f,

where α(x) = 1
a(x) .

Denoting by (·, ·) the natural inner product on L2(I), let H1
0 = {v ∈ H1(I) :

v(0) = v(1) = 0}. Further, we use the classical Sobolev spaces Wm,p(I), 1 ≤ p ≤ ∞
and call them Wm,p with norm ‖ · ‖m,p. Now the weak form of equation (2.2) is to
determine a pair {u, σ} : [0, T ] 7→ H1

0 ×H1 such that

(2.3a) (ux, vx) = (α(x)σ, vx) , v ∈ H1
0 ,

(2.3b) (ασtt, w) + (σx, wx) = (cu, wx)− (f, wx) , w ∈ H1.

For the first term in (2.3b), we have used integration by parts, the Dirichlet bound-
ary conditions and utt(0, t) = utt(1, t) = 0.
Let Vh and Wh be finite dimensional subspaces of H1

0 and H1, respectively, with
the following approximation properties: For 1 ≤ p ≤ ∞, and k > 0 integer

inf
vh∈Vh

{‖v − vh‖Lp + h‖v − vh‖W 1,p} ≤ Chk+1‖v‖W k+1,p , v ∈ H1
0 ∩W k+1,p.

The above approximation property is also valid for the finite element space Wh

with replacing k by r and only requiring v ∈ W r+1,p.
The semidiscrete H1-Galerkin mixed finite element approximations to (2.3) are

defined as {uh, σh} : [0, T ] 7→ Vh ×Wh satisfying

(2.4a) (uhx, vhx) = (α(x)σh, vhx) , vh ∈ Vh,

(2.4b) (ασhtt, wh) + (σhx, whx) = (cuh, whx)− (f, whx) , w ∈ Wh

with given (σh(0), σht(0)). Note that (2.4) yields a system of differential algebraic
equations (DAEs). Since the stiffness matrix associated with (uhx, vhx) is positve
definite, the system of DAEs is of index one. Therefore, the system (2.4a)–(2.4b)
is uniquely solvable for a consistent initial condition, see [3].

Following Wheeler [21], we define elliptic projections {σ̃h, ũh} ∈ Wh × Vh as

(2.5a) A(σ − σ̃h, wh) = 0 ∀wh ∈ Wh,

(2.5b) (ux − ũhx, vhx) = 0 ∀vh ∈ Vh,
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where A(w, z) = (wx, zx) + λ (w, z). Here λ is chosen appropriately so that A is
H1- coercive, i.e.,

A(z, z) ≥ µ0‖z‖21, z ∈ H1,

where µ0 is a positive constant. Moreover, it is not hard to check that A(., .) is
bounded. Let ρ = σ − σ̃h and η = u − ũh. It is now quite standard to obtain the
following estimates for ρ and η:

(2.6a)
2∑

i=0

‖∂iρ

∂ti
‖j ≤ Chr+1−j

2∑
i=0

‖∂iσ

∂ti
‖r+1, j = 0, 1,

and

(2.6b)
2∑

i=0

‖∂iη

∂ti
‖j ≤ Chk+1−j

2∑
i=0

‖∂iu

∂ti
‖k+1, j = 0, 1.

Further, we have for j = 0, 1 and 1 ≤ p ≤ ∞
(2.7a) ‖ρ‖W j,p ≤ Chr+1−j‖σ‖W r+1,p ,

and

(2.7b) ‖η‖W j,p ≤ Chk+1−j‖u‖W k+1,p .

Note that for p = ∞, we require quasiuniformity condition on the finite element
mesh.
Semidiscrete error estimates. For a priori error estimates, we decompose the
errors as σ−σh := (σ− σ̃h)+(σ̃h−σh) = ρ+ξ and u−uh := (u− ũh)+(ũh−uh) =
η + ζ. Using (2.3a)- (2.3b), (2.4a)- (2.4b) and auxiliary projections (2.5a) - (2.5b),
the equations in ξ and ζ may be written as

(2.8a) (ζx, vhx) = (αρ, vhx) + (αξ, vhx) , vh ∈ Vh,

and for wh ∈ Wh

(2.8b) (αξtt, wh)+A (ξ, wh) = − (αρtt, wh)+λ (ρ + ξ, wh)+(cζ, whx)+(cη, whx) .

Theorem 2.1. With σ0 = au0x and σt(0) = au1x, assume that σh(0) = σ̃h(0) and
σht = Phσt(0), where Ph is the L2 projection defined by (w − Phw,wh) = 0, wh ∈
Wh . Then there exists a constant C > 0 independent of h, such that for 1 < p ≤ ∞
‖(u− uh)(t)‖Lp + ‖(σ − σh)(t)‖Lp ≤ Chmin(k+1,r+1)

[
‖σt(0)‖r+1 + ‖u‖L∞(W k+1,p)

+ ‖ut‖L1(Hk+1) + ‖σ‖L∞(W r+1,p) + ‖σtt‖L1(Hr+1)

]
.

Moreover, the following estmates hold for u− uh and σ − σh in H1-norm

‖(u− uh)(t)‖1 ≤ Chmin(k,r+1)
[
‖σt(0)‖r+1 + ‖u‖L∞(Hk+1)

+ ‖ut‖L1(Hk) + ‖σ‖L1(Hr+1) + ‖σtt‖L1(Hr+1)

]
,

and

‖(σ − σh)(t)‖1 ≤ Chmin(k+1,r)
[
‖σt(0)‖r + ‖u‖L∞(Hk+1)

+ ‖ut‖L1(Hk+1) + ‖σ‖L∞(Hr+1) + ‖σtt‖L1(Hr)

]
.

Proof. Since estimates of ρ and η can be found out from (2.6a)–(2.6b), it suffices
to estimate ξ and ζ. Choose wh = ξt in (2.8b) to obtain

1
2

d

dt
[‖α 1

2 ξt‖2 + A (ξ, ξ)] = − (αρtt, ξt) + λ (ρ, ξt) + λ (ξ, ξt)

+
d

dt
(cη, ξx)− (cηt, ξx)− ((cζ)x, ξt) .
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On integrating with respect to time from 0 to t and applying Young’s inequality, it
follows that

‖ξt(t)‖2 + ‖ξ(t)‖21 ≤ C
[
‖ξt(0)‖2 + ‖η(t)‖‖ξ(t)‖1

+
∫ t

0

(‖ρ(s)‖+ ‖ρtt(s)‖+ ‖ζ(s)‖1) ‖ξt‖ ds

+
∫ t

0

(‖ηt(s)‖+ ‖ξt‖) ‖ξ(s)‖1 ds

]
.

Here, we have used ξ(0) = 0 as σh(0) = σ̃h(0). Setting ‖|ξ(t)‖|2 = ‖ξt(t)‖2+‖ξ(t)‖21,
let t∗ ∈ [0, t] be such that

‖|ξ(t∗)‖| = max
0≤s≤t

‖|ξ(s)‖|.

Then, we have

‖|ξ(t)‖| ≤ ‖|ξ(t∗)‖| ≤ C

[
‖ξt(0)‖+ ‖η(t)‖+ +

∫ t

0

(‖ρ(s)‖+ ‖ρtt(s)‖

+ ‖ζ(s)‖1 + ‖ηt(s)‖) ds +
∫ t

0

‖|ξ(s)‖| ds

]
.

In order to estimate ‖ζ‖1, choose vh = ζ in (2.8a) and use Poincaré inequality to
obtain

(2.9) ‖ζ‖1 ≤ C‖ζx‖ ≤ C(‖ρ‖+ ‖ξ‖).

Further, it follows from L2- projection of σt(0) that ‖ξt(0)‖ ≤ Chr+1‖σt(0)‖r+1.
An application of Gronwall’s lemma with estimates in (2.6) and (2.9) now yields

‖|ξ(t)‖| ≤ Chmin(k+1,r+1) [‖σt(0)‖r+1 + ‖u‖k+1

+
∫ t

0

(‖ut(s)‖k+1 + ‖σ(s)‖r+1 + ‖σtt(s)‖r+1) ds

]
.

Hence, we obtain a superconvergence result for ξ in H1-norm.
Using Sobolev imbedding theorem, ‖w‖Lp ≤ C‖w‖1, w ∈ H1, for 1 ≤ p ≤

∞. Now apply superconvergence result with estimates (2.7a)–(2.7b) and triangle
inequality to complete the Lp estimates of σ−σh. Using the above superconvergence
result in (2.9), we have from estimates (2.7a)-(2.7b)

‖ζ(t)‖ ≤ C‖ζ(t)‖1 ≤ C hmin(k+1,r+1) [‖σt(0)‖r+1 + ‖u(t)‖k+1 + ‖σ(t)‖r+1

+
∫ t

0

(‖σtt‖r+1 + ‖σ‖r+1 + ‖ut‖k+1) ds

]
.

Apply the triangle inequality with (2.6a) and (2.6b) to complete the first part of the
proof. With appropriate changes in the estimation of ‖|ξ(t)‖| and (2.9), we obtain
with the help of triangle inequality the last two estimates and this completes the
proof. �

For H1-estimates, it is possible to choose σh(0) and σht(0) as L2-projection of
σ(0) and σt(0), respectively.

Below, we use the nonstandard energy formulation of Baker [2] to prove optimal
error estimate in L2-norm using L2 projection of initial conditions σ(0) and σt(0).
More precisely, we assume that σh(0) = Phσ(0) and σht(0) is defined as the weighted
L2 projection of σt(0),i.e.,

(2.10) (α(σt(0)− σth(0)), wh) = 0, wh ∈ Wh.
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For nonstandard formulation, set

φ̂ =
∫ t

0

φ(τ) dτ.

Then integrating with respect to time (2.5a)-(2.5b) and using the following elliptic
projections

(2.11a) A(ρ̂, χ) = 0, χ ∈ Wh,

(2.11b) (η̂x, vhx) = 0, vh ∈ Vh,

we obtain the equations in ζ̂ and ξ̂ as

(2.12a)
(
ζ̂x, vhx

)
= (αρ̂, vhx) +

(
αξ̂, vhx

)
, vh ∈ Vh,

and

(2.12b) (αξt, wh) + A
(
ξ̂, wh

)
= − (αρt, wh) + λ

(
ρ̂ + ξ̂, wh

)
+

(
cζ̂ + η̂, whx

)
.

Note that after integrating (2.8b) with respect to time, the terms at t = 0 become
zero (see, (2.12b)) because of the weighted L2- projection defined in (2.10).

Theorem 2.2. With σ0 = au0x and σt(0) = au1x, assume that σh(0) = Phσ(0)
and σht is defined by (2.10). Then there exists a constant C > 0 independent of h,
such that

‖(u− uh)(t)‖ + ‖(σ − σh)(t)‖ ≤ Chmin(k+1,r+1) [‖σ0‖r+1

+ ‖u‖L∞(Hk+1) + ‖σ‖L∞(Hr+1) + ‖σt‖L1(Hr+1)

]
.

Proof. Choose wh = ξ̂t = ξ in (2.12b) to have

1
2

d

dt
[‖α 1

2 ξ‖2 + A
(
ξ̂, ξ̂

)
] = − (αρt, ξ) + λ

(
ρ̂ + ξ̂, ξ

)
+

d

dt

(
cη̂, ξ̂x

)
−

(
cη, ξ̂x

)
−

(
(cζ̂)x, ξ

)
.

Setting ‖|ξ̂(t)‖|2 = ‖ξ(t)‖2 + ‖ξ̂(t)‖21, let at t = t∗

‖|ξ̂(t∗)‖| = max
0≤s≤t

‖|ξ̂(s)‖|.

Then we have

‖|ξ̂(t)‖| ≤ ‖|ξ̂(t∗)‖| ≤ C

[
‖α 1

2 ξ(0)‖+ ‖η̂‖+
∫ t

0

(‖ρ̂(s)‖+ ‖ρt(s)‖

+ ‖ζ̂(s)‖1 + ‖η(s)‖) ds +
∫ t

0

‖|ξ̂(s)‖| ds

]
.

Before we apply Gronwall’s lemma, we need to estimate ‖ζ̂‖1. Choose vh = ζ̂ in
(2.12a) and use Poincaré inequality to obtain

(2.13) ‖ζ̂‖1 ≤ C‖ζ̂x‖ ≤ C(‖ρ̂‖+ ‖ξ̂‖).

An application of Gronwall’s lemma with estimates in (2.13) yields

‖|ξ̂(t)‖| ≤ C

[
‖α 1

2 ξ(0)‖+ hmin(k+1,r+1)

∫ t

0

(‖u‖k+1 + ‖σ‖r+1 + ‖σt‖r+1) ds

]
.

Note that ‖α 1
2 ξ(0)‖ ≤ C‖ρ(0)‖ ≤ Chr+1‖σ(0)‖r+1. Apply the triangle inequality

with (2.6a) and (2.6b) to complete the rest of the proof. �
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Remarks 2.1. (i) Compared to Theorem 2.1, the L2-estimates for u − uh and
σ − σh in Theorem 2.2, require less regularity of the exact solution. Further, the
initial approximations are implemented as L2- projections of the initial functions
σ0 and σt(0) in stead of computationally more expensive elliptic projections.

Again from Theorem 2.1, ‖u−uh‖L∞(H1) = O(hk), when k = r+1, where as ‖σ−
σh‖L∞(H1) = O(hr) in case r = k +1. Hence, the order of convergence corresponds
to the degree of the polynomials used in the corresponding finite element spaces. For
one dimensional self-adjoint two point boundary value problem, similar estimates
are obtained in Pehlivanov et al. [16].
(ii) For C0-Lagrange elements with k = 3 and r = 1, the classical mixed finite
element method fails, where as the present method converges with order of conver-
gence O(h2) for ‖u− uh‖1 and ‖σ − σh‖− norms.
(iii) Note that the coupling between u and σ is mainly through c-term. When c = 0,
we obtain from Theorems 2.1 and 2.2

‖σ − σh‖ ≤ Chr+1.

Further from Theorem 2.1, we have the superconvergence result

‖ξ(t)‖1 ≤ Chr+1.

Then a use of Sobolev imbedding theorem yields ‖ξ(t)‖L∞ ≤ Chr+1, and hence,

‖(σ − σh)(t)‖L∞ ≤ Chr+1.

In this case, the degree k for Vh does not influence the L2 and L∞- estimates of
the error σ − σh.
(iv) We now compare the above results, i.e., Theorem 2.1 with Geveci [8], Makri-
dakis [9] and Theorem 2.2 with Cowsar et al. [6] (when α = 1 ) or with Cowsar et al.
[5]. In one space dimension, the finite element space Vh consists of piecewise linear
polynomials and the space Wh contains C0- piecewise quadratic elements. From [8]
and [9], the following result holds using mixed projections for approximating the
initial conditions :

‖(σ − σh)(t)‖ ≤ Ch2

[
‖u(t)‖3 +

∫ t

0

‖utt(s)‖2 ds

]
.

Whereas, with C0-piecewise linear polynomials for both Vh and Wh, we have from
Theorem 2.1 the following estimate

‖(σ − σh)(t)‖ ≤ Ch2

[
‖u1‖3 + ‖u(t)‖3 +

∫ t

0

‖utt(s)‖2 ds

]
.

Note that using Theorem 2.2, we derive

‖(σ − σh)(t)‖ ≤ Ch2

[
‖u0‖3 + ‖u(t)‖3 +

∫ t

0

‖ut(s)‖3 ds

]
.

In case c = 0, from (iii), we obtain for the present case with Wh as C0- piecewise
quadratic polynomial space

‖(σ − σh)(t)‖ ≤ Ch3

[
‖u1‖4 + ‖u(t)‖4 +

∫ t

0

‖utt(s)‖3 ds

]
.

Moreover, if c 6= 0, and both Vh and Wh contain C0- piecewise quadratic elements,
we have from Theorem 2.1

‖u− uh)(t)‖+ ‖(σ − σh)(t)‖ ≤ Ch3

[
‖u1‖4 + ‖u(t)‖4 +

∫ t

0

‖utt(s)‖3 ds

]
.
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Similarly from Theorem 2.2, it now follows that

‖u− uh)(t)‖+ ‖(σ − σh)(t)‖ ≤ Ch3

[
‖u1‖4 + ‖u(t)‖4 +

∫ t

0

‖ut(s)‖4 ds

]
.

Thus, we obtain better estimates using higher regularity.

3. Hyperbolic Equation in Several Space Variables

In this Section, we apply H1-Galerkin method to the problem (1.1) in several
space dimension. Introducing ασ = ∇u with α = 1

a , we rewrite (1.1) as a system

(3.1a) ασ = ∇u,

and

(3.1b) utt −∇·σ + cu = f.

Let W =
{
q ∈ (L2(Ω))d : ∇ · q ∈ L2(Ω)

}
with norm ‖q‖H(div,Ω) = (‖q‖2 + ‖∇ ·

q‖2) 1
2 . Then weak formulation is now defined to be a pair {u, σ} : [0, T ] 7→ H1

0 ×W
satisfying

(3.2a) (a∇u, ∇v) = (σ, ∇v) , v ∈ H1
0 ,

and

(3.2b) (ασtt, w) + (∇·σ, ∇·w) = (cu, ∇·w)− (f, ∇·w) , w ∈ W.

For our subsequent use, we employ the classical Hilbert Sobolev spaces Hm(Ω) and
shall call them as Hm with norm ‖·‖m. Let (Hm)d = Hm denote the corresponding
product space with usual product norm. When m = 0, we simply write H0 as L2.
Semidiscrete H1- Galerkin mixed finite element procedure. Let Th be a
partition of Ω into a finite number of elements called simplexes, i.e., Ω = ∪K∈Th

K
with h = max { diam(K) : K ∈ Th}. Let Vh and Wh, respectively, be finite dimen-
sional subspaces of H1

0 and W satisfying the following approximation properties:
For k > 0, r > 0 integers

inf
vh∈Vh

{‖v − vh‖+ h‖v − vh‖1} ≤ Chk+1‖v‖k+1, v ∈ Hk+1 ∩H1
0 ,

and

inf
qh∈Wh

{
‖q− qh‖+ h‖q− qh‖H(div;Ω)

}
≤ Chr+1‖q‖r+1, q ∈ Hr+1.

Standard examples of such spaces are as follows

Vh =
{
vh ∈ C0(Ω) : vh|K ∈ Pk(K),∀K ∈ Th, vh = 0 on ∂Ω

}
,

and
Wh = {qh ∈ W : (qh)i|K ∈ Pr(K), i = 1, 2, · · · , d,∀K ∈ Th} ,

where Ps(K) is the space of polynomials of degree ≤ s on K. Other examples of
approximating spaces can be found in Raviart and Thomas [1]. Note that we also
allow the use of isoparametric elements.

The semidiscrete H1- Galerkin finite element procedure for the system is deter-
mined as a pair {uh, σh} : [0, T ] 7→ Vh ×Wh satisfying

(3.3a) (a∇uh, ∇vh) = (σh, ∇vh) , vh ∈ Vh,

and

(3.3b) (ασhtt, wh) + (∇·σh, ∇·wh) = (cuh, ∇·wh)− (f, ∇·wh) , wh ∈ Wh

with appropriately chosen initial pair {σh(0), σth(0)} to be defined later.
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Again following Wheeler [21], we define Ritz projection ũh ∈ Vh of u satisfying

(∇(u− ũh), ∇vh) = 0, ∀vh ∈ Vh.

Further, let σ̃h ∈ Wh denote a standard finite element interpolant of σ. Let
ρ = σ − σ̃h and η = u− ũh. Then, for nonnegative integers k and r

(3.4a) ‖η‖+ h‖∇η‖ ≤ Chk+1‖u‖k+1,

and

(3.4b) ‖ρ‖+ h‖ρ‖H(div,Ω) ≤ Chr+1‖σ‖r+1.

Let σ − σh = σ − σ̃h + σ̃h − σh = ρ + ξ and u − uh = u − ũh + ũh − uh = η + ζ.
For semidiscrete error analysis, we have from (3.3)-(3.4) and auxiliary projections
the equations in ξ and ζ as

(3.5a) (∇ζ, ∇vh) = (α(σ − σh), ∇vh) , vh ∈ Vh,

and

(3.5b) (αξtt, wh) + (∇ · ξ, ∇ ·wh) = − (αρtt, wh)− (∇ · ρ, ∇ ·wh)
+ (c(η + ζ), ∇ ·wh) , wh ∈ Wh.

In the following, we obtain semidiscrete error estimates for σ − σh and u− uh.

Theorem 3.1. With σ0 = a∇u0 and σt(0) = a∇u1, assume that

‖σ0 − σ0h‖H(div,Ω) ≤ Chr‖σ0‖r+1,

and σht(0) is either L2- projection or interpolant of σt(0). Then there is a constant
C independent of h such that

‖(u− uh)(t)‖ + ‖(σ − σh)(t)‖H(div,Ω) ≤ Chmin(k+1,r) [‖σ0‖r+1 + ‖σt(0)‖r

(3.6) + ‖u0‖k+1 +
∫ t

0

(‖ut‖k+1 + ‖σ‖r + ‖σt‖r+1 + ‖σtt‖r) ds

]
.

Further, using nonstandard formulation and σht(0) as the weighted L2- projection
of σt(0) that is (α(σt(0)−σht(0)),wh) = 0, wh ∈ Wh, the following estimate holds:

‖(σ − σh)(t)‖ ≤ Chmin(k+1,r) [‖σ0‖r + ‖σ(t)‖r

(3.7) +
∫ t

0

(‖σ(s)‖r+1 + ‖σt(s)‖r + ‖u(s)‖k+1) ds

]
.

Proof. Choose vh = ζ in (3.5a) and use Poincaré inequality to obtain

(3.8) ‖ζ‖1 ≤ C‖∇ζ‖ ≤ C(‖ρ‖+ ‖ξ‖).

Further, setting wh = ξt in (3.5b), it follows that

1
2

d

dt
[‖α 1

2 ξt‖2 + ‖∇ · ξ‖2] = −(αρtt, ξt)−
d

dt
(∇ · ρ− cη, ∇ · ξ)

+ (∇ · ρt − cηt, ∇ · ξ)− (∇(cζ), ξt) .

For the last term, we have used Gauss divergence theorem and ζ ∈ H1
0 . Integrate

the above equation with respect to time and set ‖|ξ(t)‖|2 = ‖ξt(t)‖2 + ‖∇ · ξ(t)‖2.
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Then for t = t∗, assume that ‖|ξ(t∗)‖| = max0≤τ≤t ‖|ξ(τ)‖| and apply Cauchy
Schwarz inequality to obtain

‖|ξ(t)‖| ≤ ‖|ξ(t∗)‖| ≤ C
[
‖ξt(0)‖+ ‖ξ(0)‖H(div,Ω) + ‖ρ(0)‖H(div,Ω) + ‖η(0)‖

]
+ C

[
‖ρ(t)‖H(div,Ω) + ‖η(t)‖+

∫ t

0

(‖ρt(s)‖H(div,Ω)

+ ‖ρtt(s)‖+ ‖ζ(s)‖1 + ‖ηt(s)‖) ds] + C

∫ t

0

‖|ξ(s)‖| ds.

Using (3.8), an application of Gronwall’s lemma yields

‖|ξ(t)‖| ≤ Chmin(k+1,r) [‖σ0‖r+1 + ‖σt(0)‖r + ‖u0‖k+1

+
∫ t

0

(‖ut(s)‖k+1 + ‖σ(s)‖r + ‖σt(s)‖r+1 + ‖σtt(s)‖r) ds

]
.

The triangle inequality with (3.4a) and (3.4b) now completes the estimate of σ−σh.
For the estimation of u− uh, we now note that ξ(t) = ξ(0) +

∫ t

0
ξt(s) ds and hence,

we have an estimation of ‖ξ(t)‖ using the above inequality. From (3.4b)– (3.8), it is
straight forward to obtain an estimation for ‖ζ(t)‖1 which is of order O(hmin(k+1,r)).
Again a use of the triangle inequality completes the proof of the first part.

For the second part, we now rewrite the equation in ζ̂ and ξ̂ as

(3.9a)
(
∇ζ̂, ∇vh

)
= (α(σ̂ − σ̂h), ∇vh) , vh ∈ Vh,

and

(αξt, wh) +
(
∇ · ξ̂, ∇ ·wh

)
= − (αρt, wh)− (∇ · ρ̂, ∇ ·wh)

(3.9b) +
(
c(η̂ + ζ̂), ∇ ·wh

)
, wh ∈ Wh.

With a choice of vh = ζ̂ in (3.9a), it follows that

(3.10) ‖ζ̂‖1 ≤ C‖∇ζ̂‖ ≤ C(‖ρ̂‖+ ‖ξ̂‖).

Moreover, choose wh = ξ = ξ̂t in (3.9b) to find that
1
2

d

dt
[‖α 1

2 ξ‖2 + ‖∇ · ξ̂‖2] = −(αρt, ξ)−
d

dt

(
∇ · ρ̂− cη̂, ∇ · ξ̂

)
+

(
∇ · ρ− cη, ∇ · ξ̂

)
−

(
∇(cζ̂), ξ

)
.

Assume that ‖|ξ̂(t∗)‖| = max0≤τ≤t ‖|ξ̂(τ)‖|, for some τ = t∗ ∈ [0, t] and apply
Cauchy Schwarz inequality to obtain

‖|ξ̂(t)‖| ≤ ‖|ξ̂(t∗)‖| ≤ C
[
‖ξ(0)‖+ ‖ρ̂(t)‖H(div,Ω) + ‖η̂(t)‖

+
∫ t

0

(
‖ρt‖+ ‖ρ‖H(div,Ω) + ‖η‖+ ‖ζ̂‖1

)
ds

]
+ C

∫ t

0

‖|ξ̂(s)‖| ds.

Using (3.10), an application of Gronwall’s lemma yields

‖ξ(t)‖ ≤ Chmin(k+1,r)

[
‖σ0‖r +

∫ t

0

(‖u(s)‖k+1 + ‖σt(s)‖r + ‖σ(s)‖r+1) ds

]
.

The triangle inequality with (3.4a) and (3.4b), now completes the rest of the
proof. �
Remarks 3.1 (i) Estimates (3.6) indicates that for k = r, the error estimate
‖∇ · (σ − σh)(t)‖ is optimal in the stated norm. However for k 6= r, this estimate
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distinguishes the better approximation properties of Vh or Wh. When k + 1 = r in
(3.7), we can decrease the influence of Vh on the rate of convergence for σh.
(ii) We now compare (3.7) with the order of convergence of the mixed finite element
method presented in [5]–[6]. Assume that(Vh,Wh)is a pair of Raviart Thomas
spaces. Then components of Wh contains incomplete polynomials of degree r =
k +1 on each finite element K ∈ Th. From [5]–[6], we obtain the following estimate

‖(u− uh)(t)‖+ ‖(σ − σh)(t)‖ ≤ C(σ, p)hr.

Hence, the rate of convergence coincides with (3.7) when k + 1 = r, but for the
present method the LBB condition has been avoided. Moreover, quasi-uniformity
assumption is not required in our analysis.
(iii) Compared to the results in this Section, the results obtained in one dimensional
situation (see, Section 2) are quite sharp in the sense that the estimate of the
stress in L∞(L2)-norm is optimal. The main reason for this is that in Section 2,
we have used elliptic projection (Wheeler’s technique) for the stress (see, (2.5a)),
whereas in case of several spatial variables interpolant σ̃ of the stress σ is used as
an intermediate projection. Therefore, we have only derived optimal estimates for
‖∇ · (σ − σh)‖ and suboptimal estimates in L2-norm. However, if we choose the
finite dimensional space Wh as one of the Raviart-Thomas spaces RTr with index r
( i.e., the components of Wh consists of incomplete polynomials of degree r + 1 on
each finite elements ) or Brezzi-Douglas-Marini spaces of index r, i.e., BDMr, see
[1] for both RT and BDM spaces, it is possible to improve the L∞(L2(Ω))-estimate
of σ−σh. Now in stead of using finite element interpolant as an auxiliary function,
set σ̃h = Πhσ, where the Raviart-Thomas projection Πhσ : H(div; Ω) 7→ Wh is
defined by

(3.11) (∇ · (σ −Πhσ),∇ ·wh) = 0, wh ∈ Wh.

With ρ = σ −Πhσ, the following error estimates hold, see ([1],[19]):

‖ρ(t)‖ ≤ Chr+1‖σ(t)‖r+1,

and
‖∇ · ρ(t)‖ ≤ Chr+1‖∇ · σ(t)‖r+1 ≤ Chr+1‖σ(t)‖r+2.

Since Πh commutes with the time derivatives, we obtain

‖ρt(t)‖ ≤ Chr+1‖σt(t)‖r+1.

Now write
σ − σh = (σ −Πhσ) + (Πhσ − σh) := ρ + ξ.

The term −(∇ · ρ,∇ ·wh) in (3.5b) now vanishes and hence, the equation in ξ can
be written as

(αξtt, wh) + (∇ · ξ, ∇ ·wh) = − (αρtt, wh)
(3.12) + (c(η + ζ), ∇ ·wh) , wh ∈ Wh.

Proceeding exactly as in the proof of Theorem 3.1, and using the initial approxi-
mation σh(0) = Πhσ(0), we, finally, obtain as compared to (3.6)

‖(u− uh)(t)‖ + ‖(σ − σh)(t)‖ ≤ Chmin(k+1,r+1) (‖σ0‖r+1 + ‖σt(0)‖r+1 + ‖u0‖k+1

+ ‖ut‖L1(Hk+1) + ‖σ‖L1(Hr+1) + ‖σtt‖L1(Hr+1)

)
.

Moreover, we estimate σ − σh in H(div ; Ω) as

‖(σ − σh)(t)‖H(div,Ω) ≤ Chmin(k+1,r+1) (‖σ0‖r+1 + ‖u0‖k+1

+ ‖σ‖L1(Hr+2) + ‖ut‖L1(Hk+1) + ‖σtt‖L1(Hr+1)

)
.
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Using non-standard energy formulation, it is easy to derive the following error
estimate:

‖(σ − σh)(t)‖ ≤ Chmin(k+1,r+1) (‖σ0‖r+1

+ ‖ut‖L1(Hk+1) + ‖σ‖L1(Hr+1) + ‖σt‖L1(Hr+1)

)
.

Note that the L∞(L2)-estimate of σ − σh is optimal in the stated norm if k = r
and this is achieved, provided we use Wh as the Raviart-Thomas spaces of index r
or the BDM spaces of index r. However, it is possible to use other classical mixed
finite element spaces ([1]) for approximating σ that preserves L2-optimality for the
error σ − σh.

4. Modified H1- Galerkin Mixed Finite Element Procedure

In this Section, we propose a modified Galerkin method to obtain optimal esti-
mates for the stress in L∞(L2)-norm without restricting the finite element
space Wh.

With ασ = ∇u, write (1.1) as

utt −∇·σ + cu = f, (x, t) ∈ Ω× J,

∇× (ασ) = 0, (x, t) ∈ Ω× J,

(n ∧ ασ) = 0, (x, t) ∈ ∂Ω× J,

u(0) = u0, ut(0) = u1, x ∈ Ω,

where n is the outward normal and ∧ denotes the exterior product.
For the weak formulation, let W = {w ∈ (H1)d : n ∧ αw = 0 on ∂Ω, d = 2, 3}.

Using Gauss divergence theorem, we now seek a pair {u, σ} : [0, T ] 7→ H1
0 ×W such

that

(4.1a) (∇u,∇v) = (ασ,∇v), v ∈ H1
0 ,

(4.1b) (ασtt,w) + A(σ,w) = (−f + cu,∇ ·w), w ∈ H1,

where
A(φ,w) = (∇ · φ,∇ ·w) + (∇× αφ,∇× αw).

For Galerkin procedure, we consider a finite dimensional space Vh as in Section
3 and then define

Wh = {wh ∈ C(Ω̄)d : (wh)i |K∈ Pr(K), i = 1, · · · , d, ∀K ∈ Th,

(n ∧ αwh) = 0, at the nodes on ∂Ω}.
Since (n ∧ αwh) = 0 only at the boundary nodes, the finite element space Wh is
not a subspace of W and hence, it results in a non-conforming method. Note that
the above finite dimensional spaces satisfy the same approximation properties as
in Section 3 (see, [11] for r = 1 and [15]). A modified H1− Galerkin mixed finite
element approximation is determined as a pair {uh, σh} : [0, T ] 7→ Vh ×Wh such
that

(4.2a) (∇uh,∇vh) = (ασh,∇vh), v ∈ Vh,

(4.2b) (ασhtt,wh) + A(σh,wh) = (−f + cuh,∇ ·wh), wh ∈ Wh,

with σh(0) and σht(0)to be defined later.
Now define auxiliary projections {ũh, σ̃h} ∈ Vh ×Wh as

(4.3a) (∇(u− ũh),∇vh) = 0, vh ∈ Vh,

(4.3b) A1(σ − σ̃h,wh) = 0, wh ∈ Wh,



AN H1-MIXED METHOD FOR SECOND ORDER HYPERBOLIC EQUATIONS 123

where

A1 (φ, wh) = A (φ, wh) + (φ, wh) .

When the domain Ω is convex or the boundary ∂Ω is of class C1,1 or Ω is a curvi-
linear polygon (or polytope) of class C1,1 with no concave angles, then there is a
positive constant µ0 independent of h such that following estimate holds(

‖qh‖2H(div,Ω)
+ ‖∇ × (αqh)‖2

)
≥ µ0‖qh‖21,

for all qh ∈ Wh and for small h, see pp. 509-510 of [15]. Thus, A1(·, ·) satisfies the
coercivity condition

A1 (φh, φh) ≥ µ0‖φh‖21, φh ∈ Wh.

Let u − ũh = η and σ − σ̃h = ρ. With an appropriate modification of the
analysis of Pehlivanov and Carey [15], the following estimates for ρ and its temporal
derivatives are easy to derive.

(4.4)
2∑

l=0

‖∂lρ

∂tl
‖j ≤ Chr+1−j

2∑
l=0

‖∂lσ

∂tl
‖r+1, j = 0, 1.

Note that the related difficulties with non-conforming finite element method will
mainly show up in the error estimates of ρ.

For semidiscrete error estimates, we now split the errors u − uh = (u − ũh) +
(ũh − uh) = η + ζ and σ− σh = (σ− σ̃h) + (σ̃h − σh) = ρ + ξ. Below, we state and
prove our main theorem in this section.

Theorem 4.1. Assume that σh(0) = σ̃h(0) with σ(0) = a∇u0 so that ξ ≡ 0.
Further, let σht(0) be L2-projection of σt(0), where σt(0) = a∇u1. Then there
exists a positive constant C independent of h such that

‖(u− uh)(t)‖ + ‖(σ − σh)(t)‖+ h‖(u− uh)(t)‖1 ≤ Chmin(k+1,r+1) [‖σt(0)‖r+1

+ ‖u‖L∞(Hk+1) + ‖ut‖L1(Hk+1) + ‖σ‖L∞(Hr+1) + ‖σtt‖L1(Hr+1)

]
.

Further, the following estimate holds

‖(σ − σh)(t)‖1 ≤ C hmin(k+1,r)
[
‖σt(0)‖r + ‖u‖L∞(Hk+1) + ‖σ‖L∞(Hr+1)

+ ‖ut‖L1(Hk+1) + ‖σtt‖L1(Hr)

]
.

Proof. From (4.1)-(4.3) we have

(4.5a) (∇ζ,∇vh) = (α(ρ + ξ),∇vh), vh ∈ Vh,

and for wh ∈ Wh,

(4.5b) (αξtt,wh) + A1(ξ,wh) = −(αρtt,wh) + (ρ + ξ,wh) + (c(ζ + η),∇ ·wh).

Choose vh = ζ in (4.5a) and use ‖ζ‖ ≤ C‖∇ζ‖ as ζ ∈ H1
0 to obtain

(4.6) ‖ζ‖1 ≤ C‖∇ζ‖ ≤ C(‖ρ‖+ ‖ξ‖).

Further, setting wh = ξt in (4.5b), it follows that

1
2

d

dt
[‖α 1

2 ξt‖2 + A1(ξ, ξ)] = −(αρtt, ξt) +
d

dt
(cη, ∇ · ξ)

− (cηt, ∇ · ξ) + (ρ + ξ, ξt)− (∇(cζ), ξt) .
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On integration with respect to time, we now define ‖|ξ(t)‖|2 = ‖ξt(t)‖2 + ‖ξ(t)‖21.
Assume that there is some t∗ ∈ [0, t] such that ‖|ξ(t∗)‖| = max0≤τ≤t ‖|ξ(τ)‖|. Then
apply Cauchy Schwarz inequality to obtain

‖|ξ(t)‖| ≤ ‖|ξ(t∗)‖| ≤ C

[
‖ξt(0)‖+ ‖η(t)‖+

∫ t

0

(‖ρ(s)‖+ ‖ρtt(s)‖

+ ‖ζ(s)‖1 + ‖ηt(s)‖) ds] + C

∫ t

0

‖|ξ(s)‖| ds.

Using (4.6), an application of Gronwall’s lemma yields

‖|ξ(t)‖| ≤ Chmin(k+1,r+1) [‖σt(0)‖r+1 + ‖u(t)‖k+1

+
∫ t

0

(‖ut(s)‖k+1 + ‖σ(s)‖r+1 + ‖σtt(s)‖r+1) ds

]
.

The triangle inequality with (3.4a)–(3.4b), now completes the L2- estimates of
σ−σh. For the estimation of u−uh, note that from the superconvergence result for
ξ in H1-norm, we obtain an estimation of ‖ξ(t)‖. From (4.4)– (4.8), it is straight
forward to obtain an estimation for ‖ζ(t)‖1 which is of order O(hmin(k+1,r+1)).
Again a use of the triangle inequality completes the proof of the estimate ‖u−uh‖1.
Finally, an appropriate modification of the estimate ‖|ξ‖| with ‖ρ‖1 completes the
H1-estimate of σ − σh. �

Below, we again recall the nonstandard energy formulation of Baker [2] and prove
optimal error estimate in L2-norm using L2-projection of the initial conditions.
More precisely, we shall assume that σh(0) = Phσ(0) and σht(0) is defined as
weighted L2 projection of σt(0)

(4.7) (α(σt(0)− σth(0)),wh) = 0, wh ∈ Wh.

Integrating with respect to time (4.5a)-(4.5b) and using the following elliptic pro-
jections

(4.8a) A1(ρ̂,wh) = 0, wh ∈ Wh,

(4.8b) (∇η̂, ∇vh) = 0, vh ∈ Vh,

we obtain the equations in ζ̂ and ξ̂ as

(4.9a)
(
∇ζ̂, ∇vh

)
=

(
α(ρ̂ + ξ̂), ∇vh

)
, vh ∈ Vh,

and for wh ∈ Wh

(4.9b) (αξt, wh) + A1

(
ξ̂, wh

)
= − (αρt, wh) + (ρ̂ + ξ̂,wh) +

(
c(ζ̂ + η̂), ∇ ·wh

)
.

Theorem 4.2. With σ0 = a∇u0 and σt(0) = a∇u1, assume that σh(0) = Phσ(0)
and σht(0) is defined by (4.7). Then there exists a constant C > 0 independent of
h, such that

‖(u− uh)(t)‖ + ‖(σ − σh)(t)‖ ≤ Chmin(k+1,r+1) [‖σ0‖r+1 + ‖u‖k+1 + ‖σ‖r+1

+
∫ t

0

(‖u‖k+1 + ‖σ(s)‖r+1 + ‖σt(s)‖r+1) ds

]
.

Proof. Setting vh = ζ̂ in (4.9a), it follows from Poincaré inequality that

(4.10) ‖ζ̂‖1 ≤ C‖∇ζ̂‖ ≤ C(‖ρ̂‖+ ‖ξ̂‖).
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Moreover, choose wh = ξ = ξ̂t in (3.8b) to obtain

1
2

d

dt
[‖α 1

2 ξ‖2 + A1(ξ̂, ξ̂)] = − (αρt, ξ) +
d

dt

(
cη̂, ∇ · ξ̂

)
−

(
cη, ∇ · ξ̂

)
+ +

(
ρ̂ + ξ̂, ξ

)
−

(
∇(cζ̂), ξ

)
.

For some t∗ ∈ [0, t], assume that ‖|ξ̂(t∗)‖| = max0≤τ≤t ‖|ξ̂(τ)‖| and apply Cauchy
Schwarz inequality to obtain

‖|ξ̂(t)‖| ≤ ‖|ξ̂(t∗)‖| ≤ C[‖ξ(0)‖+ ‖η̂(t)‖

+
∫ t

0

(
‖ρt‖+ ‖ρ̂‖+ ‖η(s)‖+ ‖ζ̂(s)‖1

)
ds] + C

∫ t

0

‖|ξ̂(s)‖| ds.

Using (4.10), an application of Gronwall’s lemma yields

‖ξ(t)‖ ≤ Chmin(k+1,r+1)

[
‖σ0‖r+1 +

∫ t

0

(‖u(s)‖k+1 + ‖σt(s)‖r+1 + ‖σ(s)‖r+1) ds

]
.

The triangle inequality with (4.3a)–(4.3b), now completes the rest of the proof. �
Remarks 4.1. (i) With k = r, we have ‖u − uh‖L∞(L2) + ‖σ − σh‖L∞((L2)d) =
O(hr+1).
(ii) Compared to [5] – [6], the present analysis yields an optimal estimate of σ−σh

in L∞(L2)-norm (with respect to the approximation property of the finite lement
spaces) under higher regularity assumption on the exact solution. If c = 0 in (3.1),
we have again ‖σ − σh‖ = O(hr+1) even if k < r.
(iii) When d = 2, i.e., Ω ⊂ R2 and σh(0) = σ̃h(0), then using Sobolev imbedding
theorem and superconvergence estimates for ∇ζ and ∇ξ, (see, the proof of the
Theorem 4.1) we have

‖ξ(t)‖L∞ ≤ Chmin(k+1,r+1)(log
1
h

)
1
2

[
‖σt(0)‖r+1 + ‖u‖L∞(Hk+1)

+ ‖σ‖L1(Hr+1) + ‖ut‖L1(Hk+1) + ‖σtt‖L1(Hr+1)

]
.

Similarly,

‖ζ(t)‖L∞ ≤ Chmin(k+1,r+1)(log
1
h

)
1
2

[
‖σt(0)‖r+1 + ‖u‖L∞(Hk+1)

+ ‖σ‖L∞(Hr+1) + ‖ut‖L1(Hk+1) + ‖σtt‖L1(Hr+1)

]
.

Therefore, quasi-optimal maximum norm estimates for (u − uh) and (σ − σh) can
be obtained, provided L∞-estimates for (u− ũh) and (σ − σ̃h) are available. Note
that for C0-piecewise linear elements, i.e., for k = 1, the following estimate

‖(u− ũh)(t)‖L∞ ≤ Ch2 log(
1
h

)‖u(t)‖W 2,∞ ,

holds true (see, [20]) under an additional assumption that the finite element mesh
satisfies quasi-uniformity condition. Compared to [8] and [9], the above additional
result is derived for the proposed modified method.

5. Fully Discrete Scheme

In this Section, we briefly describe a fully discrete scheme for approximating a
pair of solutions {u, σ} of (1.1) and discuss a priori error bounds.

Let 0 = t0 < t1 < · · · < tN = T be a given partition of the time interval [0,T]
with step length ∆t = T/N , for some positive integer N . We use the following
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notation related to functions defined at discrete time levels. For a smooth function
φ on [0,T], let

φn = φ(tn), φn+ 1
2 =

1
2
(φn+1 + φn), ∂tφ

n+ 1
2 =

φn+1 − φn

∆t
,

∂2
t φn =

∂tφ
n+ 1

2 − ∂tφ
n− 1

2

∆t
and φn; 14 =

1
4
(φn+1 +2φn +φn−1) =

1
2
(φn+ 1

2 +φn− 1
2 ).

Let Un and Zn, respectively, be the approximations of u and σ at t = tn which
we define through the following implicit scheme. We now determine a sequence of
pairs {Un,Zn} ∈ Vh ×Wh, n = 0, · · · , N, satisfying

(5.1a) (U0, vh) = (u0, vh), (αZ0,wh) = (ασ(0),wh), wh ∈ Wh,

(5.1b)

(
2α

∆t
∂tZ

1
2 ,wh) + A(Z

1
2 ,wh) = (−f

1
2 + cU

1
2 ,∇ ·wh) + (

2α

∆t
σt(0),wh), wh ∈ Wh,

(5.1c) (∇Un+ 1
2 ,∇vh) = (αZn+ 1

2 ,∇vh), v ∈ Vh, n ≥ 0,

(5.1d) (α∂2
t Z

n,wh)+A(Zn; 14 ,wh) = (−fn; 14 +cUn; 14 ,∇·wh), wh ∈ Wh, n ≥ 1.

Here, σ(0) = a∇u0 and σt(0) = a∇u1. Existence of a unique pair of solution
{Un, Zn} of the above resulting linear system is a straightforward consequence of
the coercivity of A(·, ·) and bounded below property of α.

For the fully discrete error estimates, we split the errors u(tn)−Un := (u(tn)−
ũh(tn))+(ũh(tn)−Un) = ηn+ζn and σ(tn)−Zn := (σ(tn)−σ̃h(tn))+(σ̃h(tn)−Zn) =
ρn + ξn. Since the estimates of ηn and ρn can be found out easily from (3.4a) and
(4.4) at t = tn. it is enough to estimate ζn and ξn. Note that the equations in ζn

and ξn may be written as

(5.2a) (∇ζn+ 1
2 ,∇vh) = (α(ρn+ 1

2 + ξn+ 1
2 ),∇vh), vh ∈ Vh, n ≥ 0,

(
2α

∆t
∂tξ

1
2 ,wh) + A1(ξ

1
2 ,wh) = −(

2α

∆t
∂tρ

1
2 ,wh)− (2τ0,wh) + (ξ

1
2 + ρ

1
2 ,wh)

(5.2b) + (c(ζ
1
2 + η

1
2 ),∇ ·wh), wh ∈ Wh,

and

(α∂2
t ξn,wh) + A1(ξn; 14 ,wh) = −(α∂2

t ρn,wh)− (τn,wh) + (ξn; 14 + ρn; 14 ,wh)

(5.2c) + (c(ζn; 14 + ηn; 14 ),∇ ·wh), wh ∈ Wh, n ≥ 1,

where τ0 = α[ 12σ
1
2
tt + 1

∆t (σt(0)− ∂tσ
1
2 )] and τn = (σtt)n; 14 − ∂2

t σ(tn).
Now define ξ̂0 = 0 and ξ̂n = ∆t

∑n−1
j=0 ξj+ 1

2 . Then ∆t∂tξ̂
n+ 1

2 = ξn+ 1
2 , ξn; 14 =

(ξn+ 1
2 + ξn− 1

2 )/2 and ∆t
∑J

j=1 ξj; 14 = ξ̂J+ 1
2 − ∆t

2 ξ
1
2 . Below, we prove the main

theorem of this Section.

Theorem 5.1. Assume that Z0 satisfies (5.1a). Then there exists a positive con-
stant C independent of h and ∆t such that for small ∆t

max
0≤J≤N

‖σ(tJ)− ZJ‖ ≤ Chmin(k+1,r+1)
[
‖σ0‖r+1 + ‖u‖L∞(Hk+1) + ‖ut‖L∞(Hk+1)

+ ‖σ‖L∞(Hr+1) + ‖σt‖L2(Hr+1)

]
+ C(∆t)2

4∑
l=0

‖∂lσ

∂tl
‖L1(L2).
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Proof. Multiplying (5.2c) by ∆t and then summing from n = 1 to m, we obtain
using (5.2b)

(α∂tξ
m+ 1

2 ,wh) + A1(ξ̂m+ 1
2 ,wh) = −(α∂tρ

m+ 1
2 ,wh)−∆t

m∑
n=0

(τn,wh)

+ (c(ζ̂m+ 1
2 ),∇ ·wh) + (c(η̂m+ 1

2 ),∇ ·wh)

+ (ξ̂m+ 1
2 + ρ̂m+ 1

2 ,wh), wh ∈ Wh.

Choose wh = ξm+ 1
2 = ∆t∂tξ̂

m+ 1
2 in the above equation, and apply Gauss diver-

gence theorem for the last but one term on the right hand side to have

(α∂tξ
m+ 1

2 , ξm+ 1
2 ) + ∆tA1(ξ̂m+ 1

2 , ∂tξ̂
m+ 1

2 ) = −(α∂tρ
m+ 1

2 , ξm+ 1
2 )−∆t

m∑
n=0

(τn, ξm+ 1
2 )

− (∇(cζ̂m+ 1
2 ), ξm+ 1

2 ) + ∆t(c(η̂m+ 1
2 ),∇ · ∂tξ̂

m+ 1
2 )

(5.3) + ∆t(ξ̂m+ 1
2 + ρ̂m+ 1

2 , ∂tξ̂
m+ 1

2 ).

For the first two terms on the left hand side, we note that

(α∂tξ
m+ 1

2 , ξm+ 1
2 ) =

1
2∆t

[
‖α 1

2 ξm+1‖2 − ‖α 1
2 ξm‖2

]
,

and

A1(ξ̂m+ 1
2 , ξm+ 1

2 ) =
1

2∆t
[A1(ξ̂m+1, ξ̂m+1)−A1(ξ̂m, ξ̂m)].

In order to estimate the last term on the right hand side of (5.3), we rewrite it as

(c(η̂m+ 1
2 ),∇ · ∂tξ̂

m+ 1
2 ) = ∂t(c(η̂m+ 1

2 ),∇ · ξ̂m+ 1
2 )− (c(∂tη̂

m+ 1
2 ),∇ · ξ̂m+ 1

2 ),

and hence, summing from m = 0 to J with J + 1 ≤ N

∆t
J∑

m=0

(c(η̂m+ 1
2 ),∇ · ∂tξ̂

m+ 1
2 ) = (c(η̂J+ 1

2 ),∇ · ξ̂J+ 1
2 )− (c(η̂

1
2 ),∇ · ξ̂ 1

2 )

− ∆t
J∑

m=0

(c(∂tη̂
m+ 1

2 ),∇ · ξ̂m+ 1
2 ).

Now, let
|||ξ|||0;J+1 = max

0≤n≤J+1
|||ξn|||,

where
|||ξn|||2 = ‖ξn‖2 + ∆t‖ξ̂n‖21.

Multiplying (5.3) by ∆t and again summing from m = 0 to m = J , we find using
coercivity condition for A(·, ·) that

|||ξJ+1|||2 ≤ C(a0, µ0)[‖ξ0‖+ ‖η̂J+ 1
2 ‖+ ‖η̂ 1

2 ‖+ (∆t)2
J∑

m=0

(
m∑

n=0

‖τn‖)

+ ∆t
J∑

m=0

(‖∂tρ
m+ 1

2 ‖+ ‖ρ̂m+ 1
2 ‖+ ‖∂tη̂

m+ 1
2 ‖)

+ ∆t

J∑
m=0

‖ζ̂m+ 1
2 ‖]|||ξ|||0;J+1,
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and hence,

|||ξJ+1|||2 ≤ C(a0, µ0)[‖ξ0‖+ ‖η̂J+ 1
2 ‖+ ‖η̂ 1

2 ‖+ ∆t
J∑

m=0

‖τm‖

(5.4) + ∆t
J∑

m=0

(‖∂tρ
m+ 1

2 ‖+ ‖ρ̂m+ 1
2 ‖+ ‖∂tη̂

m+ 1
2 ‖) + ∆t

J∑
m=0

‖ζ̂m+ 1
2 ‖].

Note that

∆t
J∑

m=0

‖∂tρ
m+ 1

2 ‖ ≤ ‖ρt‖L∞(L2) ≤ Chr+1‖σt‖L∞(Hr+1).

Observe that for m ≥ 1, τm = (σtt)m; 14 − ∂2
t σm may be rewritten as

τm =
1
12

∫ ∆t

−∆t

(|s| −∆t)(3− 2(1− |s|
∆t

)2)
∂4σ

∂t4
(tm + s) ds,

and, therefore,

‖τm‖ ≤ C∆t

∫ tm+1

tm−1

‖∂4σ

∂t4
‖ ds.

Further, for m = 0

‖τ0‖ ≤ C∆t‖∂3σ

∂t3
‖L∞(0,t 1

2
,L2) ≤ C∆t

(
‖∂3σ

∂t3
‖L1(L2) + ‖∂4σ

∂t4
‖L1(L2)

)
.

Thus, we obtain

∆t
J∑

m=0

‖τm‖ ≤ C(∆t)2
(
‖∂3σ

∂t3
‖L1(L2) + ‖∂4σ

∂t4
‖L1(L2)

)
.

For the estimation of the last term on the right hand side of (5.4), we now sum
(5.2a) from n = 0 to n = m and then set vh = ζ̂m+1 to have

‖ζ̂m+1‖1 ≤ C‖∇ζ̂m+1‖ ≤ C
(
‖ρ̂m+1‖+ ‖ξ̂m+1‖

)
.

Here, we have used Poincaré inequality. Since ‖ξ0‖ ≤ ‖σ(0)−Z0‖+‖σ(0)− σ̃h(0)‖,
it follows that

‖ξ0‖ ≤ Chr+1‖σ(0)‖r+1.

On substituting the above estimates in (5.4) and replacing ‖ξ̂m+1‖ by |||ξ|||0;m+1,
we easily conclude that

(1− C∆t)|||ξ|||0;J+1 ≤ C

{
(∆t)2

4∑
l=0

‖∂lσ

∂tl
‖L1(L2) + hr+1

(
‖σ0‖r+1 + ‖σ‖L∞(Hr+1)

+‖σt‖L∞(Hr+1)

)
+ hk+1

(
‖u‖L∞(Hk+1) + ‖ut‖L∞(Hk+1)

)
+

J∑
m=0

|||ξ|||0;m

}
.

Choose ∆t so that (1 − C∆t) > 0. An application of discrete Gronwall’s lemma
completes the estimate of ‖ξJ+1‖. Finally, a use of triangle inequality completes
the rest of the proof. �
Remarks 5.1. (i) Setting vh = ζn+ 1

2 in (5.2a), we obtain a superconvergence
result for ζn+ 1

2 in H1-norm. Then use of triangle inequality yields

‖u(tn+ 1
2
)− Un+ 1

2 ‖j ≤ C(u, σ)hmin(k+1−j,r+1), j = 0, 1.
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If one desires in stead approximation of u at t = tn, it is clear that Ûn = (Un+ 1
2 +

Un− 1
2 )/2 furnishes such an approximation which is of same order of accuracy.

(ii) To estimate ‖ξ‖1, choose wh = ∂tξ
n+1/2+∂tξ

n−1/2 in (5.2c). Then use identities

A1(ξn; 14 , ∂tξ
n+1/2 + ∂tξ

n−1/2) =
1

4∆t

[
A1(ξn+1, ξn+1)−A1(ξn, ξn)

]
,

(∂2
t ξn, ∂tξ

n+1/2 + ∂tξ
n−1/2) =

1
∆t

[
‖∂tξ

n+1/2‖2 − ‖∂tξ
n−1/2‖2

]
and the standard energy arguments similar to one described above will now yield
an eatimate for ξn+ 1

2 in H1-norm. Again apply triangle inequality to complete the
error estimate of the stress in H1-norm.
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