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A SUPERCONVERGENT FINITE ELEMENT SCHEME FOR THE
REISSNER-MINDLIN PLATE BY PROJECTION METHODS

JUNPING WANG AND XIU YE

Abstract. The Reissner-Mindlin model is frequently used by engineers for

plates and shells of small to moderate thickness. This model is well known

for its “locking” phenomenon so that many numerical approximations behave

poorly when the thickness parameter tends to zero. Following the formulation

derived by Brezzi and Fortin, we construct a new finite element scheme for the

Reissner-Mindlin model using L2 projections onto appropriately-chosen finite

element spaces. A superconvergence result is established for the new finite ele-

ment solutions by using the L2 projections. The superconvergence is based on

some regularity assumption for the Reissner-Mindlin model and is applicable to

any stable finite element methods with regular but non-uniform finite element

partitions.

Key Words. finite element methods, superconvergence, the method of least-

squares fitting, Reissner-Mindlin plate.

1. Introduction

The Reissner-Mindlin plate is a mathematical model that is frequently used
by engineers for plates and shells of small to moderate thickness. To describe the
model, we consider a plate or a shell of thickness t > 0. Let Ω be the region occupied
by the plate. Denote by w = w(x, y) and φ = (φ1, φ2)t the transverse deflection of
Ω and the rotation of the fibers normal to Ω, respectively. The Reissner-Mindlin
plate model determines w and φ as the unique solution to the following variational
problem: find (w,φ) ∈ H1

0 (Ω)×[H1
0 (Ω)]2 such that for all (v,ψ) ∈ H1

0 (Ω)×[H1
0 (Ω)]2

(1.1) a(φ,ψ) + λt−2(φ−∇w,ψ −∇v) = (g, v),

where g is the scaled transverse loading function, λ = Ek/2(1 + ν) is the shear
modulus with E the Young’s modulus, ν the Poisson ratio, k the shear correction
factor. The symbol ∇ denotes the gradient operator. H1(Ω) is the Sobolev space
defined by

H1(Ω) =
{
v : v ∈ L2(Ω),∇v ∈ [L2(Ω)]2

}
.

Here L2(Ω) is the set of square integrable functions over the domain Ω with norm
‖·‖ and inner product (·, ·). H1

0 (Ω) is the subspace of H1(Ω) consisting of functions
with vanishing boundary value. The bilinear form a(·, ·) in (1.1) is given by

a(φ,ψ) =
E

12(1− ν2)

∫
Ω

[(1− ν)ε(φ) : ε(ψ) + ν∇ · φ∇ ·ψ],
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where ∇· is the divergence operator, ε(φ) = 1
2 [∇φ+∇φt], and −1 < ν < 1

2 .
An obvious numerical procedure for the Reissner-Mindlin model would be a

Galerkin finite element method based on the weak formulation (1.1) in which w
and φ are both approximated by continuous piecewise polynomials over a pre-
scribed finite element partition T h of Ω. However, such schemes are known to have
“locking” difficulty in that the resulting numerical approximations behave poorly
when the thickness parameter t tends to zero. Many researchers have been working
on the Reissner-Mindlin model by aiming at designing efficient and “locking free”
numerical schemes. Among a few of successes, we mention the work of Brezzi and
Fortin [3] who derived a formulation for the Reissner-Mindlin model by introducing
two variables (the irrotational and solenoidal parts of the transverse shear strain)
in addition to the primitive variables (the transverse displacement and the rotation
vector) and developed a finite element method which is locking free. Inspired by
the work of Brezzi and Fortin, Arnold and Falk [1] developed an efficient trian-
gular element for the Reissner-Mindlin model in the primitive variables using the
P1 nonconforming linear element for the transverse displacement and conforming
linear element with bubbles for the rotation to the Reissner-Mindlin model. They
proved that the method converges with an optimal order uniformly with respect to
the thickness. For more literature, the reader is referred to [5] [6], [2], [4], [9] and
references therein.

The objective of this paper is to propose and analyze a modified scheme for
the Brezzi-Fortin method [3], which will yield numerical approximations for the
Reissner-Mindlin plate model with high order of accuracy. There are two challenges
to this task: (1) modification of the Brezzi-Fortin’s method, and (2) tedious analysis
for the postprocessing projection method of Wang [11]. Our result has potential
impact in practical computation for Reissner-Mindlin model in that it can provide
an efficient a posteriori error estimator for adaptive grid local refinement.

2. The Brezzi-Fortin Formulation and Approximation

We first introduce some standard notations. Denote by Hm(Ω) for any integer
m ≥ 0 the Sobolev space:

Hm(Ω) =
{
v : ∂α1

x ∂α2
y v ∈ L2(Ω), αi ≥ 0, α1 + α2 ≤ m

}
with norm given by

‖v‖s =

 ∑
α1+α2≤m

‖∂α1
x ∂α2

y v‖2
 1

2

.

For non-integer values of m, Hm(Ω) is defined via the standard interpolation
method. Let D(Ω) be the linear space of infinitely differentiable functions with
compact support on Ω. As usual, Hs

0(Ω) is the closure of D(Ω) with respect to the
norm ‖ · ‖s. For any function φ ∈ H1

0 (Ω), denote its curl by

∇×φ = ∂2φ1 − ∂1φ2.

Denote by ∇⊥ the formal adjoint of ∇× given by

∇⊥p =
(
−∂2p
∂1p

)
, p ∈ H1(Ω).

Following [1], without loss of generality we may assume that λ = 1 and

a(φ, ψ) = (∇φ, ∇ψ).
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The formulation of Brezzi and Fortin [3] for the problem (1.1) was based on the
following Helmholtz decomposition of the shear strain vector:

(2.1) t−2(∇w − φ) = ∇r +∇⊥p,

with (r, p) ∈ H1
0 (Ω)×H1(Ω)/R. Through a careful calculation, Brezzi and Fortin

[3, 1] proved that the solution w and φ to the Reissner-Mindlin plate model (1.1)
can be obtained from the following sequential procedure:

(1) Find r ∈ H1
0 (Ω) such that

(2.2) (∇r, ∇s) = (g, s),

for all s ∈ H1
0 (Ω).

(2) Find (φ, p) ∈ [H1
0 (Ω)]2 ×H1(Ω)/R such that

(∇φ,∇ψ)− (∇⊥p,ψ) = (∇r,ψ),(2.3)

−(φ,∇⊥q)− t2(∇⊥p,∇⊥q) = 0,(2.4)

for all ψ ∈ [H1
0 (Ω)]2 and q ∈ H1(Ω)/R.

(3) Find w ∈ H1
0 (Ω) such that

(2.5) (∇w,∇u) = (φ+ t2∇r,∇u).

for all u ∈ H1
0 (Ω).

Observe that the equation in the third step can be reduced to

(2.6) (∇w,∇u) = (φ,∇u) + t2(g, u).

Based on the above sequential formulation, Brezzi and Fortin proposed and
analyzed a finite element method which can be described as follows. Let T h be
a finite element partition of the domain Ω with mesh size h. Assume that the
partition T h is quasi-uniform; i.e., it is regular and satisfies the inverse assumption
[7]. Denote by Pk the space of polynomials of degree no more than k. Let PT
be a finite dimensional space defined on T ∈ T h such that Pk2 ⊂ PT ⊂ C1(T ).
Associated with the partition T h, define

M1 = {u : u ∈ H1
0 (Ω), u|T ∈ Pk1 , ∀ T ∈ T h},

M2 = {ψ : ψ ∈ H1
0 (Ω)2, ψ|T ∈ PT × PT , ∀ T ∈ T h},

M3 = {q : q ∈ H1(Ω), q|T ∈ Pk2 , ∀T ∈ T h},
M4 = {u : u ∈ H1

0 (Ω), u|T ∈ Pk3 , ∀ T ∈ T h}.

For numerical stability consideration, assume that the finite element spaces M2 and
M3 satisfy the following inf-sup condition:

(2.7) sup
η∈M2

(∇⊥q, η)
‖η‖1

≥ β∗‖q‖, q ∈M3,

where β∗ > 0 is an absolute constant independent of the mesh parameter h.
The corresponding finite element method of Brezzi and Fortin for the problems

(2.2)-(2.5) can be stated as follows:

(1) Find r̄h ∈M1 such that

(2.8) (∇r̄h, ∇s) = (g, s),

for all s ∈M1.
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(2) Find (φ̄h, p̄h) ∈M2 ×M3/R such that

(∇φ̄h,∇ψ)− (∇⊥p̄h,ψ) = (∇r̄h,ψ),(2.9)

−(φ̄h,∇⊥q)− t2(∇⊥p̄h,∇⊥q) = 0,(2.10)

for all ψ ∈M2 and q ∈M3/R.
(3) Find w̄h ∈M4 such that

(2.11) (∇w̄h,∇u) = (φ̄h + t2∇r̄h,∇u).

for all u ∈M4.
The numerical approximation obtained from the above finite element procedure

has the following error estimates:

Theorem 2.1. Let (r,φ, p, w) and (r̄h, φ̄h, p̄h, w̄h) be the solutions of (2.2)-(2.5)
and (2.8)-(2.11) respectively. Assume that the inf-sup condition (2.7) is satisfied
for the finite element spaces M2 and M3. Then, there there exists a constant C
independent of h such that

(2.12) ‖r − r̄h‖1 ≤ C inf
u∈M1

‖r − u‖1,

‖φ− φ̄h‖1 + ‖p− p̄h‖+ t‖p− p̄h‖1 ≤ C

(
inf
ψ∈M2

‖φ−ψ‖1

+t inf
q∈M3

‖p− q‖1 + inf
q∈M3

‖p− q‖+ ‖∇(r − r̄h)‖
)
,(2.13)

and

(2.14) ‖w − w̄h‖1 ≤ C

(
inf
v∈M4

‖w − v‖1 + ‖φ− φ̄h‖+ t2‖∇(r − r̄h)‖
)
.

For a detailed proof, readers are referred to either the original paper by Brezzi
and Fortin [3] or a subsequent discussion by Arnold and Falk [1].

For the purpose of error analysis, we state a regularity result for the solution of
a general problem which seeks (r,φ, p, w) ∈ H1

0 (Ω)× [H1
0 (Ω)]2×H1(Ω)/R×H1

0 (Ω)
such that

(∇r, ∇s) = (g, s) ∀s ∈ H1
0 (Ω),(2.15)

(∇φ,∇ψ)− (∇⊥p,ψ) = (f,ψ) ∀ψ ∈ [H1
0 (Ω)]2,(2.16)

−(φ,∇⊥q)− t2(∇⊥p,∇⊥q) = (κ, q) ∀q ∈ H1(Ω)/R,(2.17)
(∇w,∇u) = (`, u) ∀u ∈ H1

0 (Ω).(2.18)

It is not hard to see the following regularity result [3, 1].

Proposition 2.1. Let r, φ, p, w be the solution of (2.15)-(2.18). Assume that the
domain Ω is sufficiently regular. Then, there exists a constant C such that

‖r‖s + ‖φ‖s + ‖p‖s−1 + t‖p‖s + ‖w‖s ≤ C (‖g‖s−2

+ ‖f‖s−2 + ‖κ‖s−1 + ‖`‖s−2) ,(2.19)

for any fixed s ≥ 1, provided that the data g, f, κ, and ` are smooth enough so that
the right-hand side of (2.19) is well-defined.
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3. A Remark to the Brezzi-Fortin Formulation

The Brezzi-Fortin scheme (2.8)-(2.11) is based on the Brezzi-Fortin formulation
(2.2)-(2.5) for the Reissner-Mindlin plate model. As pointed out in the previous
section, the equation (2.5) can be replaced by (2.6) in the reformulation of the
Reissner-Mindlin plate problem, yielding a variational form that does not explicitly
depend upon the variable r. Consequently, the last step (2.11) in the Brezzi-Fortin
scheme can be replaced by the following one:

(3’) Find w̃h ∈M4 such that

(3.1) (∇w̃h,∇u) = (φ̄h,∇u) + t2(g, u).

for all u ∈M4.

Note that if M4 ⊂M1, then the scheme (3.1) is the same as the original Brezzi-
Fortin scheme (2.11). In general, (3.1) is easier, simpler, and more accurate than
(2.11).

With the above modification, the new approximation wh of w has the following
simplified and more accurate error estimate:

(3.2) ‖w − w̃h‖1 ≤ C

(
inf
v∈M4

‖w − v‖1 + ‖φ− φ̄h‖
)
.

The proof for (3.2) is straightforward and is left as an exercise.

4. A Finite Element Scheme based on the Least-Squares Surface Fitting

The post-processing technique introduced by Wang [11] is to project (in L2

space) the finite element solution to another finite element space with different and
carefully-designed approximation properties. The projection space is constructed
as a finite element space associated with a coarser mesh with higher order of polyno-
mials than the originally used finite element space in the numerical discretization.
This is essentially a coarsening procedure which eliminates the dominating error of
high oscillation modes in the solution.

The objective of this section is to propose a modification of the Brezzi-Fortin
scheme by using the projection method [11]. To this end, let Tτi

(i = 1, 2, 3, 4) be
four finite element partitions with mesh size τi (i = 1, 2, 3, 4) such that h << τi.
Assume that τi and h have the following relation:

(4.1) τi = hαi , i = 1, 2, 3, 4.

with αi ∈ (0, 1). We will see that αi plays an important role in achieving a super-
convergence for the Brezzi-Fortin’s finite element approximation of the Reissner-
Mindlin plate model.

Let Rτ1 , Φτ2 , Pτ3 and Wτ4 be four finite element spaces consisting of piece-
wise polynomials of degree n1, n2, n3, and n4 associated with the partition Tτi ,
i = 1, 2, 3, 4, respectively. Define Rτ1 , Ψτ2 , Pτ3 and Wτ4 to be the four L2 projec-
tion operators from L2(Ω) onto the finite element spaces Rτ1 , Φτ2 , Pτ3 and Wτ4

respectively. Our modified Brezzi-Fortin finite element scheme is given as follows.

(1) Find rh ∈M1 such that

(4.2) (∇rh, ∇s) = (g, s),

for all s ∈M1.
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(2) Find (φh, ph) ∈M2 ×M3/R such that

(∇φh,∇ψ)− (∇⊥ph,ψ) = (∇Rτ1rh,ψ),(4.3)

−(φh,∇⊥q)− t2(∇⊥ph,∇⊥q) = 0,(4.4)

for all ψ ∈M2 and q ∈M3/R.
(3) Find wh ∈M4 such that

(4.5) (∇wh,∇u) = (Ψτ2φh,∇u) + t2(g, u).

for all u ∈M4.
Analogous to Theorem 2.1, we have the following result.

Theorem 4.1. Let (r,φ, p, w) and (rh,φh, ph, wh) be the solutions of (2.2)-(2.4),
(2.6) and (4.2)-(4.5), respectively. If the inf-sup condition (2.7) is satisfied for the
finite element spaces M2 and M3, then there exists a constant C independent of h
such that

(4.6) ‖r − rh‖1 ≤ C inf
u∈M1

‖r − u‖1,

‖φ− φh‖1 + ‖p− ph‖+ t‖p− ph‖1 ≤ C

(
inf
ψ∈M2

‖φ− ψ‖1

+ t inf
q∈M3

‖p− q‖1 + inf
q∈M3

‖p− q‖+ ‖∇(r −Rτ1rh)‖
)
,(4.7)

and

(4.8) ‖w − wh‖1 ≤ C

(
inf
v∈M4

‖w − v‖1 + ‖φ−Ψτ2φh‖
)
.

The above error estimates do not imply any superconvergence for the Reissner-
Mindlin plate problem. However, they do indicate that the error pollution in the
sequential procedure (from r to φ then to w) can be significantly reduced by us-
ing the projection method. For example, the error estimate (4.7) shows that the
accuracy for φh is dominated by the approximation property of the finite element
spaces M2 and M3, provided that ‖∇(r − Rτ1rh)‖ is arbitrarily small. The same
statement can be made for the numerical approximation wh from the error estimate
(4.8).

5. Superconvergence by L2 Projections

The goal of this section is to show that an appropriately-defined L2 projection
of the finite element approximation (rh,φh, ph, wh) obtained from (4.2)-(4.5) is
superconvergent to the exact solution (r,φ, p, w) of the system (2.2)-(2.4) and (2.6).
The results are stated in Theorem 5.2 for the approximation of φ (the rotation of
the plate fibers normal to Ω) and Theorem 5.4 for the approximation of w (the
transverse deflection of Ω).

With that said, we begin our detailed and tedious analysis as follows.

Lemma 5.1. Assume that the regularity (2.19) holds true with 1 ≤ s ≤ min(2, k1+
1) and Rτ1 ⊂ Hs−2(Ω). Then there exists a constant C independent of h and τ1
such that

(5.1) ‖Rτ1r −Rτ1rh‖ ≤ Chk1+s−1+α1 min (0,2−s)‖r‖k1+1

where α1 ∈ (0, 1) is as defined in (4.1).



A SUPERCONVERGENT SCHEME FOR THE REISSNER-MINDLIN PLATE 105

Proof. See Wang [11].
If the solution of (2.2), r, is sufficiently smooth, then

(5.2) ‖r −Rτ1r‖ ≤ Cτn1+1
1 ‖r‖n1+1 = Chα1(n1+1)‖r‖n1+1.

Combining (5.1) with (5.2), we obtain the following result.

Theorem 5.1. Assume that the regularity (2.19) holds true with 1 ≤ s ≤ min(2, k1+
1) and Rτ1 ⊂ Hs−2(Ω). Then, we have

(5.3) ‖r −Rτ1rh‖+ hα1‖∇τ1(r −Rτ1rh)‖ ≤ Chβ1 (‖r‖n1+1 + ‖r‖k1+1)

where α1 = (k1+s−1)
n1+1−min(0,2−s) and β1 = α1(n1 + 1) and the gradient ∇τ1 should be

taken element by element over Tτ1 .

Next, we move to the analysis for the solution of (4.3)-(4.4).

Lemma 5.2. Assume that the regularity estimate (2.19) holds true with 1 ≤ s ≤
min(2, k2 + 1) and Φτ2 ⊂ Hs−2(Ω). Then there exists a constant C independent of
h and τ2 such that

‖Ψτ2φ−Ψτ2φh‖ ≤ Chmin(k2+s−1,β1)+α2 min(0,2−s)(‖φ‖k2+1

+ ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1)(5.4)

where α2 ∈ (0, 1) is as defined in (4.1).

Proof. The definition of ‖ · ‖ and Ψτ2 implies that

‖Ψτ2φ−Ψτ2φh‖ = sup
γ∈[L2(Ω)]2,‖γ‖=1

|(Ψτ2φ−Ψτ2φh, γ)|

and

(Ψτ2φ−Ψτ2φh, γ) = (φ− φh,Ψτ2γ).

Thus,

‖Ψτ2φ−Ψτ2φh‖ = sup
γ∈[L2(Ω)]2,‖γ‖=1

|(φ− φh,Ψτ2γ)|.

Consider the following problem: find (χ, λ) ∈ [H1
0 (Ω)]2×H1(Ω)/R such that for

all (ψ, q) ∈ [H1
0 (Ω)]2 ×H1(Ω)/R

(∇ψ,∇χ)− (ψ,∇⊥λ) = (Ψτ2γ, ψ)(5.5)

−(∇⊥q, χ)− t2(∇⊥λ,∇⊥q) = 0.(5.6)

Let ψ = φ− φh and q = p− ph in (5.5) and (5.6) respectively. Then adding (5.5)
and (5.6) gives

(Ψτ2γ,φ− φh) = (∇(φ− φh),∇χ)− (φ− φh,∇⊥λ)

−(∇⊥(p− ph), χ)− t2(∇⊥(p− ph),∇⊥λ).(5.7)

Subtracting (4.3) from (2.3) and (4.4) from (2.4) and adding the resulting equations
give that for all ψ ∈M2 and q ∈M3

(∇(φ− φh),∇ψ)− (∇⊥(p− ph), ψ)− (φ− φh,∇⊥q)
−t2(∇⊥(p− ph),∇⊥q) = (∇(r −Rτ1rh), ψ).(5.8)
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Subtracting the above equation from (5.7) and using (2.19), we have

|(Ψτ2γ,φ− φh)| ≤ inf
ψ∈M2,q∈M3

|(∇(φ− φh),∇(χ− ψ))− (φ− φh,∇⊥(λ− q))

− (∇⊥(p− ph), χ− ψ)− t2(∇⊥(p− ph),∇⊥(λ− q))
− (∇(r −Rτ1rh), ψ)|
≤ Chs−1‖φ− φh‖1‖χ‖s + hs−1‖φ− φh‖1‖λ‖s−1

+ hs−1‖p− ph‖‖χ‖s
+ t2hs−1‖p− ph‖1‖λ‖s + ‖r −Rτ1rh‖‖χ‖s
≤ C(hk2+s−1‖φ‖k2+1‖Ψτ2γ‖s−2 + hk2+s−1‖p‖k2+1‖Ψτ2γ‖s−2

+ hβ1(‖r‖n1+1 + ‖r‖k1+1)‖Ψτ2γ‖s−2.

Hence, the desired estimate (5.4) follows from the above with an application of the
inverse inequality. �

Theorem 5.2. Assume that the regularity estimate (2.19) holds true with 1 ≤ s ≤
min(2, k2 + 1) and Φτ2 ⊂ Hs−2(Ω). Then, we have

‖φ−Ψτ2φh‖ + hα2‖∇τ2(φ−Ψτ2φh)‖ ≤ Chβ2(‖φ‖n2+1 + ‖φ‖k2+1 + ‖p‖k2+1

+ ‖r‖n1+1 + ‖r‖k1+1)(5.9)

where α2 = min{k2+s−1,β1}
n2+1−min(0,2−s) and β2 = α2(n2 + 1).

Proof. By the definition of Ψτ2 , we have

(5.10) ‖φ−Ψτ2φh‖ ≤ Cτn2+1
2 ‖φ‖n2+1 = Chα2(n2+1)‖φ‖n2+1.

Combining (5.4) and (5.10) gives

‖φ−Ψτ2φh‖ ≤ ‖φ−Ψτ2φ‖+ ‖Ψτ2φ−Ψτ2φh‖ ≤ Chα2(n2+1)‖φ‖n2+1

+ Chmin(k2+s−1,β1)+α2 min (0,2−s)(‖φ‖k2+1

+ ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1).

The above error estimate can be optimized by choosing α2 such that

α2(n2 + 1) = min (k2 + s− 1, β1) + α2 min (0, 2− s).

Solving the above equation gives

(5.11) α2 =
min(k2 + s− 1, β1)
n2 + 1−min(0, 2− s)

.

Thus,

‖φ−Ψτ2φh‖ ≤ Chβ2(‖φ‖n2+1 + ‖φ‖k2+1 + ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1)

with β2 = min (k2+s−1,β1)(n2+1)
n2+1−min(0,2−s) .

The gradient term ‖∇τ2(φ−Ψτ2φh)‖ can be estimated in a similar manner, and
is thus omitted. �

Lemma 5.3. Assume that (2.19) holds true with 1 ≤ s ≤ min(2, k2 + 1) and
Pτ3 ⊂ Hs−2(Ω). Then there exists a constant C independent of h and τ3 such that

‖Pτ3p− Pτ3ph‖ ≤ Chmin(k2+s−1,β1)+α3 min (0,2−s)(‖φ‖k2+1

+ ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1)(5.12)

where α3 ∈ (0, 1) is as defined in (4.1).
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Proof. The definition of ‖ · ‖ and Pτ3 gives

‖Pτ3p− Pτ3ph‖ = sup
γ∈L2(Ω),‖γ‖=1

|(Pτ3p− Pτ3ph, γ)|

and
(Pτ3p− Pτ3ph, γ) = (p− ph,Pτ3γ).

Then
‖Pτ3p− Pτ3ph‖ = sup

γ∈L2(Ω),‖γ‖=1

|(p− ph,Pτ3γ)|.

Consider the following problem: find (ξ, µ) ∈ [H1
0 (Ω)]2×H1(Ω)/R such that for

all (ψ, q) ∈ [H1
0 (Ω)]2 ×H1(Ω)/R

(∇ψ,∇ξ)− (ψ,∇⊥µ) = 0,(5.13)

−(∇⊥q, ξ)− t2(∇⊥µ,∇⊥q) = (Pτ3γ, q).(5.14)

Let ψ = φ − φh and q = p − ph in (5.13) and (5.14) respectively. Then adding
(5.13) and (5.14) gives

(Pτ3γ, p− ph) = (∇(φ− φh),∇ξ)− (φ− φh,∇⊥µ)

− (∇⊥(p− ph), ξ)− t2(∇⊥(p− ph),∇⊥µ).(5.15)

Subtracting (5.8) from (5.15) and using (2.19), we have that for all ψ ∈M2 and
q ∈M3

|(Pτ3γ, p− ph)| ≤ inf
ψ∈M2,q∈M3

|(∇(φ− φh),∇(ξ − ψ))− (φ− φh,∇⊥(µ− q))

− (∇⊥(p− ph), ξ − ψ)− t2(∇⊥(p− ph),∇⊥(µ− q))
− (∇(r −Rτ1rh), ψ)|
≤ Chs−1‖φ− φh‖1‖ξ‖s + hs−1‖φ− φh‖1‖µ‖s−1

+ hs−1‖p− ph‖‖ξ‖s
+ t2hs−1‖p− ph‖1‖µ‖s + ‖r −Rτ1rh‖‖χ‖s
≤ C(hk2+s−1‖φ‖k2+1‖Pτ3γ‖s−2 + hk2+s−1‖p‖k2+1‖Pτ3γ‖s−2

+ hβ1(‖r‖n1+1 + ‖r‖k1+1‖Pτ3γ‖s−2.(5.16)

Hence, the desired estimate (5.12) follows from the inverse inequality. �

The following is a superconvergence result for the auxiliary variable p which was
introduced by using the Helmholtz decomposition (2.1).

Theorem 5.3. Assume that (2.19) holds true with 1 ≤ s ≤ min(2, k2 + 1) and
Pτ3 ⊂ Hs−2(Ω). Then, we have

‖p− Pτ3ph‖ + hα3‖∇τ3(p− Pτ3ph)‖ ≤ Chβ3(‖p‖n3+1 + ‖φ‖k2+1

+ ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1)(5.17)

where α3 = min (k2+s−1,β1)
n3+1−min(0,2−s) and β3 = α3(n3 + 1).

Proof. By the definition of Pτ3 , we have

(5.18) ‖p− Pτ3p‖ ≤ Cτn3+1
3 ‖p‖n3+1 = Chα3(n3+1)‖p‖n3+1.

Combining (5.12) and (5.18) gives

‖p− Pτ3ph‖ ≤ ‖p− Pτ3p‖+ ‖Pτ3p− Pτ3ph‖ ≤ Chα3(n3+1)‖p‖n3+1

+ Chmin(k2+s−1,β1)+α3 min(0,2−s)(‖φ‖k2+1 + ‖p‖k2+1

+ ‖r‖n1+1 + ‖r‖k1+1).
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The above error estimate can be optimized by choosing α3 such that

α3(n3 + 1) = min(k2 + s− 1, β1) + α3 min (0, 2− s).

Solving the above equation gives

(5.19) α3 =
min(k2 + s− 1, β1)
n3 + 1−min(0, 2− s)

.

Thus

‖p− Pτ3ph‖ ≤ Chβ3(‖p‖n3+1 + ‖φ‖k2+1 + ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1)

where β3 = min(k2+s−1,β1)(n3+1)
n3+1−min(0,2−s) .

The gradient term ‖∇τ3(p−Pτ3ph)‖ can be estimated in a similar manner, and
is thus omitted. �

The rest of this section is devoted to a superconvergence for the approximation
of the transverse deflection of the plate.

Lemma 5.4. Assume that (2.19) holds true with 1 ≤ s ≤ min(2, k3 + 1) and
Wτ4 ⊂ Hs−2(Ω). Then there exists a constant C independent of h and τ4 such that

‖Wτ4w −Wτ4wh‖ ≤ Chmin(k3+s−1,β2)+α4 min (0,2−s)(‖φ‖k2+1 + ‖p‖k2+1

+ ‖w‖k3+1 + ‖φ‖n2+1 + ‖r‖n1+1 + ‖r‖k1+1)(5.20)

where α4 ∈ (0, 1) is as defined in (4.1).

Proof. The definition of ‖ · ‖ and Wτ4 gives

‖Wτ4w −Wτ4wh‖ = sup
γ∈L2(Ω),‖γ‖=1

|(Wτ4w −Wτ4wh, γ)|

and
(Wτ4w −Wτ4wh, γ) = (w − wh,Wτ4γ).

Then
‖Wτ4w −Wτ4wh‖ = sup

γ∈L2(Ω),‖γ‖=1

|(w − wh,Wτ4γ)|.

Consider the following problem: find ω ∈ H1
0 (Ω) such that

(5.21) (∇ψ,∇ω) = (Wτ4γ, ψ) ∀ ψ ∈ H1
0 (Ω).

Subtracting (4.5) from (2.6) gives

(5.22) (∇(w − wh),∇u) = (φ−Ψτ2φh,∇u) ∀u ∈M4.

Let ψ = w − wh in (5.21). Using (5.22), we have

(Wτ4γ,w − wh) = (∇(ω − u),∇(w − wh)) + (φ−Ψτ2φh,∇u).

Thus,

|(Wτ4γ,w − wh)| ≤ sup
u∈M4

|(∇(ω − u),∇(w − wh)) + (φ−Ψτ2φh,∇u)|

≤ C
(
hk3+s−1‖w‖k3+1‖ω‖s + ‖φ−Ψτ2φh‖‖ω‖s

)
≤ Chmin(k3+s−1,β2) (‖w‖k3+1 + ‖φ‖n2+1 + ‖φ‖k2+1

+ ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1) ‖Wτ4γ‖s−2,

which, together with an use of the standard inverse inequality, gives rise to (5.20).
�

A similar analysis can be applied to yield the following result.
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Theorem 5.4. Assume that (2.19) holds true with 1 ≤ s ≤ min(2, k3 + 1) and
Wτ4 ⊂ Hs−2(Ω). Then, we have

‖w −Wτ4wh‖ + hα4‖∇τ4(w −Wτ4wh)‖ ≤ Chβ4(‖w‖n4+1 + ‖w‖K3+1

+ ‖φ‖k2+1 + ‖φ‖n2+1 + ‖p‖k2+1 + ‖r‖n1+1 + ‖r‖k1+1)

where α4 = min (k3+s−1,β2)
n4+1−min(0,2−s) and β4 = α4(n4 + 1).

6. An Application

In this section, we will apply the results derived in the previous section to an
element introduce by Brezzi and Fortin [3]. In this finite element method, the finite
element spaces M1, M2, M3 and M4 are given as follows:

M1 = {u : u ∈ H1
0 (Ω), u|T ∈ P1, ∀ T ∈ T h},

M2 = [M1 ⊕B3]2,

M3 = {q : q ∈ H1(Ω), q|T ∈ P1, ∀T ∈ T h},
M4 = M1,

where B3 is the cubic bubble function and T h is a regular triangulation of the
domain Ω. Let (r,φ, p, w) and (r̄h, φ̄h, p̄h, w̄h) be the solutions of (2.2)-(2.5) and
(2.8)-(2.11) respectively. The following estimate was obtained in [3].

‖r − r̄h‖1 + ‖φ− φ̄h‖1 + ‖p− p̄h‖+ t‖p− p̄h‖1 + ‖w − w̄h‖1 ≤ Ch‖g‖.
Recall that the results established in Section 5 are based on Hs-regularity for

the problems (2.2)-(2.5) with 1 ≤ s ≤ ki + 1 with i = 1, 2, 3. For this element, we
have k1 = k2 = k3 = 1. Therefore, the problem (2.2)-(2.5) must have Hs-regularity
(1 ≤ s ≤ 2) in order to make use of those estimates. For simplicity, assume that
the problem has H2-regularity.

The fitting finite element space Rτ1 , Φτ2 , Pτ3 and Wτ4 must be selected to be
subsets of Hs−2(Ω). Since s = 2, we see that Rτ1 , Φτ2 , Pτ3 and Wτ4 could be chosen
as finite element spaces consisting of discontinuous piecewise polynomials of degree
n1, n2, n3 and n4 respectively. Let (rh,φh, ph, wh) be the solution of (4.2)-(4.5).
Using Theorems 5.1–5.4 we obtain the following estimates:

‖r −Rτ1rh‖ ≤ Ch2(‖r‖n1+1 + ‖r‖2)
and

‖∇τ1(r −Rτ1rh)‖ ≤ Ch
2n1

n1+1 (‖r‖n1+1 + ‖r‖2).
Since β1 = 2, we have

‖φ−Ψτ2φh‖ ≤ Ch2(‖φ‖2 + ‖φ‖n2+1 + ‖p‖2 + ‖r‖n1+1 + ‖r‖2),

‖∇τ2(φ−Ψτ2φh)‖ ≤ Ch
2n2

n2+1 (‖φ‖2 + ‖φ‖n2+1 + ‖p‖2 + ‖r‖n1+1 + ‖r‖2),
‖p− Pτ3ph‖ ≤ Ch2(‖φ‖2 + ‖p‖n3+1 + ‖p‖2 + ‖r‖n1+1 + ‖r‖2),

and

‖∇τ3(p− Pτ3ph)‖ ≤ Ch
2n3

n3+1 (‖φ‖2 + ‖p‖n3+1 + ‖p‖2 + ‖r‖n1+1 + ‖r‖2).
Since β1 = β2 = 2, it follows that

‖w−Wτ4wh‖ ≤ Ch2(‖w‖n4+1 + ‖w‖2 + ‖φ‖2 + ‖φ‖n2+1 + ‖p‖2 + ‖r‖n1+1 + ‖r‖2),
and

‖∇τ4(w −Wτ4wh)‖ ≤ Ch
2n4

n4+1 (‖w‖2 + ‖w‖n4+1 + ‖φ‖2
+ ‖φ‖n2+1 + ‖p‖2 + ‖r‖n1+1 + ‖r‖2).
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We view Ψτ2φh and Wτ4wh as new approximate solutions to the unknown func-
tions φ and w. The above estimates certainly do not indicate any sort of super-
convergence for this new set of approximations in the L2 norm. However, super-
convergence for the gradient of the variables can be achieved. For example, with
n1 = n2 = n3 = n4 = 2 (piecewise quadratic elements), the post-processed approx-
imation Rτ1rh, Ψτ2φh, Pτ3ph and Wτ4wh have the following superconvergence:

‖∇τ1(r −Rτ1rh)‖ ≤ Ch
4
3 (‖r‖3 + ‖r‖2),

‖∇τ2(φ−Ψτ2φh)‖ ≤ Ch
4
3 (‖φ‖2 + ‖φ‖3 + ‖p‖2 + ‖r‖3 + ‖r‖2),

‖∇τ3(p− Pτ3ph)‖ ≤ Ch
4
3 (‖φ‖2 + ‖p‖3 + ‖p‖2 + ‖r‖3 + ‖r‖2),

and

‖∇τ4(w −Wτ4wh)‖ ≤ Ch
4
3 (‖w‖2 + ‖w‖3 + ‖φ‖2 + ‖p‖3 + ‖p‖2 + ‖r‖3 + ‖r‖2).

Assume that the exact solution is sufficiently smooth. Then it can be shown
that

‖∇τ1(r −Rτ1rh)‖ ≈ O(h2), as n1 →∞
Similar results can be established for the approximate solution Ψτ2φh and Wτ4wh.
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