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THE MECHANICAL BEHAVIOR OF A POROELASTIC
MEDIUM SATURATED WITH A NEWTONIAN FLUID
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Abstract. In this paper we systematically derive, via the theory of homoge-

nization, the macroscopic equations for the mechanical behavior of a deformable

porous medium saturated with a Newtonian fluid. The derivation is first based

on the equations of linear elasticity in the solid, the Stokes equations for the

fluid, and suitable conditions at the fluid-solid interface. A detailed comparison

between the equations derived here and those by Biot is given. The homog-

enization approach determines the form of the macroscopic constitutive rela-

tionships between variables and shows how to compute the coefficients in these

relationships. The derivation is then extended to the nonlinear Navier-Stokes

equations for the fluid in the deformable porous medium for the first time. A

generalized Forchheimer law is obtained to take into account the nonlinear in-

ertial effects on the flow of the Newtonian fluid through such a medium. Both

quasi-static and transient flows are considered in this paper. The properties

of the macroscopic coefficients are studied. The computational results show

that the macroscopic equations predict well the behavior of the microscopic

equations in certain reasonable test cases.
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1. Introduction

We have recently employed the theory of homogenization to derive the Forch-
heimer law directly from the nonlinear Navier-Stokes equation in a rigid porous
medium [11]. Unlike other studies based on the same approach that concluded
the nonlinear correction to be cubic in velocity for an isotropic medium, our work
has shown that the nonlinear correction is quadratic. In this paper we extend the
techniques in [11] to a deformable porous medium.

The macroscopic mechanical behavior of a deformable porous medium has been
studied by Biot [5, 6, 7] by means of an intuitive approach. Later studies have been
based on mixture theory and constitutive assumptions [12]. Recent studies have
utilized a group of averaging approaches [1, 9, 22] for treating Stokes flow through a
periodic deformable medium. These averaging approaches have reproduced Biot’s
equations and shown how to calculate the coefficients in these equations. In this
paper Stokes flow through a deformable medium is further examined by adapting
the approach in [11]. This approach is simpler and is more direct than those in
[1, 9, 22] since lower-order approximation terms are used, while higher-order terms
were exploited in [1, 9, 22]. Also, the coefficients in the macroscopic equations are
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studied here in detail and a detailed comparison between the equations we obtain
and those by Biot is given. Finally, we analyze the nonlinear Navier-Stokes flow in
the framework of a deformable porous medium for the first time.

The approach in [11] is based on the theory of two-scale homogenization [4, 20].
The two-scale homogenization for a periodic porous medium averages the detailed
microstructure of the pores and yields a set of simpler, macroscopic equations.
This is achieved by a careful scaling of the microscopic equations by the ratio of
two length scales associated with the microscopic and macroscopic phenomena in
the periodic medium.

To compare the present theory with Biot’s theory [5, 6, 7] for deformable porous
medium flow, we carry out the analysis by starting with the equations of linear
elasticity in the solid, the Stokes equations for the fluid, and suitable equations
at the solid-fluid interface. The macroscopic equations derived here coincide with
Biot’s equations in the case where the scaled viscosity (see the definition in the
next section) of the fluid is small. Moreover, the present theory determines the
form of the macroscopic constitutive relationships between variables and shows
how to compute the coefficients in these relationships. In the case where the scaled
viscosity is large, we derive different differential equations and constitutive rela-
tionships. Two situations in this case are investigated. The first situation concerns
the elastic single-phase behavior of the porous system, while the second concerns
the viscoelastic single-phase behavior of this system.

We then extend the analysis to the nonlinear Navier-Stokes equations for the
fluid. When these nonlinear equations are analyzed in the framework of a de-
formable medium, the situation is more complicated. It is well known that the
simplest law for describing the flow of a fluid in a porous medium is the law ob-
tained by Darcy (1856) [13]. Derived from empiricism, this law indicates a linear
relationship between the fluid velocity relative to the solid and the pressure gra-
dient. Subsequently, Dupuit (1863) [14] and Forchheimer (1901) [15] gave further
empirical evidence that the linearity in Darcy’s law does not hold for high rates of
fluid flow and generalized this law in a nonlinear fashion (i.e., Forchheimer’s law).
In this paper we derive a generalized Forchheimer law for a deformable porous
medium to take into account the nonlinear inertial effects on the fluid flow through
such a medium.

The paper is organized as follows. In the next section we consider Stokes flow.
Then, in the third section we analyze Navier-Stokes flow. The quasi-static case is
considered in these two sections. Transient inertial effects are taken into account
in the fourth section. In the fifth section we present a computational validation of
some of the homogenized models derived. Concluding remarks are stated in the last
section. The properties of the macroscopic coefficients are studied in the appendix.
We end with two remarks. First, vectors and matrices will be represented by bold
face variables, and the rectangular coordinates in <3 are denoted by x = (x1, x2, x3)
(not in bold face). Second, in this paper we focus on the systematical derivation
of the macroscopic equations for the mechanical behavior of a deformable porous
medium saturated with a Newtonian fluid via homogenization, the comparison of
the present theory with Biot’s, and the study of properties of macroscopic coeffi-
cients. A convergence proof of the homogenization approach in the present setting
is beyond the scope of this paper.
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2. Stokes Flow through a Deformable Medium

The development in this section is similar to that in the paper [9]. A quasi-
static case is treated here, while a transient problem was considered in [9]. Also,
the material in Section 2.2 appears new. Moreover, the properties of macroscopic
coefficients are studied in this paper.

Let Ω be a bounded deformable porous medium in <3. We assume that Ω is
connected but not necessarily simply-connected. It is composed of a linear elastic
material and its deformation is small. We study the quasi-static evolution of this
medium, which is saturated with a viscous Newtonian fluid. Let Ω = Ωs∪Ωf , with
Ωs and Ωf being the solid and fluid regions, respectively. The Navier equation in
Ωs, the Stokes equation in Ωf , and the continuity equations of the normal stress
and the displacement at the solid-fluid interface Γfs are stated as follows:

(2.1)

∇ · σs + ρsg = 0 in Ωs,

σs = ae(us) in Ωs,

∇ · σf + ρfg = 0 in Ωf ,

σf = −pI + 2µe(v) in Ωf ,

∇ · v = 0 in Ωf ,

σs · n = σf · n on Γfs,

us = uf on Γfs,

where the solid has the stress tensor σs, density ρs, displacement us, and fourth
rank elastic tensor a, the fluid has the stress tensor σf , density ρf , pressure p,
viscosity µ, velocity v, and displacement uf , I is the identity tensor, n is the
unit normal to Γfs (pointing to the solid), ρsg (or ρfg) is an external body force
per volume, and ∇· indicates the divergence operator. The strain tensor e(us) =
(eij)i,j=1,2,3 is defined by

(2.2) eij =
1
2

(
∂usi

∂xj
+

∂usj

∂xi

)
, i, j = 1, 2, 3, us = (us1, us2, us3);

a similar definition can be given for e(v). The elastic tensor a = (aijkh) is assumed
constant (not essential for the later analysis and results) and satisfies the property
of symmetry and positivity

(2.3)
aijkh = ajikh = aijhk = akhij , i, j, k, h = 1, 2, 3,

aijkhzijzkh ≥ a∗zijzij , a∗ > 0,

where (zij) is a symmetric tensor and the convention that repeated indices indicate
a summation is used.

We now consider the homogenization procedure for (2.1). The important char-
acteristics of this procedure is existence of two vastly different length scales: the
microscale l, which characterizes the typical layer thickness, and the macroscale L,
which characterizes the global variation of external forces and boundary data. Let
ε = l/L, with ε ¿ 1.

Let the porous medium Ω have a periodic microstructure with period Y , where
Y = Yf ∪ Ys, with Yf and Ys being the fluid and solid parts, respectively. Define

(2.4) Ωεf = Ω ∩ {x : x ∈ εYf}.
In this paper we only consider a formal expansion of the solution in (2.1), and the
boundary of Ω does not play a role in this expansion. Consequently, let Ω = <3,
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and define

(2.5) Ωεf = {x : x ∈ εYf}.
The domain Ωεs can be defined in the same fashion.

We now consider the scaled problem

(2.6)

∇ · σε
s + ρsg = 0 in Ωεs,

σε
s = ae(uε

s) in Ωεs,

∇ · σε
f + ρfg = 0 in Ωεf ,

σε
f = −pεI + 2µεβe(vε) in Ωεf ,

∇ · vε = 0 in Ωεf ,

σε
s · n = σε

f · n on Γεfs,

uε
s = uε

f on Γεfs,

where we have scaled the viscosity coefficient through εβ (β is to be determined
below). Note that a different scaling is used here from that in [2], where higher
order approximations (e.g., σ2; see (2.9) below) have to be used due to the scaling
used there. In particular, the continuity equations at the solid-fluid interface were
scaled in [2].

Following the custom of homogenization, we assume that any point is described
by two coordinates: x ∈ Ω describing the general location of the point and y ∈ Y
giving the location of the point within the ε-cell εY . Obviously, x and y are related
by the constant ε:

(2.7) y ∼ ε−1x,

(up to translation). Consequently, by the chain rule the relation holds

(2.8) ∇ ∼ ∇x + ε−1∇y,

where ∇x and ∇y represent the gradient operators with respect to x and y, respec-
tively. Assuming that the solution to (2.6) behaves as if it was a function of these
two coordinates and that it can be expanded in a power series in terms of ε, the
stress, displacement, velocity, and pressure are then expanded in the asymptotic
form

(2.9)

σε
α(x, t) = σ0

α(x, y, t) + ε1σ1
α(x, y, t) + . . . , α = s, f,

uε
α(x, t) = u0

α(x, y, t) + ε1u1
α(x, y, t) + . . . , α = s, f,

vε(x, t) = v0(x, y, t) + ε1v1(x, y, t) + . . . ,

pε(x, t) = p0(x, y, t) + ε1p1(x, y, t) + . . . ,

where σi
α, ui

α, vi, and pi are Y -periodic in y, x ∈ Ω, y ∈ Yf . We shall substitute
(2.9) into (2.6), apply (2.8), and analyze the resulting equations. Before this, we
need to determine the value of β in (2.6).

2.1. Fluid-solid macroscopic behavior. Different choices for the value of β lead
to different macroscopic equations for the deformable medium considered. Note
that, with ∆ being the Laplacian operator, it follows from (2.8) that

(2.10) ∆ ∼ ∆xx + 2ε−1∇y ·∇x + ε−2∆yy,

where ∆xx and ∆yy denote the Laplacian operators with respect to x and y, re-
spectively. Also, by the third, fourth, and fifth equations of (2.6), we see that

(2.11) −∇pε + µεβ∆vε + ρfg = 0.
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From (2.10) and (2.11) we see that a suitable choice for β is two in order for the
leading term v0 to be significant. In this subsection we take β = 2; other choices
will be considered in later subsections. The choice of β = 2 can be also seen as
follows. We assume that the quantity µ/l2, appropriate to the microscale, is of
order unity. Thus this quantity, appropriate to the macroscale µ/L2, is of order ε2.
To accomplish this, we scale µ in (2.6) by ε2.

We now substitute (2.9) into (2.6) with β = 2, apply (2.8), and collect terms
with like powers of ε. The ε−1 term of the first, second, third, and fifth equations
and the ε0 term of the fourth, sixth, and seventh equations in (2.6) yield

(2.12)

∇y · σ0
s = 0 in Ys,

aey(u0
s) = 0 in Ys,

∇y · σ0
f = 0 in Yf ,

σ0
f = −p0I in Yf ,

∇y · v0 = 0 in Yf ,

σ0
s · n = σ0

f · n on Yfs,

u0
s = u0

f on Yfs,

where Yfs is the interface between Yf and Ys, and the ε0 term of the first, second,
third, and fifth equations and the ε1 term of the fourth, sixth, and seventh equations
in (2.6) lead to

(2.13)

∇x · σ0
s + ∇y · σ1

s + ρsg = 0 in Ys,

σ0
s = aex(u0

s) + aey(u1
s) in Ys,

∇x · σ0
f + ∇y · σ1

f + ρfg = 0 in Yf ,

σ1
f = −p1I + 2µey(v0) in Yf ,

∇x · v0 + ∇y · v1 = 0 in Yf ,

σ1
s · n = σ1

f · n on Yfs,

u1
s = u1

f on Yfs.

We now analyze these equations.
First, by the third and fourth equations of (2.12), we have

(2.14) −∇yp0(x, y, t) = 0.

This implies that

(2.15) p0 = p0(x, t),

and, consequently,

(2.16) σ0
f = σ0

f (x, t).

That is, p0 and σ0
f are independent of y. This corresponds to the intuition that

the local average of p and σf does not oscillate. Also, using the second equation of
(2.12) and assumption (2.3) on a, we find that

(2.17) u0
s = u0

s(x, t).

Second, it follows from the fourth and seventh equations of (2.12) and the third
and fourth equations of (2.13) that

(2.18)
µ∆yv0 = ∇yp1 − ρfg + ∇xp0 in Yf ,

∇y · v0 = 0 in Yf ,

v0 = u̇0
s on Yfs,
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where u̇0
s denotes the differentiation of u0

s with respect to time. This is a Stokes
problem with an inhomogeneous boundary condition, which can be solved as fol-
lows. The usual Sobolev spaces Wm,π(Ω) with the norm ‖ · ‖W m,π(Ω) will be used,
where m is a nonnegative integer and 0 ≤ π ≤ ∞. When π = 2, we simply write
Hm(Ω) = Wm,2(Ω). When m = 0, we have L2(Ω) = H0(Ω). Below (·, ·)Q denotes
the L2(Q) inner product (or sometimes the duality pairing). For notational con-
venience, (Hm(Ω))3 will be simply indicated by Hm(Ω). Also, we introduce the
space of Y -periodic functions

(2.19) VY = {w ∈ H1(Yf ) : w|Yfs
= 0, ∇y ·w = 0, and Y -periodic},

equipped with the inner product

(2.20) (∇yw1, ∇yw2)Yf
≡

∫

Yf

∇yw1 ·∇yw2 dy, w1, w2 ∈ VY .

Note that VY is a Hilbert space and the associated norm is equivalent to the usual
H1(Yf )-norm.

For i = 1, 2, 3, define Ki ∈ VY to be the solution of

(2.21) (∇yKi, ∇yw)Yf
= (1, wi)Yf

∀w = (w1, w2, w3) ∈ VY .

The tensor K is defined by

(2.22) K = (Ki
j)i,j=1,2,3.

Now, the velocity v0 in (2.18) is expressed by

(2.23) v0 − u̇0
s =

K
µ

(ρfg −∇xp0).

For any generic function φ defined on Y (respectively, on Yf and Ys), we introduce
its volume average over Y (respectively, on Yf and Ys) by

(2.24) 〈φ〉α =
1
|Y |

∫

Yα

φ(y)dy,

where |Y | indicates the volume of Y and α is empty, f , or s. We now apply the
average operator 〈·〉f to (2.23):

(2.25)
〈
v0

〉f − φu̇0
s =

〈K〉f
µ

(ρfg −∇xp0),

where φ = |Yf |/|Y | is the porosity. This is the generalized Darcy law in the setting
of a deformable porous medium. The matrix 〈K〉f is the permeability tensor.

Third, apply the first and sixth equations of (2.12), the second equation of (2.13),
and (2.17) to see that

(2.26)
∇y ·

[
aey(u1

s)
]

= 0 in Ys,

aey(u1
s) · n = − [

aex(u0
s) + p0I

] · n on Yfs.

This system forms an elliptic problem in y for u1
s that can be solved in terms of

ex(u0
s) and p0. To this end, for each k and h (k, h = 1, 2, 3) we define the vector

ξkh(y) to be the solution of

(2.27)
∇y ·

[
aey(ξkh)

]
= 0 in Ys,

aey(ξkh) · n = −aẽ · n on Yfs,

where the tensor ẽ = (ẽij) is given by

(2.28) ẽij = δikδjh, i, j = 1, 2, 3,
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with δik being the Kronecker symbol. Also, let the vector ζ(y) satisfy

(2.29)
∇y · [aey(ζ)] = 0 in Ys,

aey(ζ) · n = −I · n on Yfs.

Now, u1
s can be represented in terms of ξkh and ζ:

(2.30) u1
s = ξ(y) · ex(u0

s) + ζ(y)p0, ξ = (ξkh),

up to an additive function of x and t; since only ∇y ·u1
s is used below, the ambiguity

in this additive function is irrelevant. Utilizing the second equation of (2.13) and
(2.30), we obtain

(2.31) σ0
s = aex(u0

s) + aey(ξ)ex(u0
s) + aey(ζ)p0.

The total stress is defined as

(2.32) σ0
T =

{
σ0

f in Yf ,

σ0
s in Ys.

Averaging σ0
T over Y and using the fourth equation of (2.12) and (2.31), we see

that

(2.33)
〈
σ0

T

〉
= 〈a{I + ey(ξ)}〉s · ex(u0

s) + (〈aey(ζ)〉s − φI) p0.

Fourth, integration of the first equation of (2.13) over Ys leads to

(2.34)
∫

Ys

∇x · σ0
sdy +

∫

Ys

∇y · σ1
sdy +

∫

Ys

ρsgdy = 0.

Applying the divergence theorem, the periodicity condition, and the sixth equation
of (2.13) to the second term in the left-hand side of this equation, we obtain

(2.35)
∫

Ys

∇x · σ0
sdy +

∫

Yfs

σ1
f · ndτ +

∫

Ys

ρsgdy = 0.

Again, applying the divergence theorem, the periodicity condition, and the third
equation of (2.13) to the second term in the left-hand side of this equation, we see
that

(2.36)
∫

Y

∇x · σ0
T dy +

∫

Ys

ρsgdy +
∫

Yf

ρfgdy = 0.

The mass density of the bulk material is defined as

(2.37) ρ =

{
ρf in Yf ,

ρs in Ys.

Then, by dividing by |Y |, (2.36) implies that

(2.38) ∇x ·
〈
σ0

T

〉
+ 〈ρ〉g = 0.

In the derivation of (2.38), we have used a so-called volume averaging theorem
[10, 22], which, together with the periodicity condition, implies that

〈∇x · σ0
T

〉
=

∇x ·
〈
σ0

T

〉
.

Finally, integrating the fifth equation of (2.13) over Yf , we find

(2.39)
∫

Yf

∇x · v0dy +
∫

Yf

∇y · v1dy = 0.
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Applying the divergence theorem, the periodicity condition, and the seventh equa-
tion of (2.13) to the second term in the left-hand side of this equation, we get

(2.40)
∫

Yf

∇x · v0dy = −
∫

Yfs

u̇1
s · ndτ.

Then it follows from a further application of the divergence theorem and periodicity
condition and use of (2.30) that

(2.41)
∫

Yf

∇x · v0dy =
∫

Ys

(∇y · ξ) · ex(u̇0
s)dy +

∫

Ys

∇y · ζṗ0dy,

i.e.,

(2.42) ∇x ·
(〈

v0
〉f − φu̇0

s

)
= (〈∇y · ξ〉s − φI) · ex(u̇0

s) + 〈∇y · ζ〉s ṗ0.

2.1.1. The macroscopic equations. The macroscopic equations are given by
(2.25), (2.33), (2.38), and (2.42). It follows from (2.27) and (2.29) that (see Ap-
pendix)

(2.43) 〈aey(ζ)〉s = 〈∇y · ξ〉s .

Introducing the notation

(2.44) c = 〈a{I + ey(ξ)}〉s , α = 〈aey(ζ)〉s − φI, γ = 〈∇y · ζ〉s ,

we can rewrite the macroscopic equations as follows:

(2.45)

〈
σ0

T

〉
= c · ex(u0

s) + αp0,

∇x ·
〈
σ0

T

〉
+ 〈ρ〉g = 0,

〈
v0

〉f − φu̇0
s = 〈K〉f (ρfg −∇xp0)/µ,

∇x ·
(〈

v0
〉f − φu̇0

s

)
= α · ex(u̇0

s) + γṗ0.

We summarize the properties of the coefficients here. First, it can be shown that
〈K〉f is symmetric and positive definite [20]. Also, note that α = (αij) satisfies

(2.46) αij = 〈aijkheykh(ζ)〉s − φIij = αji,

i.e., α is symmetric. Next, with c = (cijkh), it is proven in the appendix that

(2.47)
cijkh = cjikh = cijhk = ckhij , i, j, k, h = 1, 2, 3,

cijkhzijzkh ≥ c∗zijzij , a∗ > 0,

where (zij) is a symmetric tensor. That is, c is symmetric and positive-definite.
Finally, in the appendix we show that γ < 0. c, α, and γ are the elastic coefficients.

2.1.2. Comparison with Biot’s model. Let us recall the Biot’s macroscopic
equations for an anisotropic medium [6]. First, using Biot’s notation, equation
(2.16) in [6] reads as follows:

(2.48)



−∂p/∂x + ρfX

−∂p/∂y + ρfY

−∂p/∂z + ρfZ


 =




kxx kxy kxz

kyx kyy kyz

kzx kzy kzz




−1 


U̇x − u̇x

U̇y − u̇y

U̇z − u̇z


 .

This equation coincides with the third equation of (2.45) since it can be written,
with

〈
v0

〉f = φu̇0
f , as

(2.49) u̇0
f − u̇0

s =
〈K〉f
φµ

(ρfg −∇xp0).
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Notice the correspondence between our notation and Biot’s:

(2.50) U = u0
f , u = u0

s, g = (X, Y, Z), p = p0, kij =
1

|Yf |µ
∫

Yf

Ki
jdy.

Next, equation (2.15) in [6] is stated as follows:

(2.51)

∂

∂x
(σxx + σ) +

∂σxy

∂y
+

∂σxz

∂z
+ ρX = 0,

∂σyx

∂x
+

∂

∂y
(σyy + σ) +

∂σyz

∂z
+ ρY = 0,

∂σzx

∂x
+

∂σzy

∂y
+

∂

∂z
(σzz + σ) + ρZ = 0.

This is exactly the second equation of (2.45) since σ = −fp in Biot’s notation (f
is φ in the present notation). Finally, equation (2.12) in [6] is written as

(2.52)




σxx

σyy

σzz

σyz

σzx

σxy

σ




=




c11 c12 c13 c14 c15 c16 c17

c22 c23 c24 c25 c26 c27

c33 c34 c35 c36 c37

c44 c45 c46 c47

c55 c56 c57

c66 c67

c77







exx

eyy

ezz

eyz

ezx

exy

ε




,

where cij = cji (i.e., the coefficient matrix is symmetric). Again, (2.52) is stated
in Biot’s notation, which may have a different meaning than the notation in this
paper. In [6], ε = εxx + εyy + εzz, for example, where εij represents the strain
component for the fluid. We now recover (2.52) from our macroscopic equations in
(2.45).

It follows from the fourth equation of (2.45) that

(2.53) ṗ0 = γ−1φ∇x ·
(
u̇0

f − u̇0
s

)− γ−1α · ex(u̇0
s).

Integrating this equation over time and using the definition of α, we see that

(2.54) p0 = −γ−1 〈aey(ζ)〉s · ex(u0
s) + γ−1φ∇x · u0

f ,

since the integration constant is zero by the fact that p0, u0
s, and u0

f vanish at the
same time (see (2.12) and (2.31)). Also, by (2.31), we have

(2.55)
〈
σ0

s

〉s
= c · ex(u0

s) + 〈aey(ζ)〉s p0.

Substituting (2.54) into this equation, we see that

(2.56)
〈
σ0

s

〉s
=

(
c− γ−1 〈aey(ζ)〉s 〈aey(ζ)〉s) · ex(u0

s) + γ−1φ 〈aey(ζ)〉s ∇x · u0
f .

Then (2.52) follows from (2.54) and (2.56) with the coefficients calculated by (2.27)
and (2.29) (see Section 4.1 in the identification of the present variables and Biot’s).

We remark that the equations derived here via homogenization coincide with
Biot’s equations via an intuitive approach. The present approach allows for the
derivation of the constitutive relationships and the calculation of the coefficients
in them. In particular, the coefficients can be determined by (2.21), (2.27), and
(2.29). When the porous medium is isotropic, the present equations reduce to those
derived in [5] for such a medium.
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2.2. Elastic single-phase behavior. As mentioned in the last subsection, dif-
ferent choices for the value of β are possible, depending upon the magnitude of the
quantity µ/l2. In this subsection, we consider the case where this quantity is larger
than that considered in the last subsection; accordingly, we take β = 1. That is,
the fourth equation of (2.6) takes the form

(2.57) σε
f = −pεI + 2µεe(vε) in Ωεf .

All other equations of (2.6) remain the same and so does their analysis. With the
scaling in (2.57), system (2.18) becomes

(2.58)
µ∆yv0 = ∇yp0 in Yf ,

∇y · v0 = 0 in Yf ,

v0 = u̇0
s on Yfs.

It has the trivial solution

(2.59) v0 = u̇0
s(x, t), p0 = p0(x, t).

This means that no relative displacement occurs between the fluid and solid at the
zero-th order. Thus the macroscopic behavior of the saturated porous medium is
that of a single phase.

By (2.59), the fourth equation of (2.45) reduces to

(2.60) α · ex(u̇0
s) + γṗ0 = 0.

Integrating this equation over time, as before, we obtain

(2.61) p0 = −γ−1α · ex(u0
s).

Substituting this relation into the first equation of (2.45), we obtain the macroscopic
elastic single-phase behavior

(2.62)

〈
σ0

T

〉
= (c− γ−1αα) · ex(u0

s),
∇x ·

〈
σ0

T

〉
+ 〈ρ〉g = 0.

2.3. Viscoelasticity. We now consider the final case where β = 0. This choice
corresponds to the case where the quantity µ/L2, appropriate to the macroscale, is
of order unity. Accordingly, the fourth equation of (2.6) becomes

(2.63) σε
f = −pεI + 2µe(vε) in Ωεf .

Using (2.63), the fourth equations of (2.12) and (2.13) take the form, respectively,

(2.64)
2µey(v0) = 0 in Yf ,

σ0
f = −p0I + 2µex(v0) + 2µey(v1) in Yf .

The first equation of this system yields that

(2.65) v0 = v0(x, t),

while substituting the second equation of this system into the third equation of
(2.12) and using the fifth equation of (2.13) leads to

(2.66) µ∆yv1 = ∇yp0, in Yf .

To analyze (2.66), we introduce the displacement

(2.67) u =

{
uf in Yf ,

us in Ys,

and consider time harmonic motions with angular frequency ω:

(2.68) v = iωu,
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where i is the complex unit (i.e., i2 = −1). Now, applying the first equation of
(2.12), the second and fifth equations of (2.13), and (2.66), we obtain the system

(2.69)
∇y ·

[
aey(u1)

]
= 0 in Ys,

iωµ∆yu1 = ∇yp0 in Yf ,

∇x · u0 + ∇y · u1 = 0 in Yf ,

together with the boundary conditions given by the last two equations of (2.13).
This system can be solved in the same manner as for (2.26):

(2.70) u1 = ξ(y, iω) · ex(u0), p0 = ζ(y, iω) · ex(u0),

where we ignore an additive function of x with the same reasoning as before. Note
that p0 has the same expression as in (2.61). Consequently, with the same analysis
as in the last subsection, we derive the macroscopic equations

(2.71)

〈
σ0

T

〉
= c̃ · ex(u0),

∇x ·
〈
σ0

T

〉
+ 〈ρ〉g = 0.

These equations again correspond to single phase behavior. Now c̃ is complex-
valued and depends on ω. These equations describe the macroscopic behavior of a
linear viscoelastic system.

Stokes flow through a deformable porous medium saturated with a Newtonian
fluid has been analyzed in this section. In the case where the scaled viscosity of
the fluid is small, the macroscopic equations for the mechanical behavior of such
a medium coincide with Biot’s equations. In the case where the scaled viscosity is
large, we have derived different differential equations and constitutive relationships.
Navier-Stokes flow is considered in the next section.

3. Navier-Stokes Flow through a Deformable Medium

In this section we extend the techniques developed in the previous section to
the Navier-Stokes flow through a deformable medium. Namely, we use the Navier
equation in Ωs, the Navier-Stokes equation in Ωf , and the continuity equations of
the normal stress and the displacement at the solid-fluid interface Γfs:

(3.1)

∇ · σs + ρsg = 0 in Ωs,

σs = ae(us) in Ωs,

ρf (v ·∇)v = ∇ · σf + ρfg in Ωf ,

σf = −pI + 2µe(v) in Ωf ,

∇ · v = 0 in Ωf ,

σs · n = σf · n on Γfs,

us = uf on Γfs.

With the same notation as in the last section, the scaled problem is stated as
follows:

(3.2)

∇ · σε
s + ρsg = 0 in Ωεs,

σε
s = ae(uε

s) in Ωεs,

ρf (vε ·∇)vε = ∇ · σε
f + ρfg in Ωεf ,

σε
f = −pεI + 2µεβe(vε) in Ωεf ,

∇ · vε = 0 in Ωεf ,

σε
s · n = σε

f · n on Γεfs,

εηuε
s = uε

f on Γεfs.
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Note that we have not just scaled the viscosity coefficient but also the displacement
continuity equation at the solid-fluid interface based on the consideration below.
The solutions of (3.2) are expanded as in (2.9) except for vε and uε

f . They are now
expanded in the asymptotic form

(3.3)
vε(x, t) = εαv0(x, y, t) + εα+1v1(x, y, t) + . . . ,

uε
f (x, t) = εαu0

f (x, y, t) + εα+1u1
f (x, y, t) + . . . ,

where α (together with β and η) is to be determined below. As demonstrated
in the last section, β needs to be larger than one to have a fluid-solid two-phase
macroscopic behavior. Also, keep in mind our attempt to model nonlinear inertial
effects in the present case. Then, with the same analysis as in [11], a reasonable
choice for α and β is

(3.4) α =
1
2
, β =

3
2
.

To balance the displacement continuity at Γfs, we take η = 1/2.
With the above choice, all the equations in (2.12) and (2.13) remain the same

except the third equation of (2.13), which now becomes

(3.5) ρf (v0 ·∇y)v0 = ∇x · σ0
f + ∇y · σ1

f + ρfg in Yf .

Consequently, we focus on the analysis of this equation.
It follows from the fourth and seventh equations of (2.12), the fourth equation

of (2.13), and (3.5) that

(3.6)
ρf (v0 ·∇y)v0 = µ∆yv0 −∇yp1 + ρfg −∇xp0 in Yf ,

∇y · v0 = 0 in Yf ,

v0 = u̇0
s on Yfs.

With VY defined as before, (3.6) can be written in a variational formulation. First,
observe that, by the definition of VY and the divergence theorem,

(3.7) (∇yp1,w)Yf
= (p1,w · n)Yfs

= 0 ∀w ∈ VY .

Then a further application of the definition of VY and the divergence theorem to
the first equation of (3.6) implies that
(3.8)

ρf

(
(v0 ·∇y)v0,w

)
Yf

+ µ(∇yv0, ∇yw)Yf
= (ρfg −∇xp0,w)Yf

∀w ∈ VY .

Note that (3.8) always has a solution, and if ‖ρfg−∇xp0‖V ∗Y is not very large, the
solution is unique [16], where ‖ · ‖V ∗Y is the dual norm to VY . For large values of
‖ρfg−∇xp0‖V ∗Y , the uniqueness fails and bifurcations may arise. In this situation,
there is no Darcy’s law.

For a fixed z0 ∈ H1(Yf ), we introduce an operator J = J(z0) ∈ L(VY , VY ) in
the following way: for each z ∈ VY , Jz ∈ VY is the solution of the Stokes problem

(3.9) (∇y(Jz),∇yw)Yf
= ((z0 ·∇y)z,w)Yf

∀w ∈ VY .

The operator J depends on z0 as a parameter. Note that, by the Sobolev imbedding,

(3.10)
| ((z0 ·∇y)z,w)Yf

|≤ C‖z0‖L4(Yf )‖w‖L4(Yf )|z|H1(Yf )

≤ C|z0|H1(Yf )|w|H1(Yf )|z|H1(Yf ).

Thus (3.9) is well-defined. With the definition of K (see (2.21)) and J, (3.8) can
be written as

(3.11)
{
ρfJ(v0) + µI

}
(v0 − u̇0

s) = K(ρg −∇xp0).
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Applying the average operator 〈·〉f to (3.11), we obtain

(3.12) ρf

〈
J(v0)(v0 − u̇0

s)
〉f

+ µ
(〈

v0
〉f − φu̇0

s

)
= 〈K〉f (ρfg −∇xp0).

When J(v0) is zero, (3.12) represents the generalized Darcy’s law in (2.25). When
it is not zero, (3.12) is the generalized Forchheimer’s law for a deformable porous
medium.

Other macroscopic equations can be obtained in the exactly same manner as in
the last section; we just summarize them, together with (3.12), as follows:

(3.13)

〈
σ0

T

〉
= c · ex(u0

s) + αp0,

∇x ·
〈
σ0

T

〉
+ 〈ρ〉g = 0,

ρf

〈
J(v0)(v0 − u̇0

s)
〉f + µ

(〈
v0

〉f − φu̇0
s

)
= 〈K〉f (ρfg −∇xp0),

∇x ·
(〈

v0
〉f − φu̇0

s

)
= α · ex(u̇0

s) + γṗ0.

Again, the coefficients c, α, and γ are determined by (2.44) and calculated from
(2.26) and (2.27). They have the same properties as in the last section. Further-
more, J is symmetric as shown in [11].

3.1. The isotropic case. We now examine the nonlinear correction term in the
Forchheimer law (3.12) for an isotropic medium, following the treatment presented
in [3, 11, 17]. We first review some classical results on second-order, tensor-valued
isotropic functions [8, 21]. A second-order, symmetric, tensor-valued, isotropic
function of a vector w = (w1, w2, w3), L = (Lij)i,j=1,2,3, can be expressed as
follows:

(3.14) Lij(w) = a0(|w|)δij + a1(|w|)wiwj ,

where a0 and a1 are scalar-valued isotropic functions of |w| and |w| = (w2
1 +

w2
2 + w2

3)
1/2. On the other hand, a second-order, skew-symmetric, tensor-valued,

isotropic function of a vector is identically zero. Applying a series expansion to
(3.14), we see that

(3.15)
Lij(w)= (a0

0 + a1
0|w|+ a2

0|w|2 + . . .)δij

+(a0
1 + a1

1|w|+ a2
1|w|2 + . . .)wiwj .

With vT being the transpose of the vector v, set

(3.16)

H= H
(〈

v0
〉f − φu̇0

s

)

≡ ρf∣∣∣〈v0〉f − φu̇0
s

∣∣∣
2

〈
J(v0)

(
v0 − u̇0

s

)〉f
(〈

v0
〉f − φu̇0

s

)T

I + µI.

Note that

(3.17) H =
1
2
(H + HT ) +

1
2
(H−HT ),

where HT indicates the transpose of the operator H (or the adjoint of H with
respect to the inner product (2.20)). With the application of (3.15) to (H+HT )/2
and the skew-symmetry property of (H−HT )/2, we see that

(3.18) H =
(
H0

0 + H1
0

∣∣∣
〈
v0

〉f − φu̇0
s

∣∣∣
)
I + O

(∣∣∣
〈
v0

〉f − φu̇0
s

∣∣∣
2
)

,



88 CHEN, LYONS, AND QIN

for some constants H0
0 and H1

0 . Substituting (3.18) into (3.12) and retaining the
first two terms in (3.18), we obtain

(3.19)
(
H0

0 + H1
0

∣∣∣
〈
v0

〉f − φu̇0
s

∣∣∣
) (〈

v0
〉f − φu̇0

s

)
= 〈K〉f (ρg −∇xp0).

This is the Forchheimer law for an isotropic deformable porous medium, and we see
a quadratic correction here. If desired, it is possible to retain higher order terms
(e.g., the third order term in

〈
v0

〉f − φu̇0
s) in (3.19).

We have derived the macroscopic equations for Navier-Stokes flow in the frame-
work of a deformable medium in this section. A generalized Forchheimer law has
been obtained to take into account the nonlinear inertial effects on the fluid flow
through such a medium. The nonlinear correction term in this law has been shown
to be quadratic in velocity for an isotropic medium for the present choice of scaling.
Qausi-static flows have been considered in this and last sections. Transient flow is
analyzed in the next section.

4. Transient Flow through a Deformable Medium

In this section we take into account transient inertial effects at the pore scale.
As an example, we only consider the transient Stokes flow; the transient Navier-
Stokes flow can be analyzed in a similar fashion using the techniques in the previous
section. The microscopic equations are given by

(4.1)

ρsüs = ∇ · σs + ρsg in Ωs,

σs = ae(us) in Ωs,

ρf v̇ = ∇ · σf + ρfg in Ωf ,

σf = −pI + 2µe(v) in Ωf ,

∇ · v = 0 in Ωf ,

σs · n = σf · n on Γfs,

us = uf on Γfs.

For simplicity we seek solutions of the form ueiωt with angular frequency ω. Then
the microscopic equations become (with modified body force terms, which are de-
noted with the same notation for convenience)

(4.2)

−ω2ρsus = ∇ · σs + ρsg in Ωs,

σs = ae(us) in Ωs,

iωρfv = ∇ · σf + ρfg in Ωf ,

σf = −pI + 2µe(v) in Ωf ,

∇ · v = 0 in Ωf ,

σs · n = σf · n on Γfs,

us = uf on Γfs.
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The scaled problem is then given by

(4.3)

−ω2ρsuε
s = ∇ · σε

s + ρsg in Ωεs,

σε
s = ae(uε

s) in Ωεs,

iωρfvε = ∇ · σε
f + ρfg in Ωεf ,

σε
f = −pεI + 2µε2e(vε) in Ωεf ,

∇ · vε = 0 in Ωεf ,

σε
s · n = σε

f · n on Γεfs,

uε
s = uε

f on Γεfs.

Note that we have in mind the two-phase fluid-solid macroscopic behavior, so we
have taken β = 2 above.

As in the second section, we substitute (2.9) into (4.3), apply (2.8), and collect
terms with like powers of ε. The following equations are analogous to those in
(2.12) and (2.13):

(4.4)

∇y · σ0
s = 0 in Ys,

aey(u0
s) = 0 in Ys,

∇y · σ0
f = 0 in Yf ,

σ0
f = −p0I in Yf ,

∇y · v0 = 0 in Yf ,

σ0
s · n = σ0

f · n on Yfs,

u0
s = u0

f on Yfs,

and

(4.5)

−ω2ρsu0
s = ∇x · σ0

s + ∇y · σ1
s + ρsg in Ys,

σ0
s = aex(u0

s) + aey(u1
s) in Ys,

iωρfv0 = ∇x · σ0
f + ∇y · σ1

f + ρfg in Yf ,

σ1
f = −p1I + 2µey(v0) in Yf ,

∇x · v0 + ∇y · v1 = 0 in Yf ,

σ1
s · n = σ1

f · n on Yfs,

u1
s = u1

f on Yfs.

As for (2.15)–(2.17), we have

(4.6) p0 = p0(x, t), σ0
f = σ0

f (x, t), u0
s = u0

s(x, t).

Next, it follows from the fourth and seventh equations of (4.4) and the third and
fourth equations of (4.5) that

(4.7)
iωρfv0 = µ∆yv0 −∇yp1 + ρfg −∇xp0 in Yf ,

∇y · v0 = 0 in Yf ,

v0 = iωu0
s on Yfs.

To analyze (4.7), let

(4.8) w = v0 − iωu0
s.
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Then (4.7) becomes

(4.9)
iωρfw − µ∆yw = −∇yp1 + ρfg −∇xp0 + ω2ρfu0

s in Yf ,

∇y ·w = 0 in Yf ,

w = 0 on Yfs.

Using (3.7), (4.9) is written in the variational formulation

(4.10)
(iωρfw, z)Yf

+ (µ∇yw, ∇yz)Yf

= −(∇xp0 − ρfg − ω2ρfu0
s, z)Yf

, ∀z ∈ VY .

For i = 1, 2, 3, the components of the permeability tensor Ki ∈ VY are defined to
be the solution of

(4.11) (iωρfKi, z)Yf
+ µ(∇yKi,∇yz)Yf

= (1, zi)Yf
∀z = (z1, z2, z3) ∈ VY .

Now, the solution to (4.10) is expressed by

(4.12) w = v0 − iωu0
s = −K

(∇xp0 − ρfg − ω2ρfu0
s

)
.

Applying the average operator 〈·〉f to this equation, we see that

(4.13)
〈
v0

〉f − φu̇0
s = −〈K〉f (∇xp0 − ρfg + ρf ü0

s

)
.

This is the generalized Darcy law for transient flow through a deformable porous
medium. Note that 〈K〉f is complex-valued and depends on ω.

In the exactly same manner as for (2.33), it follows from the first and sixth
equations of (4.4) and the second equation of (4.5) that

(4.14)
〈
σ0

T

〉
= c · ex(u0

s) + αp0,

where c and α are given by (2.44). Also, as for (2.38), we apply the first, third,
and sixth equations of (4.5) to obtain

(4.15) ρf

〈
v̇0

〉f
+ ρs

〈
ü0

s

〉s
= ∇x ·

〈
σ0

T

〉
+ 〈ρ〉g,

and, as for (2.42), employing the fifth and seven equations of (4.5), we see that

(4.16) ∇x ·
(〈

v0
〉f − φu̇0

s

)
= α · ex(u̇0

s) + γṗ0.

The macroscopic equations are given by (4.13)–(4.16).

4.1. Comparison with Biot’s model. For transient flow through an anisotropic
poroelastic medium, equations (2.3), (5.1), and (5.2) in [7] are

(4.17)

∂τij

∂xj
= ρüi + ρf ẅi,

τij = Aµν
ij eµν + Mijζ,

pf = Mijeij + Mζ,

−∂pf

∂xi
− ρf üi = Y ij(p)ẇj .

The displacement of the fluid relative to the solid is introduced

(4.18) w = φ
(
u0

f − u0
s

)
.

Then, using the definition of ρ in (2.37), (4.15) becomes

(4.19) ∇x ·
〈
σ0

T

〉
= 〈ρ〉 ü0

s + ρf ẅ − 〈ρ〉g.
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This equation agrees with the first equation of (4.17) that omits the gravity term.
Also, it follows from (2.54) and the definition of α in (2.44) that

(4.20) p0 = −γ−1α · ex(u0
s) + γ−1∇x ·w.

Substituting (4.20) into (4.14), we see that

(4.21)
〈
σ0

T

〉
=

(
c− γ−1αα

) · ex(u0
s) + γ−1α∇x ·w.

This is the second equation of (4.17), where ζ is −∇x ·w. Next, (4.20) is the third
equation of (4.17). Finally, with the definition of w in (4.18), (4.13) becomes

(4.22) −∇xp0 − ρf ü0
s = φ

(
〈K〉f

)−1

ẇ − ρfg.

This agrees with the fourth equation of (4.17) that again omits the gravity term.
The following table identifies the present variables and the corresponding Biot vari-
ables:

(4.23)

Present variables Biot’s in [7]〈
σ0

T

〉
τ

〈ρ〉 ρ

u0
s u

ρf ρf

w w(
c− γ−1αα

)
A = (Aµν

ij )
−γ−1α M = (Mij)
−∇x ·w ζ

ex(u0
s) e = (eij)

p0 pf

−γ−1φ M

φ
(
〈K〉f

)−1

Y(p)

5. Numerical Experiments

In order to obtain a solution to the microscopic model, we consider a relatively
simple problem where fluid flows in connected pores and small channels of a periodic
porous medium. The geometry of the pore structure is shown in Fig. 1 [18]. The
initial channel width variation is given by θ(x) = 0.1 sin(x1), and the initial channel
width is defined by W (x) = 2θ(x).

l
L

Fig. 1. A periodic porous medium.

The microscopic equations governing the motion of the fluid and solid are de-
termined by (4.1). For the present problem, we solve for the vertical displacement
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w(x1, w2, t) of the solid, and the elastic tensor a is chosen such that the Navier
equation in Ωs in (4.1) is of the form

(5.1) ρsẅ = G
∂2w

∂x2
1

+ (2G + λ)
∂2w

∂x2
2

in Ωs,

where G and λ are the solid rigidity modulus and Lamé parameter, respectively,
and the gravity term is ignored. In the numerical examples of this section, these
constants are given by ρs = 4.907 g/cm3 and G = λ = 1010 Pa. Also, we assume
that the pressure profile over the cross section of the channel is flat; i.e., the pressure
is of the form p(x1, t). The microscopic equations of the fluid are given as in (4.1);
that is,

(5.2)
ρf v̇ = ∇ · (−pI + 2µe(v)) in Ωf ,

∇ · v = 0 in Ωf ,

where µ = 10−3 Pa · s and ρf = 0.9814 g/cm3. At the solid-fluid interface, the
continuity equations of the normal stress and displacement are imposed as in (4.1).
Periodic boundary conditions are used at the outer boundary of a periodic cell, and
the initial conditions are given by

(5.3) w = ẇ = 0, v = 0 at t = 0.

The microscale l and macroscale L are taken to be l = 10−3 m and L = 102 m.
The corresponding macroscopic equations can be derived as in the fourth section.

0

0 400 2,000

0.2

−0.2

Fig. 2. Perturbation signal.

0

0 400 2,000

0.2

−0.2

Fig. 3. Averaged fluid velocities of the first example: · · · pore scale, — homogenized.

The microscopic and macroscopic equations are numerically solved for the pres-
sure p, fluid velocity v, and solid displacement w. The mixed finite element method,
based on the lowest-order Raviart-Thomas mixed space on triangles [19], is utilized
to solve these equations. The solution procedure is based on a sequential scheme;
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0

0 400 2,000

0.2

−0.2

Fig. 4. Averaged solid velocities of the first example: · · · pore scale, — homogenized.

namely, the fluid and solid equations are decoupled and solved in an alternating
manner.

The numerical examples in this section are employed to investigate the response
of a fluid in an elastic channel to sinusoidal pressure perturbations and to present
a computational validation of the homogenized model in the fourth section. The
pressure perturbation is given by

(5.4) p(x1, t) = ps sin(ωt) at x1 = 0,

where ω is the perturbation signal frequency and ps is the magnitude constant of
pressure signal. In the first example, this frequency is chosen by ω = 102 Hz. The
following dimensionless pressure and velocities are displayed:

(5.5) p? =
p

ρfv2
0

, v?
1 =

v1

v0
,

where v0 is a characteristic fluid velocity and v = (v1, v2, v3). Furthermore, the fluid
and solid velocities are averaged over the pore and solid space, respectively, in the
displays. The perturbation pressure signal −dp?/dx1 (also volume-averaged), fluid
velocity, and solid velocity verse the dimensionless time ωt are shown in Figs.2–4,
respectively, where the microscopic and macroscopic solutions are displayed. The
volume-averaged results obtained by solving the microscopic equations match well
with those obtained from the macroscopic equations. The averaged solid velocity
is much smaller than the averaged fluid velocity. Thus this problem shows fluid
motion dominated behavior at the macroscopic scale.

0

0 5000 30,000

0.08

−0.08

Fig. 5. Averaged fluid velocities of the second example: · · · pore scale, — homogenized.

The second example uses the same set of data as the first example except that the
perturbation pressure signal of frequency is ω = 103 Hz, which is ten times higher
than the signal frequency in the first example. The responses are considerably
different from those of the first example; see Figs. 5 and 6. Now, the magnitude of
the solid velocity is of the same order as that of the fluid velocity. Also, it takes



94 CHEN, LYONS, AND QIN
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−0.08

0.08

Fig. 6. Averaged solid velocities of the second example: · · · pore scale, — homogenized.

longer time for the porous system to stabilize in the second example. Again, the
microscopic and macroscopic results match very well.

Finally, the responses of the fluid velocity to the perturbation signal frequency
are shown in Figs. 7, where the dimensionless quantity ω? = ωl/v0 is exploited. At
low frequency, the magnitude of this velocity is almost fixed, and at high frequency,
it seems proportional to (ω?)−1.

1

1 1000.01

0.1

0.01

Fig. 7. Responses of the fluid velocity to ω?: · · · pore scale, — homogenized.

6. Conclusions

We have systematically derived the macroscopic equations for the mechanical
behavior of a deformable porous medium saturated with a Newtonian fluid via the
theory of homogenization. In the case of Stokes flow, these macroscopic equations
coincide with Biot’s equations provided that the scaled viscosity of the fluid is small.
In the case where the scaled viscosity is large, we have derived different differential
equations and constitutive relationships.

We have also derived the macroscopic equations for Navier-Stokes flow in the
framework of a deformable medium. A generalized Forchheimer law has been ob-
tained to take into account the nonlinear inertial effects on the fluid flow through
such a medium. The nonlinear correction term in this law has been shown to
be quadratic in velocity for an isotropic medium. Next, transient inertial effects
at the pore scale have been analyzed. In the transient case, the coefficients are
complex-valued and depend on the angular frequency for time harmonic motions.
The present homogenization approach determines the form of the macroscopic con-
stitutive relationships between variables and shows how to compute the coefficients
in these relationships. Finally, our computational results show that the macro-
scopic equations predict well the behavior of the microscopic equations in certain
reasonable test cases.
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Appendix. Properties of the Macroscopic Coefficients. In this appen-
dix we establish the properties of the macroscopic coefficients. To that end, we
introduce the space of Y -periodic functions

(A.1) UY = {w1 ∈ H1(Ys) :
∫

Ys

w1dy = 0 and Y -periodic},

equipped with the inner product

(A.2) (w1,w2)Ys ≡
∫

Ys

ey(w1) · ey(w2) dy, w1, w2 ∈ UY .

With w1 ∈ UY , it follows from (2.27) and the first equation of (2.3) that

(A.3)
∫

Ys

aey(ξkh)ey(w1)dy = −
∫

Yfs

aẽ · nw1dτ.

Also, it follows from (2.29) that

(A.4)
∫

Ys

aey(ζ)ey(w2)dy = −
∫

Yfs

n ·w2dτ, w2 ∈ UY .

We take w1 = ζ in (A.3) and use the divergence theorem to see that

(A.5)
∫

Ys

aey(ξkh)ey(ζ)dy = −
∫

Ys

aijkheyij(ζ)dy,

and w2 = ξkh in (A.4)

(A.6)
∫

Ys

aey(ζ)ey(ξkh)dy = −
∫

Ys

∇y · ξkhdy.

These two equations imply that (2.43) holds.
Now, we choose w2 = ζ in (A.4) to have

(A.7)
∫

Ys

aey(ζ)ey(ζ)dy = −
∫

Ys

∇y · ζdy.

By the first equation of (2.3), we see that γ < 0.
Note that

(A.8) cijkh =
〈
aijkh + aijmneymn(ξkh)

〉s

.

By the first equation of (2.3) again, it is obvious that

(A.9) cijkh = cjikh.

We take w1 = ξij in (A.3) and use the divergence theorem to see that

(A.10)
∫

Ys

aey(ξkh)ey(ξij)dy = −
∫

Ys

akhmneymn(ξij)dy.

Similarly,

(A.11)
∫

Ys

aey(ξij)ey(ξkh)dy = −
∫

Ys

aijmneymn(ξkh)dy.

These two equations, together with (2.3), yield

(A.12) ckhij =
〈
akhij + akhmneymn(ξij)

〉s
=

〈
aijkh + aijmneymn(ξkh)

〉s

= cijkh.

Analogously, we have

(A.13) cijkh = cijhk.

Hence we see that c is symmetric.
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Finally, for a symmetric tensor (zij), it follows from the definition of c that

(A.14) cijkhzijzkh =
1
|Y |

∫

Ys

aijkhzij (zkh + eykh(ξmn)zmn) dy.

We apply (A.3), the divergence theorem, and the first equation of (2.3) to see that

(A.15)
∫

Ys

aijkheyij(ξqr)eykh(ξmn)dy +
∫

Ys

auvmneyuv(ξqr)dy = 0.

These two equations lead to

(A.16) cijkhzijzkh =
1
|Y |

∫

Ys

aijkh (zij + eyij(ξqr)zqr) (zkh + eykh(ξmn)zmn) dy.

Therefore, the positive-definiteness of c follows from the corresponding property of
a (i.e., the second equation of (2.3)).
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