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ON THE CONVERGENCE OF WEISSMAN-TAYLOR ELEMENT
FOR REISSNER-MINDLIN PLATE

JUN HU AND ZHONG-CI SHI

Abstract. In this paper, we study the Weissman-Taylor rectangular element

for the Reissner-Mindlin plate [12] model and provide a convergence analysis

for the transverse displacement and the rotation. We show that the element is

stable and locking free, thereby improve the results of [8] and [9].
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1. Introduction

The Reissner-Mindlin plate model is widely used by engineers. A direct finite
element approximation often yields poor results due to the shear locking, namely,
the numerical solution is significantly smaller than the exact one. The development
of general procedures to overcome this drawback is an active research area. Many
methods have been proposed so far. However, a rigorous convergence and stability
proof is missing for most of these methods, even if numerical tests show that they
work properly. This is the case for the rectangular element proposed by Weissman
and Taylor[12]. The element was analyzed in [8] and [9]. Nevertheless, whether the
element is locking free is unclear in the previous analysis.

In this paper, we show that the transverse displacement and the rotation are con-
vergent uniformly with respect to the plate thickness for the rectangular Weissman-
Taylor element. Therefore the element is locking-free. For simplicity, we consider
only a square mesh. However, the analysis is valid for a rectangular mesh as well.

The paper is organized as follows. The Reissner-Mindlin plate model is reviewed
in Section 2; the Weissman-Taylor element is introduced in Section 3; the error
analysis is presented in Section 4; and finally, a conclusion is given in Section 5.

Throughout the paper, C denotes a genetic constant, which is not necessarily
the same at different places. However, C is independent of the mesh size h and the
plate thickness t. We shall use standard notations of the Sobolev space.

2. Reissner-Mindlin Plate Model

Let Ω be a rectangle representing the mid-surface of the plate. Assume that
the plate is clamped along the boundary ∂Ω. Let ω and φ denote the transverse
displacement and the rotation, respectively, which are determined by the following

Problem 2.1. Find (φ, ω) ∈H1
0(Ω)×H1

0 (Ω), such that

(1) a(φ,ψ) + λt−2(∇ω − φ,∇v −ψ) = (g, v), ∀(ψ, v) ∈H1
0(Ω)×H1

0 (Ω).
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Here g is the scaled transverse loading, t is the plate thickness, λ = Eκ/(2+2ν)
is the shear modulus, E is the Young’s modulus, ν is the Poisson ratio and κ is
the shear correction factor. The bilinear form a is defined by a(η,ψ) = (CEη, Eψ),
here Cτ is defined for any 2× 2 symmetric matrix τ as

Cτ : =
E

12(1− ν2)
[(1− ν)τ + ν tr(τ)I] .

Introducing the shear strain

γ: = λt−2(∇ω − φ)

as an independent variable, we get the following mixed problem

Problem 2.2. Find (φ, ω,γ) ∈H1
0(Ω)×H1

0 (Ω)×L2(Ω), such that

a(φ,ψ) + (γ,∇v −ψ) = (g, v), ∀(ψ, v) ∈H1
0(Ω)×H1

0 (Ω),(2)

λ−1t2(γ, s)− (∇ω − φ, s) = 0, ∀s ∈ L2(Ω).(3)

The existence and uniqueness of the solution of Problem 2.2 and the following
regularity result can be found in [4, 9].

Lemma 2.3. Let (φ, ω,γ) ∈ H1
0(Ω)×H1

0 (Ω)× L2(Ω) be the solution of Problem
2.2, then the following regularity estimates hold

(4) ‖φ‖2 + ‖γ‖0 ≤ C‖g‖−1,

(5) ‖ω‖2 ≤ C(‖g‖−1 + t2‖g‖0), t‖φ‖3 ≤ C‖g‖0,

(6) ‖γ‖H(div) ≤ C‖g‖0, t‖γ‖1 ≤ C(‖g‖−1 + t‖g‖0).

3. Finite element approximation

Let Th be a uniform square partition of the domain Ω with the mesh size h,
which is the refinement of a coarser partition T2h with the mesh size 2h. Let FK

be the affine mapping from the reference square K̂ = [−1, 1]2 onto the element K,
which is defined by

FK(ξ, η) = (xk + hξ, yk + hη),

where (xk, yk) is the center of K. Denote v̂(ξ, η) = v(xk + hξ, yk + hη).
Define

Wh = {v ∈ H1
0 (Ω) | v̂|K̂ ∈ Q1(K̂) ∀K ∈ Th},

BNc = {v ∈ L2(Ω) | v̂|K̂ ∈ (1− ξ2, 1− η2) ∀K ∈ Th},

Γ̂h = {γ ∈ L2(Ω) | γ|K ∈ P1(K)2 ∀K ∈ Th},

ΓR
h = {χ ∈ L2(Ω) | χ̂|K̂ ∈ Q0,1 ×Q1,0 ∀K ∈ Th},

Γh = {χ ∈H0(rot,Ω) | χ̂|K̂ ∈ Q0,1 ×Q1,0 ∀K ∈ Th},

where (1− ξ2, 1− η2) is the non-conforming bubble space generated by 1− ξ2 and
1− η2, Q0,1 = (1, η), Q1,0 = (1, ξ).

Set
W ∗

h = Wh ⊕BNc,V
∗
h = [Wh]2 ⊕B2

Nc,V h = [Wh]2.
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Let Rh be the usual Raviart-Thomas interpolation operator from H(rot,Ω) to
Γh, which is locally defined by∫

ei

(ψ −Rhψ) · tds = 0, ei ⊂ ∂K.

For the operatorRh, we have the following properties(see [9] and references therein):

Lemma 3.1. Let Π be the L2 projection operator onto Γh, Π0 be the L2 projection
operator onto the piecewise constant space, then

Rhψ = Πψ, rotRhψ = Π0 rotψ, ψ ∈ V h,

‖ψ −Rhψ‖0 ≤ Ch‖ψ‖1, ∀ψ ∈H1(Ω) ∩H0(rot,Ω),

‖ψ −Rhψ‖H−1
(rot)

≤ Ch2(‖ψ‖1 + ‖ rotψ‖1), ∀ψ ∈H1(Ω) ∩H1(rot),

where the norm ‖ · ‖H−1
(rot)

is defined by

‖ψ‖H−1
(rot)

= (‖ψ‖2
−1 + ‖ rotψ‖2

−1)
1/2.

The Weissman-Taylor element [12] can be stated as the solution of the following

Problem 3.2. Find (φh, ωh,γh) ∈ V ∗
h ×W ∗

h × Γ̂h, such that

ah(φh,ψ) + (γh,∇hv −ψ) = (f, vc), ∀(ψ, v) ∈ V ∗
h ×W ∗

h ,

(∇hωh − φh, s)− λ−1t2(γh, s) = 0, ∀s ∈ Γ̂h,

where vc denotes the conforming part of v ∈ W ∗
h .

Due to the non-conforming bubble, the bilinear form a(·, ·) is replaced by ah(·, ·),
which is the same bilinear form computed element by element. Similarly, the gra-
dient operator ∇ is replaced by gradient on each element, ∇h. See [12] for details.

By the static condensation procedure, Problem 3.2 can be converted into the
following

Problem 3.3. [8] Find (φc
h, ωc

h,γh) ∈ V h ×Wh × ΓR
h , such that

Ah(φc
h, ωc

h,γh;ψ, v, s) = (f, v), ∀(ψ, v, s) ∈ V h ×Wh × ΓR
h ,(7)

where φc
h and ωc

h are the conforming parts of φh and ωh, respectively, and

Ah(φh, ωh,γh;ψ, v, s) = ah(φh,ψ)− β2h
2

∑
K∈Th

(Aφh, Aψ)

+(γh,∇v −ψ) + β1h
2

∑
K∈Th

(γh, Aψ) + λ−1t2(γh, s)

−(∇ωh − φh, s) + β3h
2

∑
K∈Th

(Π0γh, s)− β1h
2

∑
K∈Th

(Aφh, s),

where A is the linear operator induced by a(·, ·) in the natural way and Π0 is
the L2-orthogonal projection operator onto the piecewise constant function space,
βi, i = 1, 2, 3 are constants which can be written as

β1 =
2
3
H−1, β2 =

2H−1(1− ν + 2ν2)
3(1 + ν)2

, β3 =
H−1(3− ν)

3(1− ν)

with H = E
12(1−ν2) . The well-posedness of Problem3.3 can be found in [8] based on

the following
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Lemma 3.4. There exists a positive constant α, such that

ah(ψ,ψ)− β2h
2

∑
K∈Th

(Aψ, Aψ) ≥ α‖ψ‖2
1, ∀ψ ∈ V h.

For the analysis, we need the following auxiliary problem, which is often called
in literature the MITC4 element or Bathe-Dvorkin element for the R-M plate[2].

Problem 3.5. Find (φI , ωI) ∈ V h ×Wh, such that

a(φI ,ψ) + (γI ,∇v −Rhψ) = (g, v), ∀(ψ, v) ∈ V h ×Wh,

γI = λt−2(∇ωI −RhφI).

For our rectangular meshes, we have the following error estimates[7].

Lemma 3.6. Let (φ, ω) and (φI , ωI) be the solutions of Probelm2.1 and Problem3.5
respectively, then

‖φ− φI‖1 + ‖ω − ωI‖1 + t‖γ − γI‖0 ≤ Ch(‖g‖−1 + t‖g‖0).

4. Error Analysis

In this section, we give the error analysis of Weissman-Taylor element. First,
we introduce the following result from [8].

Lemma 4.1. Under the hypotheses on the uniform square partition Th,

Rhψh = Πhψh, ∀ψh ∈ V h,

where Πh : H1
0(Ω) → ΓR

h is the usual L2-projection.

Remark 4.2. Lemma 4.1 can be regarded as a direct consequence of Lemma 3.1
and the definition of space ΓR

h .

Then, we have the following theorem concerning the energy error estimate.

Theorem 4.3. Let (φ, ω,γ) and (φh, ωh,γh) be the solutions of Problem 2.2 and
Problem 3.2 respectively, then

‖φ−φh‖1,h + ‖ω − ωh‖1,h + h‖Π0γ −Π0γh‖0 + t‖γ − γh‖0 ≤ Ch(‖g‖−1 + t‖g‖0).

Proof. First, by Lemma 2.3, Lemma 3.6 and the inverse estimate, we have

|φI |2,h ≤ |φI −Π1φ|2,h + |Π1φ|2,h

≤ Ch−1|φI −Π1φ|1 + C‖φ‖2

≤ Ch−1|φI − φ|+ Ch−1|φ−Π1φ|1 + C‖φ‖2

≤ C(‖g‖−1 + t‖g‖0),(8)

where Π1 is the usual bilinear Lagrange interpolation operator.
Set

εφ = φc
h − φI ; εω = ωc

h − ωI ; εγ = γh −Π0γ.

From Lemma 3.4, we obtain

α(‖εφ‖2
1 + h2‖Π0εγ‖2

0 + t2‖εγ‖2
0) ≤ Ah(εφ, εω, εγ ; εφ, εω, εγ).(9)

Taking into account Problem 2.2 and Problem 3.3, we have the following decom-
position,

Ah(εφ, εω, εγ ; εφ, εω, εγ) = A1 + A2 + · · ·+ A8,

where
A1 = h2β2

∑
K∈Th

(AφI , Aεφ), A2 = −h2β1

∑
K∈Th

(Π0γ, Aεφ),
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A3 = −h2β3

∑
K∈Th

(Π0γ, εγ), A4 = h2β1

∑
K∈Th

(AφI , εγ),

A5 = a(φ− φI , εφ), A6 = (γ −Π0γ,∇εω − εφ)

A7 = λ−1t2(γ −Π0γ, εγ), A8 = (∇(ωI − ω)− (φI − φ), εγ).

Let us estimate the above terms one by one.
By virtue of (8), using the inverse estimate again, the first term A1 can be

bounded as

| A1 |≤ Ch | φI |2,h ‖εφ‖1 ≤ Ch2(‖g‖2
−1 + t2‖g‖2

0) + a1‖εφ‖2
1.

Applying Cauchy-Schwarz inequality, we can bound terms A2 and A3 as

| A2 |≤ Ch‖Π0γ‖0‖εφ‖1 ≤ Ch2‖Π0γ‖2
0 + a2‖εφ‖2

1,

| A3 |≤ Ch2‖Π0γ‖0‖Π0εγ‖0 ≤ Ch2‖Π0γ‖2
0 + a3h

2‖Π0εγ‖2
0.

Using Cauchy-Schwarz inequality, (8) and the inverse estimate once more, we pro-
ceed as

| A4 |≤ Ch2 | φ |2,h ‖Π0εγ‖0 ≤ Ch2(‖g‖2
−1 + t2‖g‖2

0) + a4h
2‖Π0εγ‖2

0.

Taking into account Lemma 3.6, we obtain

| A5 |≤ Ch(‖g‖−1 + t‖g‖0)‖εφ‖1 ≤ Ch2(‖g‖2
−1 + t2‖g‖2

0) + a5‖εφ‖2
1.

Now from Problem 3.3 and Lemma 4.1, we find that

∇ωc
h |K= Rhφ

c
h + λ−1t2γh + CK , where CK is a constant.

Thus we come to

A6 = (γ −Π0γ,∇(ωc
h − ωI)− (φc

h − φI))
= (γ −Π0γ,Rh(φc

h − φI)− (φc
h − φI)) + λ−1t2(γ −Π0γ,γh − γI)

= A1
6 + A2

6.

Owing to Lemma 3.1, we have

| A1
6 |≤ Ch‖γ −Π0γ‖0‖εφ‖1 ≤ Ch2‖γ‖2

0 + a6,1‖εφ‖2
1.

The key is to bound the second term

A2
6 = λ−1t2(γ −Π0γ,γh − γI)

= λ−1t2(γ −Π0γ,γh −Π0γ)
−λ−1t2(γ −Π0γ,γ −Π0γ) + λ−1t2(γ −Π0γ,γ − γI).

By virtue of Lemma 2.3 and Lemma 3.6, taking into account the error estimate for
projection operator Π0, we derive as

| A2
6 | ≤ Cht(‖g‖−1 + t‖g‖0)‖γh −Π0γ‖0 + Ch2(‖g‖2

−1 + t2‖g‖2
0)

≤ Ch2(‖g‖2
−1 + t2‖g‖2

0) + a6,2t
2‖εγ‖2

0.

It is easy to see

| A7 |=| λ−1t2(γ −Π0γ, εγ) |≤ Ch2(‖g‖2
−1 + t2‖g‖2

0) + a7t
2‖εγ‖2

0.

From the definition of operator Rh, we can easily prove

(RhφI − φI , εγ) = 0,
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which, together with Lemma 4.1 and Lemma 3.6, imply

| A8 | = | (∇(ωI − ω)− (φI − φ), εγ) |
= | ((∇ωI −RhφI)− (∇ω − φ), εγ) |=| λ−1t2(γI − γ, εγ) |
≤ Ch2(‖g‖2

−1 + t2‖g‖2
0) + a8t

2‖εγ‖2
0.

Let a1, · · · , a6,1, a6,2, a7, a8 be small enough and bring these inequalities together,
we come to

‖φI − φ
c
h‖1 + h‖Π0(γI − γh)‖0 + t‖(γI − γh)‖0 ≤ Ch(‖g‖−1 + t‖g‖0).(10)

On the other hand, by the decomposition, we have φh = φc
h + φnc

h , where φnc
h

is the nonconforming part of φh. Proceeding along the same line of Theorem 2.1
of [9], applying the above estimate about the conforming part and the following
inequality

‖φnc
h ‖0 ≤ Ch‖φnc

h ‖1,h,(11)

the nonconforming bubble can be bounded as

C ‖φnc
h ‖2

1,h

≤ ah(φnc
h ,φnc

h ) = (γh,φnc
h )− ah(φc

h,φnc
h ) = (Π0γh,φnc

h )− ah(φc
h,φnc

h )
= (Π0γh,φnc

h )− ah(φc
h − φ,φnc

h ) + [(γ,φnc
h )− ah(φ,φnc

h )]− (γ,φnc
h )

≤ C‖Π0γh‖0‖φnc
h ‖0 + C‖φc

h − φ‖1‖φnc
h ‖1,h

+ |
∑

K∈Th

∫
∂K

CEφ · nφnc
h ds | +‖γ‖0‖φnc

h ‖0,

which, together with (10) and (11), and owing to the consistency error estimate of
the Wilson element [11] imply

‖φnc
h ‖1,h ≤ Ch(‖g‖−1 + t‖g‖0), ‖φnc

h ‖0 ≤ Ch2(‖g‖−1 + t‖g‖0).(12)

Then we obtain

‖φh − φ‖1,h ≤ ‖φc
h − φ‖1 + ‖φnc

h ‖1,h ≤ Ch(‖g‖−1 + t‖g‖0).(13)

By the triangle inequality and (10), taking into account Lemma 3.6, we have

h‖Π0(γ − γh)‖0 + t‖(γ − γh)‖0

≤ h‖Π0(γ −Π0γ)‖0 + h‖Π0(Π0γ − γh)‖0 + t‖(γ − γI)‖0 + t‖(γI − γh)‖0

≤ Ch(‖g‖−1 + t‖g‖0).(14)

As for the transverse displacement ωh, from the second equation of Problem 3.2,
we have the following decomposition

∇hωh −∇ω = λ−1t2(γh − γ) + (Π̂hφh − φ),

where Π̂h is the projection operator on Γ̂h, therefore

‖∇hωh −∇ω‖0 ≤ Ch(‖g‖−1 + t‖g‖0),(15)

which completes the proof. �

In order to analyze the L2 error estimate of the rotation, we need the following
auxiliary problem and its mixed formulation:

Problem 4.4. Find (φd, ωd) ∈H1
0(Ω)×H1

0 (Ω), such that

a(ψ,φd) + (∇v −ψ,σ) = (φ− φc
h,ψ) ∀ψ ∈H1

0(Ω),(16)
σ = λt−2(∇ωd − φd).(17)
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Problem 4.5. Find (φd, ωd,σ) ∈H1
0(Ω)×H1

0 (Ω)×L2(Ω), such that

a(ψ,φd) + (∇v −ψ,σ) = (φ− φc
h,ψ) ∀(ψ, v) ∈H1

0(Ω)×H1
0 (Ω),(18)

(∇ωd − φd, δ) − λ−1t2(δ,σ) = 0 ∀δ ∈ L2(Ω).(19)

For the solution of Problem 4.5, we have the following regularity result

‖φd‖2 + ‖ωd‖3 + ‖σ‖0 + t‖σ‖1 + ‖σ‖H(div) ≤ C‖φ− φc
h‖0.(20)

Let (φI
d, ω

I
d,σI) be the finite element approximation of (φd, ωd,σ) by the MITC4

method, owing to Lemma 3.6, we have

‖φI
d − φd‖1 + ‖ωd − ωI

d‖1 + t‖σ − σI‖0 ≤ Ch‖φ− φc
h‖0.(21)

Similarly,

‖φI
d‖2,h ≤ C‖φ− φc

h‖0.(22)

Then, we have the following L2 errror estimate for the Weissman-Taylor element.

Theorem 4.6. Let (φ, ω,γ) and (φh, ωh,γh) be the solutions of Problem 2.2 and
Problem 3.2, respectively, then

‖φ− φh‖0 + ‖ω − ωh‖0 ≤ Ch2‖g‖0

Proof. Let ψ = φ−φc
h, v = ω−ωc

h and δ = γ − γh. Taking into account Probelm
2.2 and Problem 3.2, we have

‖φ− φc
h‖2

0 = a(φ− φc
h,φd − φ

I
d) + (γ − γh,∇(ωd − ωI

d)− (φd − φ
I
d))

+(∇(ω − ωc
h)− (φ− φc

h),σ)− λ−1t2(γ − γh,σ) + ah(φnc
h ,φI

d)
= B1 + · · ·+ B5.

Owing to (13) and (21),

|B1| ≤ Ch2(‖g‖−1 + t‖g‖0)‖φ− φc
h‖0.

Because (γh,φI
d −Rhφ

I
d) = 0, we obtain

B2 = λ−1t2(γ − γh,σ − σI) + (γ,φI
d −Rhφ

I
d) = B2,1 + B2,2.

It is easy to see
|B2,1| ≤ Ch2(‖g‖−1 + t‖g‖0)‖φ− φc

h‖0.

Proceeding along the same line of Lemma 5.9 [10] and using (22), we come to

|B2,2| ≤ Ch2‖γ‖H(div)|φI
d|2,h ≤ Ch2‖g‖0‖φ− φc

h‖0.

By virtue of the equation of Problem 3.3 and the second inequality of Lemma 3.1,
we derive

|B3 + B4| = |−(∇ωc
h − φ

c
h,σ) + λ−1t2(γh,σ)|

= |−β1h
2(Π0γh,σ) + β2h

2
∑

K∈Th

(Aφc
h,σ)K + (φc

h −Rhφ
c
h,σ)|

≤ Ch2(‖Π0γh‖0 + |φc
h|2,h)‖σ‖0 + ‖φc

h −Rhφ
c
h‖H−1(rot)‖σ‖H(div)

≤ Ch2(‖g‖−1 + t‖g‖0)‖φ− φc
h‖0.



72 J. HU AND Z-C. SHI

Integrating by parts and using (22) and Theorem 4.3, the last term can be bounded
as

| B5 | = |−(φnc
h ,div CEφI

d) +
∑

K∈Th

∫
∂K

φnc
h CEφI

d · n|

≤ C‖φnc
h ‖0‖φI

d‖2,h + Ch‖φnc
h ‖1,h‖φI

d‖2,h

≤ Ch2(‖g‖−1 + t‖g‖0)‖φ− φc
h‖0.

Bring these inequalities together, we come to

‖φ− φc
h‖0 ≤ Ch2‖g‖0.(23)

The nonconforming bubble has been bounded in (12), which, together with (23)
and triangle inequality, imply

‖φ− φh‖0 ≤ Ch2‖g‖0.(24)

For the L2 error estimate of the transverse displacement, we need the following
auxiliary problem: Find z ∈ H1

0 (Ω) and zh ∈ Wh such that

(∇z,∇s) = (ω − ωh, s), ∀s ∈ H1
0 (Ω), (∇zh,∇s) = (ω − ωh, s), ∀s ∈ Wh.

By a routine way, we have

‖z − zh‖0 + h|z − zh|1 ≤ Ch2‖ω − ωh‖0.

Therefore,

‖ω − ωh‖2
0 = (ω − ωh, ω − ωh)− (∇z,∇h(ω − ωh)) + (∇z,∇h(ω − ωh))

= J1 + J2.

By the standard procedure of the nonconforming Wilson element[11], we get

|J1| ≤ Ch2‖z‖2‖ω − ωh‖1,h ≤ Ch2(‖g‖−1 + t‖g‖0)‖ω − ωh‖0,

J2 = (∇z,∇hω −∇hωh)
= (∇z −∇zh,∇hω −∇hωh) + (∇zh,∇hω −∇hωh)
= (∇z −∇zh,∇hω −∇hωh) + λ−1t2(γ − γh,∇zh)

+(φ−Rhφ
c
h,∇zh) + (Πhφ

nc
h ,∇zh)

= J1
2 + · · ·+ J4

2 .

Obviously,

|J1
2 + J4

2 | ≤ Ch2(‖g‖−1 + t‖g‖0)‖ω − ωh‖0, J2
2 = 0.

The last term can be estimated as

|J3
2 | = | (φ−Rhφ

c
h,∇zh) |=| (φ− φc

h,∇zh) |
≤ Ch2‖g‖0‖zh‖1 ≤ Ch2|g‖0‖ω − ωh‖0.

Bring all these inequalities, we obtain

‖ω − ωh‖0 ≤ Ch2‖g‖0,

which completes the proof. �

Remark 4.7. We focused on the Weissman-Taylor element in the discussion.
However, the analysis and error estimates hold also for other Wilson-type plate
bending elements proposed in [9].
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5. Conclusion

In this paper, we have analyzed the rectangular Weissman-Taylor element for
the Reissner-Mindlin plate and have proved that the element is locking free. Our
analysis depends heavily on some orthogonal properties associated with rectangular
meshes. These properties are not valid for general quadrilateral meshes. Therefore
the locking free issue for the Weissman-Taylor element over quadrilateral meshes is
still unsolved.
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