Professor Qun Lin, one of the honorary editors of our journal, is a researcher in numerical partial differential equations. He is also a mathematics educator in teaching. He has supervised a number of excellent students who are now active researchers around the world, from pure mathematics to applied mathematics and scientific computing. A special issue of *International Journal of Information & Systems Sciences, Volume 2, Number 3, 2006*, is dedicated to his 70th birthday.

Professor Lin has also made a contribution to the universal education. For example, he spreads an elementary knowledge of functional analysis in many colleges in China since 1990’s. He gave an elementarization of functional analysis calculus. His idea is to use two elementary inequalities to define the derivative and represent the fundamental theorem, respectively. To be more precisely let f be an abstract...
function defined on \([a, b]\) and taken values in a linear norm space (without the completeness notion, just an elementary linear algebra). The derivative \(f'\) is defined with an elementary inequality: For all \(x + h\) near \(x,
\)
\[||f(x + h) - f(x) - f'(x)h|| \leq \epsilon(h)h\]
where the notation \(\epsilon(h)\) depends only on the size of the variable increment \(h\) and is chosen small so that the derivative \(f'\) is uniquely defined. Then adding up these inequalities on each subinterval \([x, x + h]\) gives another elementary inequality: The fundamental theorem,
\[||f(b) - f(a) - \sum_{x \in \text{nodes}} f'(x)h|| \leq (b - a)\epsilon(h)\]
which can be used to define the definite integral. Such an elementary definition of the derivative, and such an elementary presentation and proof of the fundamental theorem, are much easier for the student to understand.

On this occasion, we wish Professor Lin of safety, joviality, and longevity.

Zhangxin Chen
Southern Methodist University
Dallas, Texas