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DYNAMICS OF A QUASILINEAR REACTION

DIFFUSION EQUATION WITH SINGULAR

REACTION FUNCTIONS

C. V. PAO AND W. H. RUAN

ABSTRACT. Degenerate reaction-diffusion equations of
porous-medium type with singular reaction functions in both
the differential equation and the boundary condition are in-
vestigated. The aim of this paper is to show the existence
of a unique global time-dependent solution, the existence and
uniqueness of a positive steady-state solution, and the conver-
gence of the time-dependent solution to the positive steady-
state solution. The convergence result of the time dependent
solution exhibits some rather interesting distinctive behavior
when compared with density-independent diffusion.

1 Introduction Degenerate reaction-diffusion equations have been
treated by many researchers in recent years, and most of the discus-
sions are for the global existence and the finite-time blow-up property
of the solution. In this paper we investigate the global existence and the
asymptotic behavior of the time-dependent solution in relation to posi-
tive steady-state solutions for some degenerate reaction-diffusion equa-
tions where the reaction functions may be singular. The basic prob-
lem under consideration is an extension of the logistic reaction diffusion
equation that is given in the form

(1.1)

ut − d (x) ∆um + c (x) · ∇um = aup − buq (t > 0, x ∈ Ω)

∂u

∂ν
+ βu = σ (x) u−γ (t > 0, x ∈ ∂Ω)

u (0, x) = u0 (x) (x ∈ Ω)
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where Ω is a bounded domain in Rn with boundary ∂Ω, ∂u/∂ν is the
outward normal derivative of u on ∂Ω, and ∆ and ∇ are the Laplacian
and gradient operators in Ω. The physical parameters m, a, b, β and
γ are positive constants, p and q are any constants (not necessarily
positive) satisfying p < q, d(x) and u0(x) are positive functions on Ω̄,
σ(x) is nonnegative and c(x) ≡ (c1(x), . . . , cn(x)) is an arbitrary Cα-
function in Ω. In the above problem the term aup represents an internal
source, buq is an internal sink, and σu−γ acts as a boundary source. This
type of source-sink functions are singular at u = 0 if p < 0 or q < 0,
and so is the boundary source when γ > 0. The consideration of the
convection term c · ∇um in (1.1) adds no complication in the analysis,
and it includes the case where the diffusion term is given in the form
∇ · (d(x)∇um). In this situation, it suffices to replace the convection
coefficient c(x) by (c(x) −∇d(x)).

To investigate the asymptotic behavior of the solution of (1.1) we
need to study the corresponding steady-state problem

(1.2)

−d (x) ∆um + c (x) · ∇um = aup − buq (x ∈ Ω)

∂u

∂ν
+ βu = σ (x) u−γ (x ∈ ∂Ω) .

Without much additional complication we also treat the following more
general problem

(1.3)

ut − d (x) ∆um + c (x) · ∇um

= aup −
N

∑

i=1

biu
qi (t > 0, x ∈ Ω)

∂u

∂ν
+ βu = σ (x) u−γ (t > 0, x ∈ ∂Ω)

u (0, x) = u0 (x) (x ∈ Ω)

where bi and qi, i = 1, . . . , N , are any constants that satisfy the condition

(1.4) bi > 0, p < q1 ≤ q2 ≤ · · · ≤ qN . (i = 1, . . . , N) .

The constants p and qi can be positive or negative, integers or non-
integers so long as they satisfy (1.4).

It is well-known that in the Verhulst logistic population growth prob-
lem (1.1) where m = p = 1, q > 1 and σ (x) = 0, the corresponding
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steady-state problem (1.2) has only the trivial solution u = 0 if a ≤ λ1

and it has a unique positive solution u∗
s (x) if a > λ1, where λ1 > 0 is

the smallest eigenvalue of the eigenvalue problem

(1.5)

−d (x) ∆φ + c (x) · ∇φ = λφ (x ∈ Ω)

∂φ

∂ν
+ mβφ = 0 (x ∈ ∂Ω)

corresponding to m = 1. Moreover, for any nontrivial nonnegative ini-
tial function u0 (x) the corresponding time-dependent solution u (t, x) of
(1.1) converges to 0 as t → ∞ if a ≤ λ1, and it converges to u∗ (x) if
a > λ1 (cf. [19, p. 201], or [21]). It is interesting to know what is the
effect of the value m (in the diffusion term) on the asymptotic behavior
of the time-dependent solution, especially if the reaction functions are
singular. On the other hand, if p < 0 or q < 0 then the reaction function
in (1.1) is singular at u = 0. In this situation it is important to know
whether there is a relationship among the exponents m, p and q so that
a unique global solution to (1.1) exists and converges to a steady-state
solution of (1.2) as t → ∞. In case the steady-state problem (1.2) has
multiple solutions, it is desired to know whether the time-dependent so-
lution still converges to a steady-state and to which one if it does. The
purpose of this paper is to investigate: (1) the existence (and unique-
ness) of positive solutions of (1.2) for any value of m > 0, including the
singular case p < 0 or q < 0; (2) the global existence and attraction
property of the time-dependent solution of (1.1); and (3) the conver-
gence of the time-dependent solution to positive steady-state solutions.
In particular, we show that if p < m ≤ q then Problem (1.2) has a unique
positive solution u∗

s (x), and for any u0 (x) > 0 on Ω the solution u (t, x)
of (1.1) converges to u∗

s (x) as t → ∞. The convergence property holds
true for every constant a > 0, including the case a < λ1 and σ (x) = 0,
and it gives a sharp contrast to the case m = p = 1 < q. We also show
that the above conclusions hold true for the more general problem (1.3).

Parabolic and elliptic boundary problems with singular reaction func-
tions arises from various fields of applied sciences, and many of the dis-
cussions in the earlier literature are devoted to semilinear reaction dif-
fusion equations where the reaction function is given in the form c0u

−α

for some constant α > 0, where c0 is either positive or negative. In mod-
eling the dynamics of van der Waals force driven thin films of viscous
fluids, a mathematical model for the thickness u of the thin film is gov-
erned by (1.2) with m = 1 and with the reaction function (a − bu−α), a
special case of (1.2) with p = 0 and q = −α (cf. [8, 13]). Similar equa-
tion of (1.2) with the reaction function aup + buq, where p > 0, q < 0
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was treated in [12, 23, 26]. As a limiting case of models in chemical
kinetics (Langmuir-Hinshelwood model) the authors of [5, 6, 14] inves-
tigated the finite-time quenching and blow up of ut and ∆u for Problem
(1.1) with the reaction function (−bu−α). On the other hand, in a dif-
fusion process of a gas that is in contact with a liquid in which the gas
is absorbed by the liquid at the gas-liquid interface, the gas density is
governed by (1.1) with the singular boundary condition

∂u

∂ν
+ u = σu−γ (t > 0, x ∈ ∂Ω) .

The differential equation in (1.1) with m = 1, c (x) = 0, p = q = 0 and
the above boundary condition was treated in [17] for a = b = 0 in the
semi-infinite interval Ω = (0,∞), and in [18] in a bounded domain with
a given source function f(x).

There are also a large amount of work which are devoted to degen-
erate reaction diffusion problems of the form (1.1) but are mostly for
the case where the reaction function is either a nonsingular source aup

(p > 0, b = 0) or a nonsingular sink (−buq) (q > 0, a = 0). The works in
[7, 10, 15, 16, 24, 25] considered only an internal source while those
in [3, 9, 11] are for an internal sink. The domain in the above works
are either the whole space Rn or a bounded domain with either homoge-
neous Dirichlet boundary condition or Neumann-Robin type boundary
condition with nonsingular boundary function. The main objectives of
the above works are the global existence and blow-up property of the
solution. The works in [1, 4, 9, 22, 27] are also concerned with the
decay property of the solution. In this paper, our main concerns are the
existence of positive steady-state solutions and the asymptotic behav-
ior of the time-dependent solution u (t, x) in relation to these steady-
state solutions, especially the convergence of u (t, x) to a unique positive
steady-state solution. These results are stated in Section 2, and their
proofs are given in Section 3. A concluding remark is given in Section 4.

2 The main results To ensure the existence of a classical solution
to (1.1) and (1.2) we make the following:
Hypotheses (H)

(i) The constants m, a, b, β and γ are positive, and p and q are any
constants satisfying p < min {m, q}.

(ii) d (x) and u0 (x) are positive, σ (x) is nonnegative, and these func-
tions together with c (x) ≡ (c1 (x) , . . . , cn (x)) are all Cα-functions
in their respective domains, where α ∈ (0, 1).
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(iii) Ω is of class C1+α.

Under the above hypotheses we have the following existence and
uniqueness result for the steady-state problem (1.2).

Theorem 1. Let Hypotheses (H) hold, where p and q can be positive,
zero, or negative. Then Problem (1.2) has a positive minimal solution
us (x) and a positive maximal solution ūs (x) such that 0 < us (x) ≤
ūs (x) on Ω. If m ≤ q and either c (x) ≡ 0 or m ≤ 1 + γ then us (x) =
ūs (x) (≡ u∗

s (x)) and u∗
s (x) is the unique positive solution of (1.2).

For the time-dependent problem (1.1) we have the following global
existence and asymptotic behavior of the solution.

Theorem 2. Let Hypotheses (H) hold, and let us (x), ūs (x) be the re-
spective positive minimal and maximal solutions of (1.2). Then

(i) for any u0 (x) > 0 on Ω, a unique global solution u (t, x) to (1.1)
exists and possesses the property

(2.1) us (x) ≤ u (t, x) ≤ ūs (x) as t → ∞,

(ii) u (t, x) converges to us (x) as t → ∞ if u0 (x) ≤ us (x), and it
converges to ūs (x) if u0 (x) ≥ ūs (x), and

(iii) u (t, x) converges to a unique positive steady-state solution u∗
s (x)

as t → ∞ if m ≤ q and either c (x) ≡ 0 or m ≤ 1 + γ.

The results in Theorems 1 and 2 hold true also for the more general
problem (1.3). Specifically we have

Theorem 3. Let Hypotheses (H) hold except that b and q are replaced,
respectively, by (b1, . . . , bN) and (q1, . . . , qN ) which satisfy condition (1.5).
Then

(i) the steady-state problem of (1.3) has a positive minimal solution
us (x) and a positive maximal solution ūs (x) such that 0 < us (x) ≤
ūs (x) on Ω̄,

(ii) for any u0 (x) > 0 on Ω, a unique global solution u (t, x) to (1.3)
exists and satisfies (2.1),

(iii) u (t, x) converges to us (x) as t → ∞ if u0 (x) ≤ us (x) and it
converges to ūs (x) if u0 (x) ≥ ūs (x), and

(iv) u (t, x) converges to a unique positive steady-state solution u∗
s (x)

as t → ∞ if m ≤ q and either c (x) ≡ 0 or m ≤ 1 + γ.
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In the above theorems it is assumed that γ and σ (x) are both positive.
If γ = 0 or σ (x) ≡ 0, then the boundary condition in (1.1) (or (1.3))
becomes

(2.2)
∂u

∂ν
+ βu = σ (x) or

∂u

∂ν
+ βu = 0 (t > 0, x ∈ ∂Ω).

In this situation, we have the following

Corollary. Let the conditions in Theorem 3 hold and let either γ =
0 or σ (x) ≡ 0. Then all the conclusions in (i), (ii), (iii), and (iv)
of Theorem 3 remain true. In particular, these results hold true for
Problem (1.1).

Remark. It is seen from Theorem 2 that if p < m (and p < q) then
for any a > 0 and any positive initial function u0 (x) the solution u (t, x)
of (1.1) enters the sector 〈us, ūs〉 as t → ∞, and if, in addition, m ≤ q
then u (t, x) converges to a unique positive steady-state solution. This
implies that for any a > 0 the time-dependent solution moves away from
0 so that the trivial solution us = 0 is unstable. This is in contrast to
the case m = p = 1 and q = 1 where us = 0 is a global attractor.

3 Proofs of the theorems The proofs of the theorems in the pre-
vious section are based on the method of upper and lower solutions de-
veloped in [20, 21] for a more general class of reaction functions f (x, u),
g (x, u). For the present problems these reaction functions are given by

(3.1) f (x, u) = aup − buq, g (x, u) = m(σ (x) um−γ−1 − βum)

for Problem (1.1) and (1.2), and

(3.2) f (x, u) = aup −

N
∑

i=1

biu
qi , g (x, u) = m(σ (x) um−γ−1 − βum)

for Problem (1.3). Since problem (1.1) is a special case of (1.3) and since
the global existence and the asymptotic behavior of the time-dependent
solution are determined by the corresponding steady-state problem, we
only give the definition of upper and lower solutions for the steady-state
problem of (1.3).
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Definition. A pair of functions ũs, ûs in C2 (Ω) ∩ C
(

Ω
)

are called
ordered upper and lower solutions of the steady-state problem of (1.3)
if ũs ≥ ûs and if

(3.3)

−d (x) ∆ũm + c (x) · ∇ũm ≥ aũp −

N
∑

i=1

biũ
qi (x ∈ Ω)

∂ũs

∂ν
+ βũs ≥ σ (x) ũ−γ (x ∈ ∂Ω)

and ûs satisfies (3.3) with inequalities reversed.

In the above definition, the constants γ, bi, i = 2, . . . , N , and the
function σ (x) can be positive or zero. In particular, if b1 = b, q1 = q
and bi = 0 for all i = 2, . . . , N , then it reduces to the definition of upper
and lower solutions for problem (1.2). On the other hand, if γ = 0
or σ (x) = 0 then the boundary condition in (1.3) is reduced to that in
(2.2) so that this definition is applicable to the linear boundary condition
(2.2). For a given pair of ordered upper and lower solutions ũs, ûs, we
set

S ≡ 〈ûs, ũs〉 ≡
{

u ∈ C
(

Ω̄
)

; ûs ≤ u ≤ ũs

}

.

By considering the reaction functions in (3.1) we state the following
existence results from Theorem 3.1 of [20] for the present problem (1.2).

Theorem A. Let ũs, ûs be a pair of ordered upper and lower solutions
of (1.2), and let Hypotheses (H) hold. Then Problem (1.2) has a positive
minimal solution us and a positive maximal solution ūs such that 0 <
us ≤ ūs on Ω. If us = ūs (≡ u∗

s), then u∗
s is the unique positive solution

of (1.2) in S.

For the time-dependent problem (1.1) we have the following conclu-
sions from Theorems 2.1, 5.1 and 5.2 of [21].

Theorem B. Let the conditions in Theorem A hold, and let us (x),
ūs (x) be the respective positive minimal and maximal solutions of (1.2).
Then

(i) for any u0 ∈ S, a unique global solution u (t, x) to (1.1) exists and
possesses the property

(3.4) us (x) ≤ u (t, x) ≤ ūs (x) as t → ∞,
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(ii) u (t, x) converges to us (x) as t → ∞ if ûs (x) ≤ u0 (x) ≤ us (x),
and it converges to ūs (x) if ūs (x) ≤ u0 (x) ≤ ũs (x), and

(iii) u (t, x) → u∗
s (x) as t → ∞ if ūs (x) = us (x) (≡ u∗

s (x)).

By using the reaction functions in (3.2) instead of (3.1) the results
in Theorems A and B hold true for Problem (1.3) provided that the
constants b, q in (H) are replaced, respectively, by (b1, . . . , bN) and
(q1, . . . , qN ) that satisfy condition (1.4).

Proof of Theorem 1. By Theorem A the existence of positive minimal
and maximal solutions is ensured if there exist a pair of ordered positive
upper and lower solutions. It is easy to see from the definition that for
any constant M satisfying

(3.5) M ≥ max

{

(a

b

)1/r

,

(

σ̄

β

)1/(1+γ)}

,

where r ≡ q − p > 0 and σ̄ = max
{

σ (x) : x ∈ Ω
}

, ũs = M is an upper

solution. We seek a positive lower solution in the form ûs = (δφm)
1/m

for a sufficiently small constant δ > 0, where φm is the (normalized)
positive eigenfunction of (1.5) corresponding to the smallest eigenvalue
λm > 0. Indeed, since ûm

s = δφm and φm is strictly positive on Ω, ûs is
a positive lower solution of (1.2) if

− d (x) ∆ (δφm) + c (x) · ∇ (δφm)

≤ (δφm)
p/m [

a − b (δφm)
r/m ]

(x ∈ Ω)

1

m
(δφm)1/m−1 ∂

∂ν
(δφm) + β (δφm)1/m

≤ σ (x) (δφm)
−γ/m

(x ∈ ∂Ω) .

In view of (1.5), the above relation is equivalent to

(3.6)

λm (δφm) ≤ (δφm)
p/m [

a − b (δφm)
r/m ]

(x ∈ Ω)

δ

(

∂φm

∂ν
+ mβφm

)

≤ mσ (x) (δφm)
1−(1+γ)/m

(x ∈ ∂Ω) .

It is clear from a > 0 and p < m that the first inequality holds by a suf-
ficiently small δ > 0, while the second inequality is trivially satisfied by
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any δ > 0. This shows that ũs = M and ûs = (δφm)
1/m

are ordered up-
per and lower solutions of (1.2). The existence of minimal and maximal
solutions us, ūs and the relation 0 < us ≤ ūs follows from Theorem A.

To show the uniqueness of the positive solution we observe from (3.1)
and the assumption p < m ≤ q that

(3.7)

∂

∂u

[

f (x, u)

um

]

=
∂

∂u

[

up−m (a − bur)
]

= a (p − m) up−m−1 − b (q − m) uq−m−1 < 0,

∂

∂u

[

g (x, u)

um

]

= m
∂

∂u

[

σ (x) u−(1+γ) − β
]

= −m (1 + γ) σ (x) u−(2+γ) < 0

for all u > 0. This implies that both f (x, u) /um and g (x, u) /u are
decreasing functions of u > 0. By Theorem 3.3 of [20], us = ūs (≡ u∗

s)

and u∗
s is the unique positive solution in the sector

〈

(δφm)
1/m

, M
〉

if
c (x) ≡ 0.

To show the result for the case m ≤ 1 + γ and any c (x) 6= 0 we use
a result of [2] (Theorem 3.2), which is a version of the Krein-Rutman
Theorem. Choose a constant A > 0 such that

A ≥ max
ûm(x)≤w≤ũm(x)

x∈Ω

{

aw
p

m
−1 − bw

q

m
−1

}

.

Let K : Cα(Ω) 7→ C2+α(Ω) be the solution operator such that
w = K [f ] is the solution of the boundary-value problem

−d (x) ∆w + c (x) · ∇w + Aw = f in Ω,

∂w

∂ν
+ mβw = 0 on ∂Ω,

and let R : C2+α−µ (∂Ω) 7→ C2+α
(

Ω
)

be the solution operator such that
v = R [g] is the solution of the boundary-value problem

−d (x) ∆v + c (x) · ∇v + Av = 0 in Ω,

∂v

∂ν
+ mβv = g on ∂Ω,

where 0 < µ < 1 is a positive constant. By the maximum principle,
both K and R are strongly positive operators in the sense that if f � 0
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(resp. g � 0) then K [f ] (resp. R [g]) lies in the positive cone of Cα
(

Ω̄
)

.
Furthermore, K is a compact operator in the ordered Banach space
Cα

(

Ω̄
)

. Hence the following conclusions from [2, Theorem 3.2(iv)] are
true:

If λ is a constant, F (x) is a positive Cα
(

Ω
)

function, and y ∈ Cα
(

Ω
)

is a nonnegative function, and if the equation

(3.8) λv = K [Fv] + y

has a positive solution, then λ ≥ r (KF ), where r (KF ) is the spectral
radius of the operator KF . Conversely, if λ > r (KF ) then for any
nonnegative (resp. nonpositive) nontrivial function y ∈ Cα

(

Ω
)

, the
above equation (3.8) has a unique positive (resp. negative) solution.

In particular, if λ = 1, r (KF ) < 1 and y ≤ 0, then the equation (3.8)

has a unique solution v which is nonpositive.

To show that the two steady-state solutions ūs and us are equal, we
observe that the functions w̄s ≡ ūm

s and ws ≡ um
s satisfy the equations

(3.9)
w̄s = K [(f∗ (w̄s) + A) w̄s] + R [g∗ (x, w̄s)] ,

ws = K [(f∗ (ws) + A) ws] + R [g∗ (x, ws)]

where

(3.10) f∗ (w) = aw
p

m
−1 − bw

q

m
−1, g∗ (x, w) = mσ (x) w(m−1−γ)/m.

Hence v = ws is a positive solution of (3.8) with λ = 1, F = f ∗ (ws)+A
and y = R [g∗ (x, ws)]. Since R [g∗ (x, ws)] > 0, it follows that 1 >
r (KF ). Consider the function w = w̄s − ws. By subtracting equations
in (3.9), it is easy to verify that w is a solution of (3.8) with λ = 1,
F = f∗ (ws) + A and

y = K [w̄s (f∗ (w̄s) − f∗ (ws))] + R [g∗ (x, w̄s) − g∗ (x, ws)] .

Since p < m ≤ {q, 1 + γ}, both f∗ and g∗ are nonincreasing in positive
w. Hence the inequalities w̄s ≥ ws ≥ 0 ensure that y ≤ 0. This and
1 > r (KF ) imply that w ≤ 0, which leads to w̄s ≤ ws. Hence the two
solutions are equal.
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Proof of Theorem 2. (i) Given any u0 (x) > 0 on Ω̄ there exist positive

constants δ, M such that (δφm)
1/m

≤ u0 (x) ≤ M . This implies that

u0 ∈ S, where S =
〈

(δφm)1/m , M
〉

. By Theorem B, a unique global

solution u (t, x) to (1.1) exists and possesses the property (2.1).
(ii) Again by Theorem B, the solution u (t, x) converges to us (x) as

t → ∞ if (δφm)
1/m

≤ u0 ≤ us, and it converges to ūs (x) if ūs ≤ u0 ≤ M .
The arbitrariness of δ and M leads to the conclusion in (ii).

(iii) By Theorem 1, us = ūs(≡ u∗
s) when p < m ≤ q and either

c (x) ≡ 0 or m ≤ 1 + γ. The convergence of u (t, x) to u∗
s (x) follows

from (2.1). This proves the theorem.

Proof of Theorem 3. To prove Theorem 3 we again consider Problem
(1.3) as a special case of the problem treated in [20] where the reaction
functions f (x, u), g (x, u) are given by (3.2). It is obvious from (3.2)
that for any constant M satisfying

(3.11) M ≥ max

{

(

a

b1

)1/r1

,

(

σ̄

β

)1/(1+γ)
}

,

where ri = qi − p > 0 for i = 1, . . . , N , ũs = M is an upper solution of

the steady-state problem of (1.3). Moreover, ûs = (δφm)
1/m

is a lower
solution if the first inequality in (3.6) is replaced by

λm (δφm) ≤ (δφm)
p/m

[

a −

N
∑

i=1

bi (δφm)
ri/m

]

.

Since the above inequality is equivalent to

λm (δφm)
(m−p)/m

≤ a −

N
∑

i=1

bi (δφm)
ri/m

we see from m > p that it is satisfied by a sufficiently small δ > 0. This

shows that the pair ũs = M and ûs = (δφm)
1/m

are ordered positive
upper and lower solutions. The conclusions in (i), (ii) and (iii) of the
theorem follow from Theorems A and B for the steady-state problem of
(1.3).

To show the uniqueness of the positive steady-state solution u∗
s we

observe from (3.2), (1.4) and p < m ≤ q1 that

∂

∂u

[

f (x, u)

um

]

= a (p − m) up−m−1 −
N

∑

i=1

bi (qi − m) uqi−m−1 < 0
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for u > 0. This shows that f (x, u) /um is decreasing in u for u > 0. Since
g (x, u) /um is also decreasing in u > 0 we conclude from Theorem 3.3
of [20] that us = ūs(≡ u∗

s). To show this result for the case m ≤ 1 + γ
we use the relation (3.10) where f∗ (w) is given by

f∗ (w) = awp/m−1 −

N
∑

i=1

biw
qi/m−1.

Since

f∗
w (w) = a

( p

m
− 1

)

wp/m−2 −

N
∑

i=1

bi

( qi

m
− 1

)

wqi/m−2

and p < m ≤ q1 ≤ qi for i = 2, . . . , N , we see that fw (w) < 0 for w > 0.
It follows from the same argument as that in the proof of Theorem 1 that
us = ūs ≡ u∗

s and u∗
s is the unique positive steady-state solution of (1.3).

The conclusion in (iv) of the theorem follows again from Theorem B.

Proof of the corollary. It is clear from the proof of Theorem 3 that

ũs = M and ûs = (δφm)
1/m

remain to be ordered upper and lower
solutions of the steady-state problem of (1.3) when either γ = 0 or
σ (x) ≡ 0, where M satisfies (3.11) with σ̄ = 0 if σ (x) ≡ 0. Since
f (x, u) /um is decreasing in u > 0 and g (x, u) /um = m(σ (x) /u − β)
or −mβ, depending on γ = 0 or σ (x) = 0, we see that g (x, u) /um is
nonincreasing in u > 0. It follows again from Theorem 3.3 of [20] that
us = ūs (≡ u∗

s) and u∗
s is the unique positive steady-state solution. A

similar argument as in the proof of Theorem 1 shows that us = ūs (≡ u∗
s)

if m ≤ 1 + γ. The conclusion of the corollary follows from Theorems A
and B.

4 Concluding remarks The discussion in the previous sections
demonstrates that the method of upper and lower solutions leads to not
only existence results for the time-dependent problem (1.1) and its cor-
responding steady-state problem (1.2) but also the dynamic behavior
of the quasilinear reaction-diffusion problem. Specifically, through the
construction of a pair of ordered upper and lower solutions of the elliptic
boundary problem (1.2) it is ensured to have a maximal solution ūs and
a minimal solution us. Moreover the sector 〈us, ūs〉 between ūs and us is
a global attractor of the parabolic problem (1.1) (in relation to 〈ûs, ũs〉).
This means that starting from any initial function u0 in 〈ûs, ũs〉 the cor-
responding solution u (t, x) of (1.1) enters the sector 〈us, ūs〉 as t → ∞.
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In particular, if the maximal solution coincides with the minimal solu-
tion, as in the case m < min {q, 1 + γ}, then their common value u∗

s (x)
is a global attractor of the quasilinear parabolic problem. In terms of
Lyapunov stability theory this means that u∗

s (x) is asymptotically sta-
ble with a stability region 〈ûs, ũs〉. Since the quasilinear elliptic problem
(1.2) can be reduced to a semilinear elliptic problem, upper and lower
solutions for (1.2) can often be constructed by using the techniques or
known results for semilinear equations. This approach can also be used
to study the dynamics of other quasilinear parabolic equations with sin-
gular or nonsingular reaction functions.
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