
Math 117: Honours Calculus I
Fall, 2012 List of Theorems

Theorem 1.1 (Binomial Theorem): For all n ∈ N,

(a + b)n =
n

∑

k=0

(

n

k

)

an−kbk.

Theorem 2.1 (Convergent ⇒ Bounded): A convergent sequence is bounded.

Theorem 2.2 (Properties of Limits): Let {an} and {bn} be convergent sequences.
Let L = lim

n→∞

an and M = lim
n→∞

bn. Then

(a) lim
n→∞

(an + bn) = L+M ;

(b) lim
n→∞

anbn = LM ;

(c) lim
n→∞

an
bn

=
L

M
if M 6= 0.

Corollary 2.2.1 (Case L 6= 0, M = 0): Let {an} and {bn} be convergent sequences.

If lim
n→∞

an 6= 0 and lim
n→∞

bn = 0, then lim
n→∞

an
bn

does not exist.

Theorem 2.3 (Monotone Sequences: Convergent ⇐⇒ Bounded): Let {an} be a
monotone sequence. Then {an} is convergent ⇐⇒ {an} is bounded.

Theorem 2.4 (Convergent ⇐⇒ All Subsequences Convergent): A sequence {an}
∞

n=1

is convergent with limit L ⇐⇒ each subsequence {ank
}∞
k=1 of {an}

∞

n=1 is conver-
gent with limit L.

Theorem 2.5 (Bolzano–Weierstrass Theorem): A bounded sequence has a convergent
subsequence.

Theorem 2.6 (Cauchy Criterion): {an} is convergent ⇐⇒ {an} is a Cauchy se-
quence.

Theorem 3.1 (Equivalence of Function and Sequence Limits): lim
x→a

f(x) = L ⇐⇒ f

is defined near a and every sequence of points {xn} in the domain of f , with xn 6= a
but lim

n→∞

xn = a, satisfies lim
n→∞

f(xn) = L.

Corollary 3.1.1 (Properties of Function Limits): Suppose L = lim
x→a

f(x) and M =

lim
x→a

g(x). Then
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(a) lim
x→a

(f(x) + g(x)) = L+M ;

(b) lim
x→a

f(x)g(x) = LM ;

(c) lim
x→a

f(x)

g(x)
=

L

M
if M 6= 0.

Corollary 3.1.2 (Cauchy Criterion for Functions): lim
x→a

f(x) exists ⇐⇒ for every

ǫ > 0, ∃δ > 0 such that whenever

0 < |x− a| < δ and 0 < |y − a| < δ

then |f(x)− f(y)| < ǫ.

Corollary 3.1.3 (Squeeze Principle for Functions): Suppose f(x) ≤ h(x) ≤ g(x)
when 0 < |x− a| < r for some positive real number r. Then

lim
x→a

f(x) = lim
x→a

g(x) = L ⇒ lim
x→a

h(x) = L.

Corollary 3.1.4 (Properties of Continuous Functions): Suppose f and g are contin-
uous at a. Then f + g and fg are continuous at a and f/g is continuous at a if
g(a) 6= 0.

Corollary 3.1.5 (Continuity of Rational Functions): A rational function is continu-
ous at all points of its domain.

Corollary 3.1.6 (Continuous Functions of Sequences): f is continuous at an interior
point a of the domain of f ⇐⇒ each sequence {xn} in the domain of f with
lim
n→∞

xn = a satisfies lim
n→∞

f(xn) = f(a).

Corollary 3.1.7 (Composition of Continuous Functions): Suppose g is continuous
at a and f is continuous at g(a). Then f ◦ g is continuous at a.

Theorem 3.2 (Intermediate Value Theorem [IVT]): Suppose

(i) f is continuous on [a,b],

(ii) f(a) < 0 < f(b).

Then there exists a number c ∈ (a, b) such that f(c) = 0.

Corollary 3.2.1 (Generalized Intermediate Value Theorem): Suppose
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(i) f is continuous on [a,b],

(ii) f(a) < y < f(b).

Then there exists a number c ∈ (a, b) such that f(c) = y.

Theorem 3.3 (Boundedness of Continuous Functions on Closed Intervals): If f is
continuous on [a, b] then f is bounded on [a, b].

Theorem 3.4 (Weierstrass Max/Min Theorem): If f is continuous on [a, b] then it
achieves both a maximum and minimum value on [a, b].

Corollary 3.4.1 (Image of a Continuous Function on a Closed Interval): If f is
continuous on [a, b] then f([a, b]) is either a closed interval or a point.

Theorem 4.1 (Differentiable ⇒ Continuous): If f is differentiable at a then f is
continuous at a.

Theorem 4.2 (Properties of Differentiation): If f and g are both differentiable at a,
then

(a) (f + g)′(a) = f ′(a) + g′(a),

(b) (fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(c)

(

f

g

)

′

(a) =
f ′(a)g(a)− f(a)g′(a)

[g(a)]2
if g(a) 6= 0.

Theorem 4.3 (Chain Rule): Suppose h = f ◦ g. Let a be an interior point of the
domain of h and define b = g(a). If f ′(b) and g′(a) both exist, then h is differentiable
at a and

h′(a) = f ′(b)g′(a).

Theorem 4.4 (Interior Local Extrema): Suppose

(i) f has an interior local extremum (maximum or minimum) at c,

(ii) f ′(c) exists.

Then f ′(c) = 0.

Corollary 4.4.1 (Rolle’s Theorem): Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b),

(iii) f(a) = f(b).

Then there exists a number c ∈ (a, b) for which f ′(c) = 0.
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Corollary 4.4.2 (Mean Value Theorem [MVT]): Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b).

Then there exists a number c ∈ (a, b) for which

f ′(c) =
f(b)− f(a)

b− a
.

Corollary 4.4.3 (Zero Derivative on an Interval): Suppose f ′(x) = 0 for every x in
an interval I (of nonzero length). Then f is constant on I.

Corollary 4.4.4 (Equal Derivatives): Suppose f ′(x) = g′(x) for every x in an interval
I (of nonzero length). Then f(x) = g(x) + k for all x ∈ I, where k is a constant.

Corollary 4.4.5 (Monotonic Functions): Suppose f is differentiable on an interval I.
Then

(i) f is increasing on I ⇐⇒ f ′(x) ≥ 0 on I;

(ii) f is decreasing on I ⇐⇒ f ′(x) ≤ 0 on I.

Corollary 4.4.6 (Horse-Race Theorem): Suppose

(i) f and g are continuous on [a, b],

(ii) f ′ and g′ exist on (a, b),

(iii) f(a) ≥ g(a),

(iv) f ′(x) ≥ g′(x) ∀x ∈ (a, b).

Then f(x) ≥ g(x) ∀x ∈ [a, b].

Corollary 4.4.7 (First Derivative Test): Suppose f is differentiable near a critical
point c (except possibly at c, provided f is continuous at c). If there exists a δ > 0
such that

(i) f ′(x)

{

≤ 0 ∀x ∈ (c− δ, c) (f decreasing),
≥ 0 ∀x ∈ (c, c+ δ) (f increasing),

then f has a local minimum at c;

(ii) f ′(x)

{

≥ 0 ∀x ∈ (c− δ, c) (f increasing),
≤ 0 ∀x ∈ (c, c+ δ) (f decreasing),

then f has a local maximum at c;

(iii) f ′(x) > 0 on (c− δ, c) ∪ (c, c+ δ) or f ′(x) < 0 on (c− δ, c) ∪ (c, c+ δ),
then f does not have a local extremum at c.

Corollary 4.4.8 (Second Derivative Test): Suppose f is twice differentiable at a
critical point c (this implies f ′(c) = 0). If
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(i) f ′′(c) > 0, then f has a local minimum at c;

(ii) f ′′(c) < 0, then f has a local maximum at c.

Corollary 4.4.9 (Cauchy Mean Value Theorem): Suppose

(i) f and g are continuous on [a, b],

(ii) f ′ and g′ exist on (a, b).

Then there exists a number c ∈ (a, b) for which

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

Corollary 4.4.10 (L’Hôpital’s Rule for 0
0
): Suppose f and g are differentiable on

(a, b), g′(x) 6= 0 for all x ∈ (a, b), lim
x→b−

f(x) = 0, and lim
x→b−

g(x) = 0. Then

lim
x→b−

f ′(x)

g′(x)
= L ⇒ lim

x→b−

f(x)

g(x)
= L.

This result also holds if

(i) lim
x→b−

is replaced by lim
x→a+

;

(ii) lim
x→b−

is replaced by lim
x→∞

and b is replaced by ∞;

(iii) lim
x→b−

is replaced by lim
x→−∞

and a is replaced by −∞.

Corollary 4.4.11 (L’Hôpital’s Rule for ∞

∞
): Suppose f and g are differentiable on

(a, b), g′(x) 6= 0 for all x ∈ (a, b), and lim
x→b−

f(x) = ∞, and lim
x→b−

g(x) = ∞. Then

lim
x→b−

f ′(x)

g′(x)
= L ⇒ lim

x→b−

f(x)

g(x)
= L.

This result also holds if

(i) lim
x→b−

is replaced by lim
x→a+

;

(ii) lim
x→b−

is replaced by lim
x→∞

and b is replaced by ∞;

(iii) lim
x→b−

is replaced by lim
x→−∞

and a is replaced by −∞.
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Corollary 4.4.12 (Taylor’s Theorem): Let n ∈ N. Suppose

(i) f (n−1) exists and is continuous on [a, b],

(ii) f (n) exists on (a, b).

Then there exists a number c ∈ (a, b) such that

f(b) =

n−1
∑

k=0

(b− a)k

k!
f (k)(a) +

(b− a)n

n!
f (n)(c).

Theorem 4.5 (First Convexity Criterion): Suppose f is differentiable on an interval
I. Then

(i) f is convex ⇐⇒ f ′ is increasing on I;

(ii) f is concave ⇐⇒ f ′ is decreasing on I.

Corollary 4.5.1 (Second Convexity Criterion): Suppose f is twice differentiable on
an interval I. Then

(i) f is convex on I ⇐⇒ f ′′(x) ≥ 0 ∀x ∈ I;

(ii) f is concave on I ⇐⇒ f ′′(x) ≤ 0 ∀x ∈ I.

Corollary 4.5.2 (Tangent to a Convex Function): If f is convex and differentiable
on an interval I, the graph of f lies above the tangent line to the graph of f at
every point of I.

Corollary 4.5.3 (Global Second Derivative Test): Suppose f is twice differentiable
on I and f ′(c) = 0 at some c ∈ I. If

(i) f ′′(x) ≥ 0 ∀x ∈ I, then f has a global minimum at c;

(ii) f ′′(x) ≤ 0 ∀x ∈ I, then f has a global maximum at c.

Theorem 4.6 (Continuous Invertible Functions): Suppose f is continuous on I.
Then f is one-to-one on I ⇐⇒ f is strictly monotonic on I.

Corollary 4.6.1 (Continuity of Inverse Functions): Suppose f is continuous and
one-to-one on an interval I. Then its inverse function f−1 is continuous on f(I) =
{f(x) : x ∈ I}.

Corollary 4.6.2 (Differentiability of Inverse Functions): Suppose f is continuous
and one-to-one on an interval I and differentiable at a ∈ I. Let b = f(a) and
denote the inverse function of f on I by g. If

(i) f ′(a) = 0, then g is not differentiable at b;

(ii) f ′(a) 6= 0, then g is differentiable at b and g′(b) =
1

f ′(a)
.
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