Math 117: Honours Calculus I

Fall, 2012 List of Theorems
Theorem 1.1 (Binomial Theorem): For all $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Theorem 2.1 (Convergent \Rightarrow Bounded): A convergent sequence is bounded.
Theorem 2.2 (Properties of Limits): Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be convergent sequences. Let $L=\lim _{n \rightarrow \infty} a_{n}$ and $M=\lim _{n \rightarrow \infty} b_{n}$. Then
(a) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$;
(b) $\lim _{n \rightarrow \infty} a_{n} b_{n}=L M$;
(c) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$ if $M \neq 0$.

Corollary 2.2.1 (Case $L \neq 0, M=0$): Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be convergent sequences. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ does not exist.

Theorem 2.3 (Monotone Sequences: Convergent \Longleftrightarrow Bounded): Let $\left\{a_{n}\right\}$ be a monotone sequence. Then $\left\{a_{n}\right\}$ is convergent $\Longleftrightarrow\left\{a_{n}\right\}$ is bounded.

Theorem 2.4 (Convergent \Longleftrightarrow All Subsequences Convergent): A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent with limit $L \Longleftrightarrow$ each subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent with limit L.

Theorem 2.5 (Bolzano-Weierstrass Theorem): A bounded sequence has a convergent subsequence.

Theorem 2.6 (Cauchy Criterion): $\left\{a_{n}\right\}$ is convergent $\Longleftrightarrow\left\{a_{n}\right\}$ is a Cauchy sequence.

Theorem 3.1 (Equivalence of Function and Sequence Limits): $\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow f$ is defined near a and every sequence of points $\left\{x_{n}\right\}$ in the domain of f, with $x_{n} \neq a$ but $\lim _{n \rightarrow \infty} x_{n}=a$, satisfies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Corollary 3.1.1 (Properties of Function Limits): Suppose $L=\lim _{x \rightarrow a} f(x)$ and $M=$ $\lim _{x \rightarrow a} g(x)$. Then
(a) $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$;
(b) $\lim _{x \rightarrow a} f(x) g(x)=L M$;
(c) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$ if $M \neq 0$.

Corollary 3.1.2 (Cauchy Criterion for Functions): $\lim _{x \rightarrow a} f(x)$ exists \Longleftrightarrow for every $\epsilon>0, \exists \delta>0$ such that whenever

$$
0<|x-a|<\delta \quad \text { and } \quad 0<|y-a|<\delta
$$

then $|f(x)-f(y)|<\epsilon$.
Corollary 3.1.3 (Squeeze Principle for Functions): Suppose $f(x) \leq h(x) \leq g(x)$ when $0<|x-a|<r$ for some positive real number r. Then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L \Rightarrow \lim _{x \rightarrow a} h(x)=L .
$$

Corollary 3.1.4 (Properties of Continuous Functions): Suppose f and g are continuous at a. Then $f+g$ and $f g$ are continuous at a and f / g is continuous at a if $g(a) \neq 0$.

Corollary 3.1.5 (Continuity of Rational Functions): A rational function is continuous at all points of its domain.

Corollary 3.1.6 (Continuous Functions of Sequences): f is continuous at an interior point a of the domain of $f \Longleftrightarrow$ each sequence $\left\{x_{n}\right\}$ in the domain of f with $\lim _{n \rightarrow \infty} x_{n}=a$ satisfies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.

Corollary 3.1.7 (Composition of Continuous Functions): Suppose g is continuous at a and f is continuous at $g(a)$. Then $f \circ g$ is continuous at a.

Theorem 3.2 (Intermediate Value Theorem [IVT]): Suppose
(i) f is continuous on $[a, b]$,
(ii) $f(a)<0<f(b)$.

Then there exists a number $c \in(a, b)$ such that $f(c)=0$.

Corollary 3.2.1 (Generalized Intermediate Value Theorem): Suppose
(i) f is continuous on $[\mathrm{a}, \mathrm{b}]$,
(ii) $f(a)<y<f(b)$.

Then there exists a number $c \in(a, b)$ such that $f(c)=y$.
Theorem 3.3 (Boundedness of Continuous Functions on Closed Intervals): If f is continuous on $[a, b]$ then f is bounded on $[a, b]$.

Theorem 3.4 (Weierstrass Max/Min Theorem): If f is continuous on $[a, b]$ then it achieves both a maximum and minimum value on $[a, b]$.

Corollary 3.4.1 (Image of a Continuous Function on a Closed Interval): If f is continuous on $[a, b]$ then $f([a, b])$ is either a closed interval or a point.
Theorem 4.1 (Differentiable \Rightarrow Continuous): If f is differentiable at a then f is continuous at a.

Theorem 4.2 (Properties of Differentiation): If f and g are both differentiable at a, then
(a) $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$,
(b) $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$,
(c) $\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{[g(a)]^{2}}$ if $g(a) \neq 0$.

Theorem 4.3 (Chain Rule): Suppose $h=f \circ g$. Let a be an interior point of the domain of h and define $b=g(a)$. If $f^{\prime}(b)$ and $g^{\prime}(a)$ both exist, then h is differentiable at a and

$$
h^{\prime}(a)=f^{\prime}(b) g^{\prime}(a) .
$$

Theorem 4.4 (Interior Local Extrema): Suppose
(i) f has an interior local extremum (maximum or minimum) at c,
(ii) $f^{\prime}(c)$ exists.

Then $f^{\prime}(c)=0$.
Corollary 4.4.1 (Rolle's Theorem): Suppose
(i) f is continuous on $[a, b]$,
(ii) f^{\prime} exists on (a, b),
(iii) $f(a)=f(b)$.

Then there exists a number $c \in(a, b)$ for which $f^{\prime}(c)=0$.

Corollary 4.4.2 (Mean Value Theorem [MVT]): Suppose
(i) f is continuous on $[a, b]$,
(ii) f^{\prime} exists on (a, b).

Then there exists a number $c \in(a, b)$ for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Corollary 4.4.3 (Zero Derivative on an Interval): Suppose $f^{\prime}(x)=0$ for every x in an interval I (of nonzero length). Then f is constant on I.

Corollary 4.4.4 (Equal Derivatives): Suppose $f^{\prime}(x)=g^{\prime}(x)$ for every x in an interval I (of nonzero length). Then $f(x)=g(x)+k$ for all $x \in I$, where k is a constant.
Corollary 4.4.5 (Monotonic Functions): Suppose f is differentiable on an interval I. Then
(i) f is increasing on $I \Longleftrightarrow f^{\prime}(x) \geq 0$ on I;
(ii) f is decreasing on $I \Longleftrightarrow f^{\prime}(x) \leq 0$ on I.

Corollary 4.4.6 (Horse-Race Theorem): Suppose
(i) f and g are continuous on $[a, b]$,
(ii) f^{\prime} and g^{\prime} exist on (a, b),
(iii) $f(a) \geq g(a)$,
(iv) $f^{\prime}(x) \geq g^{\prime}(x) \quad \forall x \in(a, b)$.

Then $f(x) \geq g(x) \quad \forall x \in[a, b]$.
Corollary 4.4.7 (First Derivative Test): Suppose f is differentiable near a critical point c (except possibly at c, provided f is continuous at c). If there exists a $\delta>0$ such that
(i) $f^{\prime}(x)\left\{\begin{array}{lll}\leq 0 & \forall x \in(c-\delta, c) & (f \text { decreasing }), \\ \geq 0 & \forall x \in(c, c+\delta) & (f \text { increasing }),\end{array}\right.$ then f has a local minimum at c;
(ii) $f^{\prime}(x)\left\{\begin{array}{lll}\geq 0 & \forall x \in(c-\delta, c) & (f \text { increasing }), \\ \leq 0 & \forall x \in(c, c+\delta) & (f \text { decreasing }),\end{array}\right.$ then f has a local maximum at c;
(iii) $f^{\prime}(x)>0$ on $(c-\delta, c) \cup(c, c+\delta)$ or $f^{\prime}(x)<0$ on $(c-\delta, c) \cup(c, c+\delta)$, then f does not have a local extremum at c.

Corollary 4.4.8 (Second Derivative Test): Suppose f is twice differentiable at a critical point c (this implies $f^{\prime}(c)=0$). If
(i) $f^{\prime \prime}(c)>0$, then f has a local minimum at c;
(ii) $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Corollary 4.4.9 (Cauchy Mean Value Theorem): Suppose
(i) f and g are continuous on $[a, b]$,
(ii) f^{\prime} and g^{\prime} exist on (a, b).

Then there exists a number $c \in(a, b)$ for which

$$
f^{\prime}(c)[g(b)-g(a)]=g^{\prime}(c)[f(b)-f(a)] .
$$

Corollary 4.4.10 (L'Hôpital's Rule for $\frac{0}{0}$): Suppose f and g are differentiable on $(a, b), g^{\prime}(x) \neq 0$ for all $x \in(a, b), \lim _{x \rightarrow b^{-}} f(x)=0$, and $\lim _{x \rightarrow b^{-}} g(x)=0$. Then

$$
\lim _{x \rightarrow b^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Rightarrow \lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=L
$$

This result also holds if
(i) $\lim _{x \rightarrow b^{-}}$is replaced by $\lim _{x \rightarrow a^{+}}$;
(ii) $\lim _{x \rightarrow b^{-}}$is replaced by $\lim _{x \rightarrow \infty}$ and b is replaced by ∞;
(iii) $\lim _{x \rightarrow b^{-}}$is replaced by $\lim _{x \rightarrow-\infty}$ and a is replaced by $-\infty$.

Corollary 4.4.11 (L'Hôpital's Rule for $\frac{\infty}{\infty}$): Suppose f and g are differentiable on $(a, b), g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, and $\lim _{x \rightarrow b^{-}} f(x)=\infty$, and $\lim _{x \rightarrow b^{-}} g(x)=\infty$. Then

$$
\lim _{x \rightarrow b^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Rightarrow \lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=L
$$

This result also holds if
(i) $\lim _{x \rightarrow b^{-}}$is replaced by $\lim _{x \rightarrow a^{+}}$;
(ii) $\lim _{x \rightarrow b^{-}}$is replaced by $\lim _{x \rightarrow \infty}$ and b is replaced by ∞;
(iii) $\lim _{x \rightarrow b^{-}}$is replaced by $\lim _{x \rightarrow-\infty}$ and a is replaced by $-\infty$.

Corollary 4.4.12 (Taylor's Theorem): Let $n \in \mathbb{N}$. Suppose
(i) $f^{(n-1)}$ exists and is continuous on $[a, b]$,
(ii) $f^{(n)}$ exists on (a, b).

Then there exists a number $c \in(a, b)$ such that

$$
f(b)=\sum_{k=0}^{n-1} \frac{(b-a)^{k}}{k!} f^{(k)}(a)+\frac{(b-a)^{n}}{n!} f^{(n)}(c) .
$$

Theorem 4.5 (First Convexity Criterion): Suppose f is differentiable on an interval I. Then
(i) f is convex $\Longleftrightarrow f^{\prime}$ is increasing on I;
(ii) f is concave $\Longleftrightarrow f^{\prime}$ is decreasing on I.

Corollary 4.5.1 (Second Convexity Criterion): Suppose f is twice differentiable on an interval I. Then
(i) f is convex on $I \Longleftrightarrow f^{\prime \prime}(x) \geq 0 \quad \forall x \in I$;
(ii) f is concave on $I \Longleftrightarrow f^{\prime \prime}(x) \leq 0 \quad \forall x \in I$.

Corollary 4.5.2 (Tangent to a Convex Function): If f is convex and differentiable on an interval I, the graph of f lies above the tangent line to the graph of f at every point of I.
Corollary 4.5.3 (Global Second Derivative Test): Suppose f is twice differentiable on I and $f^{\prime}(c)=0$ at some $c \in I$. If
(i) $f^{\prime \prime}(x) \geq 0 \quad \forall x \in I$, then f has a global minimum at c;
(ii) $f^{\prime \prime}(x) \leq 0 \quad \forall x \in I$, then f has a global maximum at c.

Theorem 4.6 (Continuous Invertible Functions): Suppose f is continuous on I. Then f is one-to-one on $I \Longleftrightarrow f$ is strictly monotonic on I.
Corollary 4.6.1 (Continuity of Inverse Functions): Suppose f is continuous and one-to-one on an interval I. Then its inverse function f^{-1} is continuous on $f(I)=$ $\{f(x): x \in I\}$.
Corollary 4.6.2 (Differentiability of Inverse Functions): Suppose f is continuous and one-to-one on an interval I and differentiable at $a \in I$. Let $b=f(a)$ and denote the inverse function of f on I by g. If
(i) $f^{\prime}(a)=0$, then g is not differentiable at b;
(ii) $f^{\prime}(a) \neq 0$, then g is differentiable at b and $g^{\prime}(b)=\frac{1}{f^{\prime}(a)}$.

