Review of Math 117

1 Real Numbers

Induction: Show first case and that case n implies case $n+1$.
Binomial Theorem: For $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

\mathbb{R} is complete: Every nonempty subset of \mathbb{R} with an upper bound has a least upper bound in \mathbb{R}.

2 Limits

Limit: $\lim _{x \rightarrow a} f(x)=L$ means for every $\epsilon>0$ we can find a $\delta>0$ such that

$$
0<|x-a|<\delta \Rightarrow|f(x)-L|<\epsilon
$$

One-Sided Limit: $\lim _{x \rightarrow a+} f(x)=L$ means for every $\epsilon>0$ we can find a $\delta>0$ such that

$$
x \in(a, a+\delta) \Rightarrow|f(x)-L|<\epsilon
$$

Vertical Asymptote: $\lim _{x \rightarrow a+} f(x)=\infty$ means for every $M>0$ we can find a $\delta>0$ such that

$$
x \in(a, a+\delta) \Rightarrow f(x)>M
$$

Horizontal Asymptote: $\lim _{x \rightarrow \infty} f(x)=L$ means for every $\epsilon>0$ we can find a number N such that

$$
x>N \Rightarrow|f(x)-L|<\epsilon
$$

Infinite Limit: $\lim _{x \rightarrow \infty} f(x)=\infty$ means for every $M>0$ we can find a number N such that

$$
x>N \Rightarrow f(x)>M
$$

Cauchy Criterion: $\lim _{x \rightarrow a} f(x)$ exists \Longleftrightarrow for every $\epsilon>0$ we can find a $\delta>0$ such that $x, y \in(a-\delta, a) \cup(a, a+\delta) \Rightarrow|f(x)-f(y)|<\epsilon$.

Sequences: $a_{n}=f(n)$ is a function on the domain \mathbb{N}.
Cauchy Criterion for Sequences: $\lim _{n \rightarrow \infty} a_{n}$ exists \Longleftrightarrow for every $\epsilon>0$ we can find a number N such that $m, n>N \Rightarrow\left|a_{m}-a_{n}\right|<\epsilon$.

Convergent \Rightarrow Bounded.
Monotone Sequences: Convergent \Longleftrightarrow Bounded.

Convergent \Longleftrightarrow All Subsequences Convergent.

Bounded $\Rightarrow \exists$ Convergent Subsequence.

Limit Properties: $\lim _{x \rightarrow a}(f(x)+g(x)) \exists=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$ if these individual limits exist.

Continuity: $\lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right)=f(a)$.
Intermediate Value Theorem: If
(i) f is continuous on $[\mathrm{a}, \mathrm{b}]$,
(ii) $f(a)<y<f(b)$,
then there exists a number $c \in(a, b)$ such that $f(c)=y$.
Closed intervals: Continuous \Rightarrow bounded; maximum and minimum values achieved.

3 Derivatives

Derivative:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Differentiable \Rightarrow Continuous.

Derivative Properties: At a point a, if f and g are differentiable then
(a) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$,
(b) $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$,
(c) $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$ if $g(a) \neq 0$.

Chain Rule: If $y=f(g(x))$, then $\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)$.

Taylor's Theorem: If

(i) $f^{(n-1)}$ is continuous on $[a, b]$,
(ii) $f^{(n)}$ exists on (a, b),
then $\exists c \in(a, b)$ such that

$$
f(b)=\sum_{k=0}^{n-1} \frac{(b-a)^{k}}{k!} f^{(k)}(a)+\underbrace{\frac{(b-a)^{n}}{n!} f^{(n)}(c)}_{R_{n}}
$$

Mean Value Theorem: Case $n=1$. Suppose
(i) f is continuous on $[a, b]$,
(ii) f^{\prime} exists on (a, b).

Then there exists a number $c \in(a, b)$ for which

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Rolle's Theorem: Case $f(a)=f(b)$.
Monotonic Functions: Suppose f is differentiable on I. Then f is increasing on $I \Longleftrightarrow f^{\prime}(x) \geq 0$ on I.

Extrema: Extrema can occur either at
(i) an end point,
(ii) a point where f^{\prime} does not exist,
(iii) a point where $f^{\prime}=0$.

First Derivative Test: If f is decreasing to the left of c and increasing to the right of c, then f has a minimum at c.

Second Derivative Test: If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
L'Hôpital's Rule for $\frac{0}{0}$ Form: Suppose f and g are differentiable, with $g^{\prime} \neq 0$ on $(a, b), \lim _{x \rightarrow a^{+}} f(x)=0, \lim _{x \rightarrow a^{+}} g(x)=0$. Then

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)} \exists=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the RHS exists. (There is a similar L'Hôpital's Rule for the $\frac{\infty}{\infty}$ form.)

Continuous Functions: Invertible (1-1) \Longleftrightarrow Strictly Monotonic.
Continuous Invertible Functions Have Continous Inverses.
Differentiable Invertible Functions Have Differentiable Inverses:

$$
f^{-1 \prime}(b)=\frac{1}{f^{\prime}(a)}=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)},
$$

unless $f^{\prime}(a)=0$.
Convexity Criterion: A twice differentiable function f on I is convex $\Longleftrightarrow f^{\prime \prime} \geq 0$ on I.

