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1 Real Numbers

Induction: Show first case and that case n implies case n + 1.

Binomial Theorem: For n ∈ N,

(a + b)n =

n∑

k=0

(
n

k

)

an−kbk.

R is complete: Every nonempty subset of R with an upper bound has a least upper
bound in R.

2 Limits

Limit: lim
x→a

f(x) = L means for every ǫ > 0 we can find a δ > 0 such that

0 < |x − a| < δ ⇒ |f(x) − L| < ǫ.

One-Sided Limit: lim
x→a+

f(x) = L means for every ǫ > 0 we can find a δ > 0 such

that
x ∈ (a, a + δ) ⇒ |f(x) − L| < ǫ.

Vertical Asymptote: lim
x→a+

f(x) = ∞ means for every M > 0 we can find a δ > 0

such that
x ∈ (a, a + δ) ⇒ f(x) > M.

Horizontal Asymptote: lim
x→∞

f(x) = L means for every ǫ > 0 we can find a number

N such that
x > N ⇒ |f(x) − L| < ǫ.

Infinite Limit: lim
x→∞

f(x) = ∞ means for every M > 0 we can find a number N

such that
x > N ⇒ f(x) > M.
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Cauchy Criterion: lim
x→a

f(x) exists ⇐⇒ for every ǫ > 0 we can find a δ > 0 such

that x, y ∈ (a − δ, a) ∪ (a, a + δ) ⇒ |f(x) − f(y)| < ǫ.

Sequences: an = f(n) is a function on the domain N.

Cauchy Criterion for Sequences: lim
n→∞

an exists ⇐⇒ for every ǫ > 0 we can find

a number N such that m, n > N ⇒ |am − an| < ǫ.

Convergent ⇒ Bounded.

Monotone Sequences: Convergent ⇐⇒ Bounded.

Convergent ⇐⇒ All Subsequences Convergent.

Bounded ⇒ ∃ Convergent Subsequence.

Limit Properties: lim
x→a

(f(x)+g(x))∃ = lim
x→a

f(x)+lim
x→a

g(x) if these individual limits

exist.

Continuity: lim
x→a

f(x) = f(lim
x→a

x) = f(a).

Intermediate Value Theorem: If

(i) f is continuous on [a,b],

(ii) f(a) < y < f(b),

then there exists a number c ∈ (a, b) such that f(c) = y.

Closed intervals: Continuous ⇒ bounded; maximum and minimum values achieved.

3 Derivatives

Derivative:

f ′(a) = lim
x→a

f(x) − f(a)

x − a
.

Differentiable ⇒ Continuous.

Derivative Properties: At a point a, if f and g are differentiable then

(a) (f + g)′ = f ′ + g′,

(b) (fg)′ = f ′g + fg′,

(c)

(
f

g

)
′

=
f ′g − fg′

g2
if g(a) 6= 0.

Chain Rule: If y = f(g(x)), then
dy

dx
= f ′(g(x)) g′(x).
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Taylor’s Theorem: If

(i) f (n−1) is continuous on [a, b],

(ii) f (n) exists on (a, b),

then ∃c ∈ (a, b) such that

f(b) =
n−1∑

k=0

(b − a)k

k!
f (k)(a) +

(b − a)n

n!
f (n)(c)

︸ ︷︷ ︸

Rn

.

Mean Value Theorem: Case n = 1. Suppose

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b).

Then there exists a number c ∈ (a, b) for which

f(b) − f(a)

b − a
= f ′(c).

Rolle’s Theorem: Case f(a) = f(b).

Monotonic Functions: Suppose f is differentiable on I. Then f is increasing on
I ⇐⇒ f ′(x) ≥ 0 on I.

Extrema: Extrema can occur either at

(i) an end point,

(ii) a point where f ′ does not exist,

(iii) a point where f ′ = 0.

First Derivative Test: If f is decreasing to the left of c and increasing to the right
of c, then f has a minimum at c.

Second Derivative Test: If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum
at c.

L’Hôpital’s Rule for
0

0
Form: Suppose f and g are differentiable, with g′ 6= 0 on

(a, b), lim
x→a+

f(x) = 0, lim
x→a+

g(x) = 0. Then

lim
x→a+

f(x)

g(x)
∃ = lim

x→a+

f ′(x)

g′(x)

if the limit on the RHS exists. (There is a similar L’Hôpital’s Rule for the
∞

∞
form.)
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Continuous Functions: Invertible (1–1) ⇐⇒ Strictly Monotonic.

Continuous Invertible Functions Have Continous Inverses.

Differentiable Invertible Functions Have Differentiable Inverses:

f−1′(b) =
1

f ′(a)
=

1

f ′(f−1(b))
,

unless f ′(a) = 0.

Convexity Criterion: A twice differentiable function f on I is convex ⇐⇒ f ′′ ≥ 0
on I.


