Review of Math 117

1 Real Numbers

Induction: Show first case and that case n implies case n + 1.

Binomial Theorem: For $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

 \mathbb{R} is complete: Every *nonempty* subset of \mathbb{R} with an upper bound has a *least* upper bound in \mathbb{R} .

2 Limits

Limit: $\lim_{x \to a} f(x) = L$ means for every $\epsilon > 0$ we can find a $\delta > 0$ such that

$$0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon.$$

One-Sided Limit: $\lim_{x \to a+} f(x) = L$ means for every $\epsilon > 0$ we can find a $\delta > 0$ such that

$$x \in (a, a + \delta) \Rightarrow |f(x) - L| < \epsilon.$$

Vertical Asymptote: $\lim_{x \to a+} f(x) = \infty$ means for every M > 0 we can find a $\delta > 0$ such that

$$x \in (a, a + \delta) \Rightarrow f(x) > M.$$

Horizontal Asymptote: $\lim_{x\to\infty} f(x) = L$ means for every $\epsilon > 0$ we can find a number N such that

$$x > N \Rightarrow |f(x) - L| < \epsilon.$$

Infinite Limit: $\lim_{x\to\infty} f(x) = \infty$ means for every M > 0 we can find a number N such that

$$x > N \Rightarrow f(x) > M.$$

Cauchy Criterion: $\lim_{x \to a} f(x)$ exists \iff for every $\epsilon > 0$ we can find a $\delta > 0$ such that $x, y \in (a - \delta, a) \cup (a, a + \delta) \Rightarrow |f(x) - f(y)| < \epsilon$.

Sequences: $a_n = f(n)$ is a function on the domain \mathbb{N} .

Cauchy Criterion for Sequences: $\lim_{n\to\infty} a_n$ exists \iff for every $\epsilon > 0$ we can find a number N such that $m, n > N \Rightarrow |a_m - a_n| < \epsilon$.

Convergent \Rightarrow Bounded.

Monotone Sequences: Convergent \iff Bounded.

Convergent \iff All Subsequences Convergent.

Bounded $\Rightarrow \exists$ Convergent Subsequence.

Limit Properties: $\lim_{x \to a} (f(x) + g(x)) \exists = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ if these individual limits exist.

Continuity: $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a).$

Intermediate Value Theorem: If

- (i) f is continuous on [a,b],
- (ii) f(a) < y < f(b),

then there exists a number $c \in (a, b)$ such that f(c) = y.

Closed intervals: Continuous \Rightarrow bounded; maximum and minimum values achieved.

3 Derivatives

Derivative:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Differentiable \Rightarrow Continuous.

Derivative Properties: At a point a, if f and g are differentiable then

(a)
$$(f+g)' = f' + g'$$
,
(b) $(fg)' = f'g + fg'$,
(c) $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ if $g(a) \neq 0$.

Chain Rule: If y = f(g(x)), then $\frac{dy}{dx} = f'(g(x)) g'(x)$.

3. DERIVATIVES

Taylor's Theorem: If

- (i) $f^{(n-1)}$ is continuous on [a, b],
- (ii) $f^{(n)}$ exists on (a, b),

then $\exists c \in (a, b)$ such that

$$f(b) = \sum_{k=0}^{n-1} \frac{(b-a)^k}{k!} f^{(k)}(a) + \underbrace{\frac{(b-a)^n}{n!} f^{(n)}(c)}_{R_n}.$$

Mean Value Theorem: Case n = 1. Suppose

- (i) f is continuous on [a, b],
- (ii) f' exists on (a, b).

Then there exists a number $c \in (a, b)$ for which

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Rolle's Theorem: Case f(a) = f(b).

Monotonic Functions: Suppose f is differentiable on I. Then f is increasing on $I \iff f'(x) \ge 0$ on I.

Extrema: Extrema can occur either at

- (i) an end point,
- (ii) a point where f' does not exist,
- (iii) a point where f' = 0.
- First Derivative Test: If f is decreasing to the left of c and increasing to the right of c, then f has a minimum at c.
- Second Derivative Test: If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.

L'Hôpital's Rule for $\frac{0}{0}$ **Form:** Suppose f and g are differentiable, with $g' \neq 0$ on (a, b), $\lim_{x \to a^+} f(x) = 0$, $\lim_{x \to a^+} g(x) = 0$. Then

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} \exists = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

if the limit on the RHS exists. (There is a similar L'Hôpital's Rule for the $\frac{\infty}{\infty}$ form.)

Continuous Functions: Invertible $(1-1) \iff$ Strictly Monotonic. Continuous Invertible Functions Have Continuous Inverses. Differentiable Invertible Functions Have Differentiable Inverses:

$$f^{-1'}(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))},$$

unless f'(a) = 0.

Convexity Criterion: A twice differentiable function f on I is convex $\iff f'' \ge 0$ on I.