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Abstract 

 
We present an approximate algorithm to solve only one variable out of a linear system defined by a 
matrix with off-diagonal exponential decay entries (including the practically most important class of 
band limited matrices) via a sub-linear system. This approach thus enables us to solve any subset of 
solution variables. Parallel implementation of such approximate schemes for every variable enables 
us to solve the linear system with computational time independent of the matrix size. 
 
Index terms: linear equation, numerical solution, sub-linear system, decomposition. 
 
 
1. Introduction and motivations 
How to solve a large linear system Ax f=  is a key topic of practical importance. Direct 
approaches (like Gauss elimination and various decomposition schemes, such as LU and 
QR, are used mainly for small matrices) are theoretically precise yet practically forbidden 
for large linear systems in general due to computational cost. Iterative approaches (such 
as Jacobi, Gausss-Seidel, SOR and CG iteration, [3][4]) and multigrid methods [7] are 
approximate methods and basically “the practical schemes”. For iterative methods, the 

matrix condition number (defined as 
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AxAcond x , where maxλ  and 

minλ  are the maximum and the minimum eigen-values of  respectively) usually decides 
their convergence rates and the matrix “sparsity” (i.e. number of non-zero entries in ) 
decides their computation costs. Iteration by nature, the convergence speed of multigrid 
methods is independent of the matrix condition numbers though [7][11]. For linear 
systems derived from numerical differential equations via finite difference [8] or finite 
element [9], the matrix sizes are generally decided by the size of domain and the 
approximation accuracies required. Domain decomposition ([10][11], to split the original 
problem into problems with smaller domains) and preconditioning ([12], to transform the 
matrix for better condition number) studies are trying to deal with large matrices and poor 
matrix condition numbers. They are usually “geometrical” methods linked to the original 
problem. Algebraic multigrid, a special iterative method [7], is based on the algebraic 
properties of the final linear systems mainly. 

A
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Heading in a different direction, there are also lot of recent progress trying to reduce the 
number of computations and to split the matrices (i.e. different decomposition schemes). 
Almost purely algebra in nature, these works try to solve the linear system efficiently by 
looking at the matrix structure directly. The first approach is the work on semiseparable 
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matrices (also been used for symmetric eigen-value problems) [13]. A symmetric matrix 
can be transformed into tridiagonal, semiseparable or with diagonal plus semiseparable 
form (free diagonal choice) via orthogonal similarity or Lanczos-like reduction. Efficient 
algorithms can then be devised accordingly [13]. For example, Crout algorithm can be 
applied to solve the tridiagonal form and efficient QR-factorization approach can be used 
to solve the semiseparable form. Another approach is H-matrices [6] with the aim of 
enabling matrix operations in almost linear complexity. The key technique is to applying 
local matrix approximation via matrices that is product of two vectors. Based on Taylor 
series analysis of kernel | , local matrix approximation can be applied with low 
rank approximation of matrix blocks. Almost linear complexity algorithm can then be 
devised via cluster tree partition technically. We emphasize that these techniques, easier 
to apply with efficiency for small matrices, can be applied on top of our scheme since our 
approach is to decompose the system into smaller systems first. Future work combining 
these ideas with decomposition most likely will further refine our algorithm. 

|log yx −

 
Last but not least, we mention algebraic Schwarz or algebraic domain decomposition 
methods which are mostly related to our work [14][15][16]. They are iterative approaches 
via Schwarz alternating in algebraic form and can actually be viewed more clearly in its 
elliptic problem theoretical background. H. A. Schwarz’s study of Dirichlet problem on 
overlapping regions provided the fundamental alternating solution approach (numerically 
a different way of iteration). The elegant and insightful analysis of P. L. Lions and O. B. 
Widlund [17][18][19] are recent re-interpretations and further developments (for example 
parallel algorithms) of this classical direction. Amazingly enough, our very first feeling is 
that these projection analysis techniques might be borrowed and modified for the iterative 
turbo decoding analysis. It is also interesting to recall that turbo codes was invented by C. 
Berrou, A. Glavieux and P. Thitimajshima in 1993 from France (see references in [23]). 
Secondly and most importantly, we feel that the connection between iterative algebraic 
domain decomposition and our direct approach to be presented deserves serious further 
investigation (in particular the Dirichlet problem counter part analysis). 
 
In our effort starting with algebraic multigrid looking for schemes to make the matrix to 
have better condition number and to decompose large linear systems, we found a fast 
approximate algorithm capable of breaking the matrix size (for special classes of matrices 
of course) to be presented here. This algorithm seems can be used in many areas beyond 
numerical partial differential equations. It thus justifies an independent paper. Our main 
contribution is the algorithm capable of solving a single variable by solving a smaller 
linear system in some special large linear systems with controllable error. Even can be 
further elaborated and extended, we mainly study matrices with off-diagonal exponential 
decay entries for simplicity and practical efficiency. Counter examples show easily that 
our algorithm is not valid for all matrices. For practical implementation concerns, we also 
present exact conditions for a matrix to be with off-diagonal exponentially decay entries. 
 
Let us look at some simple symmetric positive definite matrix examples with exponential 

decay entries to build up our intuitions for further analysis. For , where , 
a c

A
c d
⎛ ⎞

= ⎜
⎝ ⎠

⎟ 0a >



0d > , , and . Linear equation  has solutions a >> c c
⎞
⎟d >>

1
2

b
Ax

b
⎛

= ⎜
⎝ ⎠

1
1 2

db cbx
ad c

−
=

−
2  and 

2
2 2

ab cbx
ad c

−
=

−
1 . We can see that 1

0 1limc
bx
a→ =  and 2

0 2limc
bx
d→ = . That is solutions of 

1

2 2

1x ba c
x bc d

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 are close to solutions of 1

2 2

0
0

1x ba
x bd

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
, which is a compressed 

form with  set to zero. Let’s ponder on this observation and extend our analysis to a 
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As for the second variable, we have the following approximation form 
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Equivalently, the approximate solution can be given by the following systems: (1) use 
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linear system  can be approximated by the three sub-linear 

systems. Each corresponds to a sub-block of the original matrix: the upper-left corner 

matrix , matrix  in the middle, and the lower-right corner 

 with the corresponding ’s to solve 

11 12 1 1

21 22 23 2 2

32 33 3 3

0

0

a a x b
a a a x b

a a x b

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎞
⎟

⎟
⎟

⎞
⎟

11 12

21 22

a a
a a
⎛
⎜
⎝ ⎠

11 12

21 22 23

32 33

0

0

a a
a a a

a a

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

22 23

32 33

a a
a a
⎛
⎜
⎝ ⎠

ib ix ’s respectively. Observing from , 
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we see they correspond to 

1

2

3

b
b
b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

2

b
b
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2

3

b
b
b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

2

3

b
b
⎛ ⎞
⎜ ⎟
⎝ ⎠

{1,2}, {1, 2,3}  and }3,2{  respectively to be precise. The most 
noticeable fact is that this approach actually reduces the solution spaces dimensions with 
tolerable errors. The previous observations are also true for non-symmetric matrices. We 
ignore the analysis details to avoid lengthy expressions. 
 
For a linear system defined by matrix with off-diagonal exponential decay entries, we can 
simply approximate the first a few rows with the “tail” part (looking from left to right) off 
as zeros. This approximation will not affect the solution much due to the limit properties. 
Yet it is enough to solve the first variable already. If we keep applying this “windowing” 
technique to each variable of the system, the solutions will actually be quite close to the 
original precise solutions. Due to the edge effect (errors caused by the variables near the 
window edge), only the solution variable at the window center is accurate enough. We 
will show that this intuition is actually right. 
 
Another important source of our intuition comes also from the approximate Viterbi, 
BCJR and turbo decoding algorithms (also named as local decoding schemes by Xu and 
Stark in §3-4 of [23]) for convolutional and turbo codes studied and summarized in [23]. 
Viterbi, BCJR and turbo algorithms are fundamental schemes for bit error correction in 
digital communications (see references in [23]). These approximate numerical schemes, 
virtually “windowing techniques” using lower dimension approximations, have important 
practical values. With parallel lay out of these approximate decoders, fast algorithms can 
be devised with speed that is independent of frame size [23]. For the theoretically and 
practically fundamental linear codes (include convolutional, turbo and LDPC codes) in 
digital communications, the decoding methods (include Viterbi, BCJR, turbo and LDPC 
algorithms) are also consists of direct and iterative schemes and the similarities with what 
have been studied in numerical analysis is unmistakable. We feel that the similarity and 
hidden connections between them are interesting and worth serious further investigations. 
 



Let’s recall some results regarding inverses of band limited matrices. Stephen Demko et 
al have shown that the inverse of a band limited matrix (with off-diagonal exponential 
decay entries) is with off-diagonal exponential decay entries under certain conditions 
[21][22] and have derived the following results (we cite them as lemmas here for further 
discussions). We will see that the extension of these results is the very foundation of our 
key algorithm to be introduced. 
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Lemma 1.3. If  and  be in . Then if  is positive definite and  banded 
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2. Matrix with Off-diagonal Exponential Decay Entries 
For most practical linear systems, matrix  is with good properties. These properties are 
usually symmetric, positive definite, and with off-diagonal exponentially decay entries. 
We may also assume the matrix condition number is good. As a matter of fact, efficient 
numerical schemes typically come only with these stringent conditions in general. 

A

 



We now look at a large class of matrices with off-diagonal exponential decay entries. It is 
interesting to see that the same exponential decay property (actually with the same decay 
ratio) is also true for their inverses as stated in the following theorem. We name it after 
Stephen Demko to memorize his pioneering effort three decades ago[21][22]. 
 
Theorem 2.1. (Demko Lemma) If matrix  has off-diagonal exponentially decay entries, A
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We first prove the following lemma on matrix determinants. 
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which gives the conclusion we want. 
 
We now look at matrices  derives by eliminating the ijM thi −  row and  column 
from the original matrix . With the off-diagonal exponential decaying assumptions and 
direct determinant calculation and inequality manipulation, we can get similarly the fact 
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The proof of the previous theorem is now straightforward as follows. 
 
Proof of Theorem 2.1: We have analyzed determinants of the related sub-matrices in the 

theoretical inverse operation. The inverse matrix of the matrix  can be 
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the decay ratios for both matrices are actually the same.  
 
Let’s see what kind of band limited matix is a off-diagonal exponentially decay matrix. 
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Conditions 0>α  and 0>ρ  are required for matrix A  to be off-diagonal exponentially 
decay, that is ,

j i
i ja e ρα − −≤ ⋅  for all ji, . These requirements simply translate into the 

following conditions:  



A: , for all i ,  0≠iia
B: , if |||| iiij aa < ji ≠ , 
C: , if .  0=ija Mji >− ||

These are actually very relaxed conditions (e.g. conditions A and B are even weaker than 
diagonal dominance). Most meaningful band limited matrices fall in this category in 
practice (for numerical differential equations, the previous conditions are true for most 
matrices derived by finite difference and finite element discretization). As will be seen in 
the next section, we do demand fast decay rate for efficient numerical computations. 
 
A subtle point commented by professor Wolfgang Hackbusch must be mentioned here for 
further clarification. In the standard case of partial differential equations, the off-diagonal 
entries of the inverse are not decaying exponentially in analysis. The inverse resembles 

the Green function, which for example in the 2nd-order Laplace case decays like 
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which is definitely not exponential in theory [5]. Actually, the matrix entries are in the 
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O  which is polynomial decay (let alone its inverse) in theoretical sense if 

finite difference is applied for discretization. Yet, we still get a band limited matrix with 
proper boundary conditions. By the previous conditions A-C, this matrix (in numerical 
analysis sense only) is with off-diagonal exponential decay entries given that the step size 
is fixed and the matrix is fixed. The key point, once again, is that the matrix size and 
entries must be fixed first. Exponential decaying properties (if so) and ratios can then be 
decided for numerical computations only. 
 
We emphasize that two things need to be distinguished: the underlying partial differential 
equations and the derived linear system to be solved. Once the discretization scheme is 
fixed (include step sizes, dimensions and so on), the derived linear system is fixed. All 
we need to do next is how to solve this linear system with efficiency. Our view point is 
purely look at the numerical procedures in the second part. Even the off-diagonal entries 
of the inverse are not decaying exponentially with respect to step size of discretization 
(This is the analysis of the discretization procedure). When discretization scheme get 
fixed however, the derived linear system to be solved get fixed also. For most well-posed 
problems with proper discretization, the matrix is with good properties. Typically, it is 
with off-diagonal exponential decay entries in numerical sense or band-limited (include 
cases that the matrix can be approximated by a band limited matrix after “compression” 
or approximation schemes). We have also seen that as long as 0≠iia ,  and  
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off-diagonal exponentially decay entries. For a multigrid scheme with finite difference 
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on the coarse grid will not get slower though. We can see that once the discretization and 
level of multigrid is fixed. Every matrix get involved is with uniformly bounded 
condition numbers and good exponential decay properties (only in the final numerical 
computation sense of course). 
 
Clearly, the previous results extended the conclusions of [21][22] (Lemma 1.1-1.3). By 
great luck, it just happened this time that to analyze a general class (matrices with off-
diagonal exponential decay entries) is in a sense easier than to study a special sub-class 
(band limited matrices). 
 
3. An approximate algorithm to solve a single variable 
We now present the following theorem, which is the main result of this paper. 
 
Theorem 3.1. If matrix A  and its inverse 1B A−=  both have off-diagonal exponentially 
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clearly, error  decay to zero fast with respect to  uniformly. ( , )
1{| |}T i K

i ix x ≤ ≤− K
 
Proof: Given the “windowing” technique, three ix  cases need to be analyzed 1 , 

 and  (they correspond to the upper-left corner, middle 
portion and lower-right corner of the matrix

i K≤ ≤
1K i n+ ≤ ≤ − K 1n K i n− + ≤ ≤

A ). We present proof for the middle portion 
only. Other two parts can be analyzed in the same way. 
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Define , some detailed calculations based on 

the exponential decaying properties with absolute values gives us  
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Please note that the previous inequality is valid with corresponding entries. For example, 

we have 
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and estimates for all other entries follow the same way.  
 



Loot at the specific t  entry of th− ( , , )T i Kx x−%  and apply the exponential decay properties 
of matrix 1B A−= , we have 
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and the last inequality concludes our proof.  
 
We must point out that the error of our approximate algorithm is also based on, besides 
the decaying ratios, the constant ∆ . That is the window size needs to be analyzed and 
selected in practice. Trial and error (typically by simulation) is of course one way. 
  
Based on the matrix analysis of the previous section, the following results are obvious. 
 
Corollary 3.2. If matrix A  has off-diagonal exponentially decay entries, ,
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Most importantly, the previous analysis leads us to the following approximate algorithm. 
 
Linear system decomposition algorithm: Instead of solving the original linear system 

 directly, the sub-linear system  can be used to solve  only in 
an approximation sense (numerically with tolerable error). The requirement is that 
matrix  has off-diagonal exponentially decay entries. 

Ax f= ( , , ) ( , , )T i K T i KA y f= ix

A
 
As analyzed before, most band limited matrices in numerical partial differential equation 
cases are with off-diagonal exponentially decay entries. The other way is also true, that is 
off-diagonal exponential decay matrices are virtually band limited, in the sense of matrix 
compression. A compressed matrix ( ) ( )
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where ε  is called the truncation threshold. We have easily 
 ,                                                                                    (12) ( ) ( 1)|| ||WA A a e ρ− +

∞− ≤ ⋅ W

 ( )|| ||A Aε ε∞− ≤ .                                                                                                  (13) 
We are thus happy that our method covers practically most important matrices. The most 
extreme off-diagonal decay matrix is of course diagonal matrix. 
 



Example 3.3. Linear system with matrix 
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 cannot be approximately 

solved by the previous method. More comprehensive matrix analysis is thus needed. 
 
Let’s look at numerical stability as theorem 3.1. guarantees also the convergence. Using 
same notations defined in the previous proof and the standard numerical stability analysis, 
we can get that the “windowing” operation to solve ix  when 1 i K≤ ≤  will give: 
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matrix condition number, where condition  is hidden as usual. 
Therefore, a sufficient condition for stability could be the previous condition numbers are 
uniformly bounded.  
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4. Split and merge: freedom of implementation 
Being able to solve one variable out a whole linear system defined by matrix with off-
diagonal exponential decay entries, we can thus solve any subset or combination of 
variables approximately in the whole system. The practical importance of this flexibility 
is that we can solve only the variables we are most interested in (e.g., numerical PDE 
solutions at certain region or along certain curve). 
 
A straightforward variation of the previous theorem is of course to use unequal “window” 

sizes as follows: using , 

and  to solve for . Following the proof of Theorem 3.1., 

we know that the error is decided by  (the smaller window size) similarly. 
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Results of Theorem 3.1. tell us that we can solve approximately one variable in a large 
system. Of course, we can also solve a few variables adjacent to each other via the same 



“windowing” techniques (the left and right window sizes can be different). More 

precisely, using , 

and  to solve  (the 
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Split and Merge approach: The sub-linear system for approximate solutions  

can be divided into two sub-linear systems to solve  and  respectively, 

where i . Two sub-linear systems to solve  and  can be merged 

into one sub-linear system to solve , where 
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i jx i l j≤ ≤ . We call the first process 

“split” and the second process “merge”. 
 
Let’s look at two extreme cases. Our approximate algorithm is of course the traditional 
direct solution for . There is no extra computation due to “window technique” 
processing. It has the slowest speed but with minimum amount of computation (we can 
take either direct or iterative approaches). The full parallel implementation of solving 

 one by one is the fastest in speed but with maximum amount computation due 
to maximum possible “windowing” processing (but the computation time is independent 
of matrix size now). With split and merge algorithm, we can freely choose an algorithm 
with desired amount of computation and time of computation. These algorithms range 
from the slowest to the fastest in speed. It is also interesting to see the connection and 
harmony with the conventional approaches. 
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T n K
nx

( , , )
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Is our approach direct or iterative? Its very essence is direct. We simply decompose the 
matrix into many non-overlap blocks (for the parts to be solved) and attaching two or one 
(if at the left or right corner) “windows” on the edge(s) to make these blocks into over-
lapping blocks for carrying out computations. For each overlapping block (simply a small 
linear system), we can use conventional direct or iterative methods with free choice. 
 



5. Further discussions 
Our simple intuitions have led to practical numerical algorithms. The previous results in a 
sense amazed us for linear algebra is a well-studied area. This short paper shows also that 
our understanding of finite dimensional Euclidean spaces is still limited. 
 
Viewing from the algebraic domain decomposition point of view, what we have done is 
in a sense a virtual domain decomposition method in simple linear algebra form. Yet, it is 
very different as no iteration is involved in our approach. By analogy and just by analogy, 
can we say that the comparison of our approach and algebraic domain decomposition is 
sort of resembles the differences between the conventional direct and iterative methods? 
Anyway, the very ideas of decomposition seems can be applied and further extended for 
numerical procedures in approximation theory, linear programming and other problems. 
We will be happy to see further progresses and will try our best also to work on them. 
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