Introduction	Wave-Induced Mean Flow	Waves in Stratified Shear Flow: Theory	Numerics	Results
				BERTA

Transmission and Reflection of Three-Dimensional Internal Gravity Wave Packets in Nonuniform Retrograde Shear Flow

Alain Gervais¹

¹Dept. of Mathematical and Statistical Sciences, University of Alberta

AMI Seminar, March 18, 2022

Results 0000C

Outline of today's talk

- What is a stratified fluid?
- Waves in a stratified fluid
- Wave-induced mean flow
- Waves in a stratified fluid with background shear: Linear & nonlinear theory
- 3-D wave packets in retrograde background shear flow
 - Numerics
 - Results

 A fluid in which "effective density" decreases with height

Introduction	
● 00	

Results 00000

Stably stratified fluids

- A fluid in which "effective density" decreases with height
- If the change is continuous, the fluid is "continuously stratified"

Stably stratified fluids

- A fluid in which "effective density" decreases with height
- If the change is continuous, the fluid is "continuously stratified"
- Example: Idealized mass density profile and squared buoyancy frequency, N_0^2

Introduction ○●○				
Waves in s	stratified fl	uids	HIVERS ALBE	RTA

• A: Fluid is advected by \bar{u} at its equilibrium level

- A: Fluid is advected by \bar{u} at its equilibrium level
- B: The parcel of fluid encounters topography, and is forced to rise

Waves in	stratified	fluids			RSITY OF
Introduction		Wave-Induced Mean Flow	Waves in Stratified Shear Flow: Theory	Numerics	Results
0●0		000000	0000	000	00000

Waves in stratified fluids

- A: Fluid is advected by \overline{u} at its equilibrium level
- B: The parcel of fluid encounters topography, and is forced to rise
- C: Gravity forces the (relatively dense) fluid to descend below its equilibrium level

000	000000	0000	000	000
Introduction				

Waves in stratified fluids

- A: Fluid is advected by \bar{u} at its equilibrium level
- *B*: The parcel of fluid encounters topography, and is forced to rise
- *C*: Gravity forces the (relatively dense) fluid to descend below its equilibrium level
- Buoyancy and gravity alternately cause the fluid parcel to oscillate until it returns to its equilibrium level

Introduction		
000		

Waves in stratified fluids

- A: Fluid is advected by \bar{u} at its equilibrium level
- *B*: The parcel of fluid encounters topography, and is forced to rise
- C: Gravity forces the (relatively dense) fluid to descend below its equilibrium level
- Buoyancy and gravity alternately cause the fluid parcel to oscillate until it returns to its equilibrium level
- The displaced parcel *B*, in turn, displaces other fluid parcels, resulting in an *internal gravity wave* (IGW)

000	<u> </u>	000000	0000	000 (UNIVE	00000
1-D wave	e packets			ALF	RERTA

• Spatially localized groups of waves that travel together with "group speed" $\mathbf{c}_g = (c_{gx}, c_{gz})$

Introduction	Motivation	Wave-Induced Mean Flow	Waves in Stratified Shear Flow: Theory	Numerics	Results
00●	O	000000	0000	000	00000
1-D wave	packets				RSITY OF

- Spatially localized groups of waves that travel together with "group speed" $\mathbf{c}_g = (c_{gx}, c_{gz})$
- Conveniently expressed as a complex exponential:

 $\eta(\mathbf{x},t) = \frac{1}{2}A_{\eta}(\mathbf{x},t)e^{i(\mathbf{k}_{0}\cdot\mathbf{x}-\omega_{0}t)} + \text{c.c.}$

with amplitude "envelope" A_{η} , wavenumber vector $\mathbf{k}_0 = (k_0, \ell_0, m_0) = 2\pi(\lambda_x^{-1}, \lambda_y^{-1}, \lambda_z^{-1})$, and frequency ω_0 , where

$$\omega_0 = \frac{N_0 \sqrt{k_0^2 + \ell_0^2}}{\sqrt{k_0^2 + \ell_0^2 + m_0^2}}$$

One-dimensional wave packet zx $c_{gx} = \frac{\partial \omega_0}{\partial k_0}, \quad c_{gz} = \frac{\partial \omega_0}{\partial m_0}$

and $c_{gy} = 0$ if restricted to xz-plane ($\Rightarrow \ell_0 = 0$)

	Motivation •			
Motivatior	1		ALBI	sity of ERTA

Internal gravity waves (IGWs):

- exist on a range of spatial and temporal scales
- parameterized using resolved (grid-scale) variables in operational weather and climate GCMs
- parameterization schemes often rely on theory of linear (i.e., small amplitude) monochromatic waves (Lindzen, J. Geophys. Res., 1981)
 - do not account for weakly or fully nonlinear effects
 - can be better constrained with improved understanding of nonlinear IGW evolution

	Motivation •		
Motivatior	ı		RTA

Internal gravity waves (IGWs):

- exist on a range of spatial and temporal scales
- parameterized using resolved (grid-scale) variables in operational weather and climate GCMs
- parameterization schemes often rely on theory of linear (i.e., small amplitude) monochromatic waves (Lindzen, J. Geophys. Res., 1981)
 - do not account for weakly or fully nonlinear effects
 - ${\scriptstyle \bullet}\,$ can be better constrained with improved understanding of nonlinear IGW evolution

How does the nonlinear interaction between a 3-D wave packet and its induced mean flow affect wave packet transmission and reflection in a retrograde background flow?

Hence the divergent-flux induced flow of internal waves is $u_{\rm DF}=\frac{1}{2c_{\rm ex}}|A_uA_w^\star|=\frac{1}{2}N_0\|{\bf k}_0\||A|^2$

Transmission and Reflection of Three-Dimensional Internal Gravity Wave Packets in Nonuniform Retrograde Shear Flow

7 / 25

e.g., Sutherland (2010)

• For a wave packet initialized in an otherwise stationary ambient, a positive jet develops that translates upward with the wave packet while a negative jet develops that remains centred about the initial position of the wave packet

Transmission and Reflection of Three-Dimensional Internal Gravity Wave Packets in Nonuniform Retrograde Shear Flow

• For a wave packet initialized with its predicted induced flow superimposed, the induced flow (an existing positive jet) translates upward with the wave packet and no negative flow remains at the initial wave packet location

Transmission and Reflection of Three-Dimensional Internal Gravity Wave Packets in Nonuniform Retrograde Shear Flow

• A 3-D wave packet is localized in all 3 spatial dimensions

- A 3-D wave packet is localized in all 3 spatial dimensions
- Induced flow arises as a response to a mean forcing by wave-wave interactions within the wave packet on the scale of wave packet

- A 3-D wave packet is localized in all 3 spatial dimensions
- Induced flow arises as a response to a mean forcing by wave-wave interactions within the wave packet on the scale of wave packet
- "Mean" forcing is the contribution from, e.g.,

$$\eta^{2} = \left(\frac{1}{2}A_{\eta}e^{i\varphi} + \frac{1}{2}A_{\eta}^{\star}e^{-i\varphi}\right)^{2} = \frac{1}{4}A_{\eta}^{2}e^{i2\varphi} + \frac{1}{2}|A_{\eta}|^{2} + \frac{1}{4}A_{\eta}^{\star2}e^{-i2\varphi}$$

- A 3-D wave packet is localized in all 3 spatial dimensions
- Induced flow arises as a response to a mean forcing by wave-wave interactions within the wave packet on the scale of wave packet
- "Mean" forcing is the contribution from, e.g.,

$$\eta^{2} = \left(\frac{1}{2}A_{\eta}e^{i\varphi} + \frac{1}{2}A_{\eta}^{\star}e^{-i\varphi}\right)^{2} = \frac{1}{4}A_{\eta}^{2}e^{i2\varphi} + \frac{1}{2}|A_{\eta}|^{2} + \frac{1}{4}A_{\eta}^{\star2}e^{-i2\varphi}$$

• Take curl of 3-D momentum equations, and take mean of the result:

$$\underbrace{\begin{bmatrix} 0 & -\partial_{ttz} & (\partial_{tt} + N_{0}^{2})\partial_{y} \\ \partial_{ttz} & 0 & -(\partial_{tt} + N_{0}^{2})\partial_{x} \\ -\partial_{tty} & \partial_{ttx} & 0 \end{bmatrix}}_{\equiv \mathbf{L}} \mathbf{u}_{\mathsf{BF}}$$

$$= \underbrace{\left\langle \nabla \cdot \left\{ -\partial_{t}(\zeta \otimes \mathbf{u}) - N_{0}^{2} \left[(\hat{\mathbf{e}}_{y} \otimes \partial_{x}(\xi \mathbf{u})) - (\hat{\mathbf{e}}_{x} \otimes \partial_{y}(\xi \mathbf{u})) \right] \right\} + \partial_{t}(\zeta \cdot \nabla \mathbf{u}) \right\rangle}_{\equiv \mathbf{F} = (F_{x}, F_{y}, F_{z})^{\top}}$$

$$\text{van den Bremer & Sutherland, Phys. Fluids. (2018) }$$

Transmission and Reflection of Three-Dimensional Internal Gravity Wave Packets in Nonuniform Retrograde Shear Flow

• The induced (Bretherton) flow is forced by the vertical component of vorticity, so take the third row of $Lu_{BF} = F$, i.e., $\partial_{tt}(\nabla \times u_{BF}) \cdot \hat{\mathbf{e}}_z = F_z$

- The induced (Bretherton) flow is forced by the vertical component of vorticity, so take the third row of $Lu_{BF} = F$, i.e., $\partial_{tt}(\nabla \times u_{BF}) \cdot \hat{\mathbf{e}}_z = F_z$
- \mathbf{u}_{BF} is composed of the "divergent-flux" and "response" flows: $\mathbf{u}_{\mathsf{BF}} = \mathbf{u}_{\mathsf{DF}} + \mathbf{u}_{\mathsf{RF}}$, where \mathbf{u}_{DF} is given implicitly by $\partial_t \mathbf{u}_{\mathsf{DF}} = -\langle \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) \rangle$

- The induced (Bretherton) flow is forced by the vertical component of vorticity, so take the third row of Lu_{BF} = **F**, i.e., $\partial_{tt}(\nabla \times \mathbf{u}_{BF}) \cdot \hat{\mathbf{e}}_z = F_z$
- \mathbf{u}_{BF} is composed of the "divergent-flux" and "response" flows: $\mathbf{u}_{\mathsf{BF}} = \mathbf{u}_{\mathsf{DF}} + \mathbf{u}_{\mathsf{RF}}$, where \mathbf{u}_{DF} is given implicitly by $\partial_t \mathbf{u}_{\mathsf{DF}} = -\langle \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) \rangle$
- Suppose

$$A \equiv A(\underbrace{\epsilon_x(x - c_{gx}t)}_{=X}, \underbrace{\epsilon_y y}_{=Y}, \underbrace{\epsilon_z(z - z_0 - c_{gz}t)}_{=Z}, \underbrace{\epsilon_z^2 t}_{=T})$$

with $\epsilon_{x,y,z} = (k_0 \sigma_{x,y,z})^{-1}$, and $\epsilon = \max\{\epsilon_x, \epsilon_y, \epsilon_z\}$, and there is no wave propagation in the *y*-direction

- The induced (Bretherton) flow is forced by the vertical component of vorticity, so take the third row of Lu_{BF} = **F**, i.e., $\partial_{tt}(\nabla \times \mathbf{u}_{BF}) \cdot \hat{\mathbf{e}}_z = F_z$
- \mathbf{u}_{BF} is composed of the "divergent-flux" and "response" flows: $\mathbf{u}_{\mathsf{BF}} = \mathbf{u}_{\mathsf{DF}} + \mathbf{u}_{\mathsf{RF}}$, where \mathbf{u}_{DF} is given implicitly by $\partial_t \mathbf{u}_{\mathsf{DF}} = -\langle \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) \rangle$
- Suppose

$$A \equiv A(\underbrace{\epsilon_x(x - c_{gx}t)}_{=X}, \underbrace{\epsilon_y y}_{=Y}, \underbrace{\epsilon_z(z - z_0 - c_{gz}t)}_{=Z}, \underbrace{\epsilon_z^2 t}_{=T})$$

with $\epsilon_{x,y,z} = (k_0 \sigma_{x,y,z})^{-1}$, and $\epsilon = \max{\{\epsilon_x, \epsilon_y, \epsilon_z\}}$, and there is no wave propagation in the *y*-direction

• At leading non-zero order, $w_{\text{BF}} = 0$ and $F_z = (F_z)_3^{(2)} \sim O(\alpha^2 \epsilon^3)$ with $(F_z)_3^{(2)} = \partial_t (\nabla \times \partial_t \mathbf{u}_{\text{DF}}) \cdot \hat{\mathbf{e}}_z + \partial_{tt} (\nabla \times \mathbf{u}_{\text{RF}}) \cdot \hat{\mathbf{e}}_z$

- The induced (Bretherton) flow is forced by the vertical component of vorticity, so take the third row of Lu_{BF} = **F**, i.e., $\partial_{tt}(\nabla \times \mathbf{u}_{BF}) \cdot \hat{\mathbf{e}}_z = F_z$
- \mathbf{u}_{BF} is composed of the "divergent-flux" and "response" flows: $\mathbf{u}_{\mathsf{BF}} = \mathbf{u}_{\mathsf{DF}} + \mathbf{u}_{\mathsf{RF}}$, where \mathbf{u}_{DF} is given implicitly by $\partial_t \mathbf{u}_{\mathsf{DF}} = -\langle \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) \rangle$
- Suppose

$$A \equiv A(\underbrace{\epsilon_x(x - c_{gx}t)}_{=X}, \underbrace{\epsilon_y y}_{=Y}, \underbrace{\epsilon_z(z - z_0 - c_{gz}t)}_{=Z}, \underbrace{\epsilon_z^2 t}_{=T})$$

with $\epsilon_{x,y,z} = (k_0 \sigma_{x,y,z})^{-1}$, and $\epsilon = \max{\{\epsilon_x, \epsilon_y, \epsilon_z\}}$, and there is no wave propagation in the y-direction

- At leading non-zero order, $w_{BF} = 0$ and $F_z = (F_z)_3^{(2)} \sim O(\alpha^2 \epsilon^3)$ with $(F_z)_3^{(2)} = \partial_t (\nabla \times \partial_t \mathbf{u}_{DF}) \cdot \hat{\mathbf{e}}_z + \partial_{tt} (\nabla \times \mathbf{u}_{RF}) \cdot \hat{\mathbf{e}}_z$
- Lastly, note the response flow is irrotational: $\partial_{tt} (\nabla \times \mathbf{u}_{\mathsf{RF}}) \cdot \hat{\mathbf{e}}_z \equiv 0$ (Bretherton, J. Fluid. Mech., 1969)

• Use incompressibility $\nabla \cdot \mathbf{u}_{\mathsf{BF}} = 0$, and Fourier transforms to solve for u_{BF} and v_{BF} :

$$\begin{bmatrix} u_{\rm BF} \\ v_{\rm BF} \end{bmatrix} = \frac{1}{2} N_0 \|\mathbf{k}_0\| \int_{\mathbb{R}^3} \frac{\lambda}{\kappa^2 + \lambda^2} \begin{bmatrix} \lambda \\ -\kappa \end{bmatrix} \widehat{|A|^2} e^{i \boldsymbol{\kappa} \cdot \mathbf{X}} d\kappa \, d\lambda \, d\mu$$

where $|A|^2$ is the Fourier transform of the square of

$$A(\mathbf{x}, 0) = A_0 \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{(z-z_0)^2}{\sigma_z^2}\right)\right]$$

• Use incompressibility $\nabla \cdot \mathbf{u}_{\mathsf{BF}} = 0$, and Fourier transforms to solve for u_{BF} and v_{BF} :

$$\begin{bmatrix} u_{\mathrm{BF}} \\ v_{\mathrm{BF}} \end{bmatrix} = \frac{1}{2} N_0 \|\mathbf{k}_0\| \int_{\mathbb{R}^3} \frac{\lambda}{\kappa^2 + \lambda^2} \begin{bmatrix} \lambda \\ -\kappa \end{bmatrix} |\widehat{A}|^2 e^{i \boldsymbol{\kappa} \cdot \mathbf{X}} d\kappa \, d\lambda \, d\mu$$

where $|A|^2$ is the Fourier transform of the square of

$$A(\mathbf{x}, 0) = A_0 \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{(z-z_0)^2}{\sigma_z^2}\right)\right]$$

000 0 000000		
	000	000000

UNIVERSITY OF

AL RERTA

Waves in background shear flow I

• The wave frequency ω_0 of small amplitude waves is Doppler-shifted by the background flow \overline{u} :

$$\Omega(z) = \omega_0 - k_0 \bar{u}(z)$$

$$\bar{u}(z) = \frac{sL_s}{2} \left[\ln(1 + e^{-2(z-z_s)/L_s}) + 2\frac{z-z_s}{L_s} \right]$$
$$\bar{u}'(z) = \frac{s}{2} \left[\tanh\left(\frac{z-z_s}{L_s}\right) + 1 \right]$$
$$s < 0$$

000 0 000000	000	0	000000

UNIVERSITY OF RER

Waves in background shear flow I

• The wave frequency ω_0 of small amplitude waves is Doppler-shifted by the background flow \overline{u} :

 $\Omega(z) = \omega_0 - k_0 \bar{u}(z)$

 Wave reflection is predicted at the height z_r where

$$\Omega(z_r) = N_0 = \sqrt{-\frac{g}{\rho_0} \frac{d\bar{\rho}}{dz}}$$

$$\bar{u}(z) = \frac{sL_s}{2} \left[\ln(1 + e^{-2(z-z_s)/L_s}) + 2\frac{z-z_s}{L_s} \right]$$
$$\bar{u}'(z) = \frac{s}{2} \left[\tanh\left(\frac{z-z_s}{L_s}\right) + 1 \right]$$
$$s < 0$$

000 0 000000	000	0	000000

ALBERTA

Waves in background shear flow I

• The wave frequency ω_0 of small amplitude waves is Doppler-shifted by the background flow \overline{u} :

 $\Omega(z) = \omega_0 - k_0 \bar{u}(z)$

- Wave reflection is predicted at the height z_r where $\Omega(z_r) = N_0 = \sqrt{-\frac{g}{\rho_0} \frac{d\bar{\rho}}{dz}}$
- The path (x(t), z(t)) of a wave packet through the fluid is predicted by

$$\frac{dx}{dt} = c_{gx}(m) + \bar{u}(z)$$
$$\frac{dz}{dt} = c_{gz}(m)$$

$$m(z) = \operatorname{sign}(m)k_0\sqrt{N_0^2/\Omega^2(z)} - 1$$

$$\bar{u}(z) = \frac{sL_s}{2} \left[\ln(1 + e^{-2(z-z_s)/L_s}) + 2\frac{z-z_s}{L_s} \right]$$
$$\bar{u}'(z) = \frac{s}{2} \left[\tanh\left(\frac{z-z_s}{L_s}\right) + 1 \right]$$
$$s < 0$$

ī

			Waves in Stratified Shear Flow: Theory		
000		000000	0000	000	00000
Waves in	ı backgrou	ind shear flow II			RSITY OF

Induced mean flow allows wave packet to *penetrate* partially above the reflection level, provided somewhere $|\partial u_{BF}/\partial z| > |s|$, where s is strength of background shear

Waves in background shear flow II

Induced mean flow allows wave packet to *penetrate* partially above the reflection level, provided somewhere $|\partial u_{BF}/\partial z| > |s|$, where s is strength of background shear Use the Gaussian amplitude envelope

$$A(\mathbf{x}, 0) = \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{(z - z_0)^2}{\sigma_z^2}\right)\right]$$

in the expression for u_{BF} , then:

Waves in background shear flow II

Induced mean flow allows wave packet to *penetrate* partially above the reflection level, provided somewhere $|\partial u_{\text{BF}}/\partial z| > |s|$, where s is strength of background shear Use the Gaussian amplitude envelope

$$A(\mathbf{x}, 0) = \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{(z - z_0)^2}{\sigma_z^2}\right)\right]$$

in the expression for u_{BF} , then:

• Maximizing $du_{\rm BF}(0,0,z,0)/dz$ we find strongest wave-induced shear is at $z - z_0 = -\sigma_z/\sqrt{2}$

Waves in background shear flow II

Induced mean flow allows wave packet to *penetrate* partially above the reflection level, provided somewhere $|\partial u_{\rm BF}/\partial z| > |s|$, where s is strength of background shear Use the Gaussian amplitude envelope

$$A(\mathbf{x}, 0) = \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{(z - z_0)^2}{\sigma_z^2}\right)\right]$$

in the expression for u_{BF} , then:

- Maximizing $du_{\rm BF}(0,0,z,0)/dz$ we find strongest wave-induced shear is at $z z_0 = -\sigma_z/\sqrt{2}$
- Substituting this into $|\partial u_{\rm BF}/\partial z| > |s|$ we predict the critical amplitude for penetration:

$$A_{\mathsf{RP}} = \sqrt{\frac{\sigma_z (1 + \sigma_y / \sigma_x) \sqrt{2e}}{\|\mathbf{k}_0\|}} \frac{|s|}{N_0}$$

$$\frac{\partial B}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{F}_B,$$

where B is the spatiotemporal action density distribution, and $\mathbf{F}_B \sim O(|A|^2)$ its flux

$$\frac{\partial B}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{F}_B,$$

where B is the spatiotemporal action density distribution, and $\mathbf{F}_B \sim O(|A|^2)$ its flux

• Under appropriate boundary conditions, the volume-integrated action density, $\mathscr{B} = \int_V B(\mathbf{x}, t) dV$, is conserved $(d\mathscr{B}/dt = 0)$

$$\frac{\partial B}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{F}_B,$$

where B is the spatiotemporal action density distribution, and $\mathbf{F}_B \sim O(|A|^2)$ its flux

- Under appropriate boundary conditions, the volume-integrated action density, $\mathscr{B} = \int_V B(\mathbf{x}, t) dV$, is conserved $(d\mathscr{B}/dt = 0)$
- E.g., in a stationary fluid ($\bar{u} \equiv 0$), wave energy $E \propto ||\mathbf{u}||^2$ is conserved

$$\frac{\partial B}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{F}_B,$$

where B is the spatiotemporal action density distribution, and $\mathbf{F}_B \sim O(|A|^2)$ its flux

- Under appropriate boundary conditions, the volume-integrated action density, $\mathscr{B} = \int_V B(\mathbf{x}, t) dV$, is conserved $(d\mathscr{B}/dt = 0)$
- E.g., in a stationary fluid ($\bar{u} \equiv 0$), wave energy $E \propto ||\mathbf{u}||^2$ is conserved

In a fluid with nonuniform $\overline{u}(z)$, wave energy is not conserved

• energy can be drawn from or deposited to the background flow

 $\frac{\partial B}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{F}_B,$

where B is the spatiotemporal action density distribution, and $\mathbf{F}_B \sim O(|A|^2)$ its flux

- Under appropriate boundary conditions, the volume-integrated action density, $\mathscr{B} = \int_V B(\mathbf{x}, t) dV$, is conserved $(d\mathscr{B}/dt = 0)$
- E.g., in a stationary fluid ($\bar{u} \equiv 0$), wave energy $E \propto ||\mathbf{u}||^2$ is conserved

In a fluid with nonuniform $\overline{u}(z)$, wave energy is not conserved

- energy can be drawn from or deposited to the background flow
- we need to define a quantity that is conserved when $\overline{u}(z)$ is nonuniform

 $\frac{\partial B}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{F}_B,$

where B is the spatiotemporal action density distribution, and $\mathbf{F}_B \sim O(|A|^2)$ its flux

• Under appropriate boundary conditions, the volume-integrated action density, $\mathscr{B} = \int_V B(\mathbf{x}, t) dV$, is conserved $(d\mathscr{B}/dt = 0)$

• E.g., in a stationary fluid ($\bar{u} \equiv 0$), wave energy $E \propto ||\mathbf{u}||^2$ is conserved

In a fluid with nonuniform $\overline{u}(z)$, wave energy is not conserved

- energy can be drawn from or deposited to the background flow
- we need to define a quantity that is conserved when $\bar{u}(z)$ is nonuniform
- the so-called "wave action" quantities are a family of such quantities

		Waves in Stratified Shear Flow: Theory	
		0000	
Conserve	ntum	BERTA	

Conserved quantities: Pseudomomentum

In a fluid with nonuniform $\overline{u}(z)$, pseudomomentum \mathscr{P} is a conserved quantity

- In a fluid with nonuniform $\bar{u}(z)$, pseudomomentum \mathscr{P} is a conserved quantity
 - For small amplitude 3-D wave packets, pseudomomentum density, \mathcal{P} , is

$$\mathcal{P}(\mathbf{x},t) = -
ho_0 \left[rac{1}{2} ar{u}'' \xi^2 + \zeta_y \xi
ight],$$

where ξ is vertical displacement and $\zeta_{u} = (\nabla \times \mathbf{u}) \cdot \hat{\mathbf{e}}_{u}$ is spanwise vorticity (Shaw & Shepherd, J. Fluid Mech., 2008)

Conserved quantities: Pseudomomentum

In a fluid with nonuniform $\overline{u}(z)$, pseudomomentum \mathscr{P} is a conserved quantity

• For small amplitude 3-D wave packets, pseudomomentum density, \mathcal{P} , is

$$\mathcal{P}(\mathbf{x},t) = -
ho_0 \left[rac{1}{2} ar{u}'' \xi^2 + \zeta_y \xi
ight],$$

where ξ is vertical displacement and $\zeta_y = (\nabla \times \mathbf{u}) \cdot \hat{\mathbf{e}}_y$ is spanwise vorticity (Shaw & Shepherd, J. Fluid Mech., 2008)

• To quantify transmission $T_{\mathcal{P}}$ above reflection level z_r , we diagnose integrated upward-propagating pseudomomentum above z_r :

$$T_{\mathcal{P}}(t) = \frac{1}{\mathscr{P}} \int_{z_r}^{z_{\max}} \underbrace{\left\langle -\rho_0 \left[\frac{1}{2} \bar{u}'' (H^{\uparrow} \xi)^2 + (H^{\uparrow} \zeta_y) (H^{\uparrow} \xi) \right] \right\rangle}_{\equiv \langle \mathcal{P}^{\uparrow} \rangle} dz,$$

where H^{\uparrow} is Hilbert filter that extracts upgoing waves, $\langle \cdot \rangle$ is horizontal integral, and $\mathscr{P} = \int_{\mathbb{R}^3} \mathcal{P}(\mathbf{x}, 0) dx dy dz$ is total pseudomomentum

• Prognostic equations: Horizontal velocity and perturbation density (recast in terms of vertical displacement, $\xi = -\rho/(d\bar{\rho}/dz)$):

$$\begin{split} \frac{\partial u}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial x} - \boldsymbol{\nabla} \cdot (u \mathbf{u}) - \bar{u} \frac{\partial u}{\partial x} - w \frac{d \bar{u}}{d z} \\ \frac{\partial v}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial y} - \boldsymbol{\nabla} \cdot (v \mathbf{u}) - \bar{u} \frac{\partial v}{\partial x} \\ \frac{\partial \xi}{\partial t} &= w - \boldsymbol{\nabla} \cdot (\xi \mathbf{u}) - \bar{u} \frac{\partial \xi}{\partial x} \end{split}$$

• Prognostic equations: Horizontal velocity and perturbation density (recast in terms of vertical displacement, $\xi = -\rho/(d\bar{\rho}/dz)$):

$$\begin{split} \frac{\partial u}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial x} - \boldsymbol{\nabla} \cdot (u \mathbf{u}) - \bar{u} \frac{\partial u}{\partial x} - w \frac{d \bar{u}}{d z} \\ \frac{\partial v}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial y} - \boldsymbol{\nabla} \cdot (v \mathbf{u}) - \bar{u} \frac{\partial v}{\partial x} \\ \frac{\partial \xi}{\partial t} &= w - \boldsymbol{\nabla} \cdot (\xi \mathbf{u}) - \bar{u} \frac{\partial \xi}{\partial x} \end{split}$$

• Diagnostic equations: Vertical velocity (from $\nabla \cdot \mathbf{u} = 0 \Rightarrow \frac{\partial w}{\partial z} = -\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$) and dynamic pressure:

$$\frac{1}{\rho_0}\nabla^2 p = -\left[\frac{\partial^2(u^2)}{\partial x^2} + \frac{\partial^2(v^2)}{\partial y^2} + \frac{\partial^2(w^2)}{\partial z^2}\right] - 2\left[\frac{\partial^2(uv)}{\partial x\partial y} + \frac{\partial^2(uw)}{\partial x\partial z} + \frac{\partial^2(vw)}{\partial y\partial z}\right] - 2\frac{d\bar{u}}{dz}\frac{\partial w}{\partial x} - N_0^2\frac{\partial\xi}{\partial z}$$

• Prognostic equations: Horizontal velocity and perturbation density (recast in terms of vertical displacement, $\xi = -\rho/(d\bar{\rho}/dz)$):

$$\begin{split} \frac{\partial u}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial x} - \boldsymbol{\nabla} \cdot (u \mathbf{u}) - \bar{u} \frac{\partial u}{\partial x} - w \frac{d \bar{u}}{d z} \\ \frac{\partial v}{\partial t} &= -\frac{1}{\rho_0} \frac{\partial p}{\partial y} - \boldsymbol{\nabla} \cdot (v \mathbf{u}) - \bar{u} \frac{\partial v}{\partial x} \\ \frac{\partial \xi}{\partial t} &= w - \boldsymbol{\nabla} \cdot (\xi \mathbf{u}) - \bar{u} \frac{\partial \xi}{\partial x} \end{split}$$

• Diagnostic equations: Vertical velocity (from $\nabla \cdot \mathbf{u} = 0 \Rightarrow \frac{\partial w}{\partial z} = -\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$) and dynamic pressure:

$$\frac{1}{\rho_0}\nabla^2 p = -\left[\frac{\partial^2(u^2)}{\partial x^2} + \frac{\partial^2(v^2)}{\partial y^2} + \frac{\partial^2(w^2)}{\partial z^2}\right] - 2\left[\frac{\partial^2(uv)}{\partial x\partial y} + \frac{\partial^2(uw)}{\partial x\partial z} + \frac{\partial^2(vw)}{\partial y\partial z}\right] - 2\frac{d\bar{u}}{dz}\frac{\partial w}{\partial x} - N_0^2\frac{\partial\xi}{\partial z}$$

• Gaussian wave packet initial condition:

$$\xi(\mathbf{x},0) = A_0 \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{(z-z_0)^2}{\sigma_z^2}\right)\right] \cos[k_0 x + m_0(z-z_0)]$$

Transmission and Reflection of Three-Dimensional Internal Gravity Wave Packets in Nonuniform Retrograde Shear Flow

Domain and discretization (Gervais et al., Phys. Rev. Fluids, 2021):

- Time and space scales set by $k_0 = 1$ and $N_0 = 1$
- Triply periodic domain $L_x \times L_y \times L_z$
 - $L_x = 2\pi n_{\lambda x}/k_0$
 - $L_z = 2\pi n_{\lambda z}/|m_0|$
 - L_y specified directly
- Discretized so that 16 (32) grid points span one horizontal (vertical) wavelength; y-resolution specified directly

Domain and discretization (Gervais et al., Phys. Rev. Fluids, 2021):

- Time and space scales set by $k_0 = 1$ and $N_0 = 1$
- Triply periodic domain $L_x \times L_y \times L_z$
 - $L_x = 2\pi n_{\lambda x}/k_0$
 - $L_z = 2\pi n_{\lambda z}/|m_0|$
 - L_y specified directly
- Discretized so that 16 (32) grid points span one horizontal (vertical) wavelength; y-resolution specified directly

Problem is well-suited for solving with Fourier transforms:

- It is natural to represent wave packets via their Fourier (wave) spectra
- Direct correspondence between Fourier modes and physical wave properties
- Differentiation (integration) is equivalent to scalar multiplication (division)

To damp unphysical growth of power at high wavenumbers $(\kappa, \lambda, \mu \gg 1)$ in Fourier spectra of nonlinear terms, code applies an exponential filter after computing RHS of evolution equations (Subich, Lamb, & Stastna, Int. J. Num. Meth. Fluids, 2013):

$$\chi(\kappa) = \begin{cases} 1, & \kappa < \kappa_{\rm cut} \\ \exp\left[-\alpha \left(\frac{|\kappa| - \kappa_{\rm cut}}{\kappa_{\rm nyq} - \kappa_{\rm cut}}\right)^{\beta}\right], & \kappa \ge \kappa_{\rm cut} \end{cases}$$

where $\alpha = 20$, $\beta = 2$, and $\kappa_{\rm cut} = 0.6 \kappa_{\rm nyq}$

To damp unphysical growth of power at high wavenumbers $(\kappa, \lambda, \mu \gg 1)$ in Fourier spectra of nonlinear terms, code applies an exponential filter after computing RHS of evolution equations (Subich, Lamb, & Stastna, Int. J. Num. Meth. Fluids, 2013):

$$\chi(\kappa) = \begin{cases} 1, & \kappa < \kappa_{\rm cut} \\ \exp\left[-\alpha \left(\frac{|\kappa| - \kappa_{\rm cut}}{\kappa_{\rm nyq} - \kappa_{\rm cut}}\right)^{\beta}\right], & \kappa \ge \kappa_{\rm cut} \end{cases}$$

where $\alpha = 20$, $\beta = 2$, and $\kappa_{\rm cut} = 0.6 \kappa_{\rm nyq}$

Time stepping: 3rd-order Williamson-Runge-Kutta scheme (Durran, 2010):

$$\begin{split} \dot{\mathbf{u}}_{1} \leftarrow F(\mathbf{u}_{n}, t_{n}) & \boldsymbol{\phi}_{(1)} \leftarrow \mathbf{u}_{n} + \frac{\Delta t}{3} \dot{\mathbf{u}}_{1} \\ \dot{\mathbf{u}}_{2} \leftarrow F(\boldsymbol{\phi}_{(1)}, t_{n+1/3}) - \frac{5}{9} \dot{\mathbf{u}}_{1} & \boldsymbol{\phi}_{(2)} \leftarrow \boldsymbol{\phi}_{(1)} + \frac{15\Delta t}{16} \dot{\mathbf{u}}_{2} \\ \dot{\mathbf{u}}_{1} \leftarrow F(\boldsymbol{\phi}_{(2)}, t_{n+5/12}) - \frac{153}{128} \dot{\mathbf{u}}_{2} & \mathbf{u}_{n+1} \leftarrow \boldsymbol{\phi}_{(2)} + \frac{8\Delta t}{15} \dot{\mathbf{u}}_{1} \end{split}$$

where $\mathbf{u}_n = (u_n, v_n, \xi_n)$, $\dot{\mathbf{u}}_{1,2} = (\dot{u}_n, \dot{v}_n, \dot{\xi}_n) = F(\mathbf{u}_n, t_n) = \text{RHS}$ of evolution equations at time $t_n = t_0 + n\Delta t$, and $\phi_{(1)}$, $\phi_{(2)}$ are dummy variables

A .

Introduction	Motivation	Wave-Induced Mean Flow	Waves in Stratified Shear Flow: Theory	Numerics	Results
000	O	000000	0000	000	●0000
Subset of	simulatior	ns performed			RSITY OF

Table: Initial conditions, domain size and resolution, and predicted reflection height and time. . .

ID	A_0k_0	$\frac{A_0}{A_{RP}}$	$\frac{A_0}{A_{SW}}$	$\frac{ s }{N_0}$	$\left \frac{m_0}{k_0}\right $	Θ_0	$L_x k_0 imes L_y k_0 imes L_z k_0$
S1	0.01	0.03	0.04	0.002	0.4	22°	$201.1 \times 200 \times 253.1$
S 2	0.28	0.95	1.07	0.002	0.4	22°	$402.1\times200\times502.7$
S3	0.50	1.07	1.21	0.008	1.4	54°	$402.1\times200\times287.2$

Table: ... continued

ID	$n_x imes n_y imes n_z$	$(z_r-z_0)k_0$	$t_r N_0$
S1	$512\times256\times512$	50.76	248
S2	$1024\times 256\times 1024$	50.76	248
S3	$1024\times 256\times 2048$	67.35	227

Here, $|s|/N_0 = 0.002$, $m_0/k_0 = -0.4$ ($\Theta_0 \approx 22^\circ$), and $A_0k_0 = 0.01 \ll A_{\mathsf{RP}}k_0 \approx 0.29$. Right: Horizontally integrated pseudomomentum density $\langle \mathcal{P} \rangle = -\rho_0 \langle \frac{1}{2} \bar{u}'' \xi^2 + \zeta_y \xi \rangle$

 $k_0 x$

 $\langle \tilde{\mathcal{P}} \rangle, \langle \tilde{\mathcal{P}}^{\uparrow} \rangle, \langle \tilde{\mathcal{P}}^{\downarrow} \rangle$

Here, $|s|/N_0 = 0.008$, $m_0/k_0 = -1.4$ ($\Theta_0 \approx 54^\circ$), and $A_0k_0 = 0.50 \approx 1.07A_{\text{RP}}k_0$ (transmission, reflection, and secondary waves)

OOO	Notivation O	000000	0000	Nu

Wave packet transmission

Results

C					RSITY OF
000		000000	0000	000	00000

Summary

- Internal gravity waves are disturbances that propagate vertically in stably stratified fluids
- Background flow Doppler-shifts the wave frequency, ultimately leading to reflection of small amplitude waves
- 3-D IGW packets induce a vertically jet-like, horizontally dipole-like mean flow, which can permit the wave packet to transmit partially above the reflection level
- Moderately large amplitude wave packets can partially transmit, reflect, and generate secondary waves
- Current and future work:
 - Manuscript is in final stages of preparation
 - Next: Introduce anelastic effects into theory & numerics

Secondary	v wave ge	neration			RSITY OF
000		000000	0000	000	00000
Introduction		Wave-Induced Mean Flow	Waves in Stratified Shear Flow: Theory	Numerics	

• Can moderately large amplitude waves "self-reflect" in locally decreased stratification due to their own passage?

Secondar	v wave ø	neration			RSITY OF
000	0	000000	0000	000	00000
		Wave-Induced Mean Flow			

- Can moderately large amplitude waves "self-reflect" in locally decreased stratification due to their own passage?
- "Total" squared buoyancy frequency is $N_T^2(\mathbf{x},t) = N_0^2(1 \partial \xi / \partial z)$

Secondar	v wave ge	eneration			RSITY OF
000		000000	0000	000	00000
Introduction		Wave-Induced Mean Flow	Waves in Stratified Shear Flow ¹ Theory	Numerics	

- Can moderately large amplitude waves "self-reflect" in locally decreased stratification due to their own passage?
- "Total" squared buoyancy frequency is $N_T^2(\mathbf{x}, t) = N_0^2(1 - \partial \xi / \partial z)$
- Moderately large amplitude wave frequency is given by weakly nonlinear dispersion relation, $\omega = \omega_0 + \omega_2 |A|^2$

Secondar	v wave ge	eneration			RSITY OF
000		000000	0000	000	00000
		Ware Induced Mass Flour	Warner in Chartified Chara Flann, Therem.		

- Can moderately large amplitude waves "self-reflect" in locally decreased stratification due to their own passage?
- "Total" squared buoyancy frequency is $N_T^2(\mathbf{x}, t) = N_0^2(1 - \partial \xi / \partial z)$
- Moderately large amplitude wave frequency is given by weakly nonlinear dispersion relation, $\omega = \omega_0 + \omega_2 |A|^2$
- Self-reflection condition:

$$N_0^2 - N_0^2 \frac{\partial \xi}{\partial z} = \omega_0^2 + 2\omega_0 \omega_2 |A|^2 + O(|A|^4)$$

Secondary wave generation

Even if $\bar{u} \equiv 0$, waves can reflect in decreasing stratification

- Can moderately large amplitude waves "self-reflect" in locally decreased stratification due to their own passage?
- "Total" squared buoyancy frequency is $N_T^2(\mathbf{x}, t) = N_0^2(1 - \partial \xi / \partial z)$
- Moderately large amplitude wave frequency is given by weakly nonlinear dispersion relation, $\omega = \omega_0 + \omega_2 |A|^2$
- Self-reflection condition:

$$N_0^2 - N_0^2 \frac{\partial \xi}{\partial z} = \omega_0^2 + 2\omega_0 \omega_2 |A|^2 + O(|A|^4)$$

• Assume $\omega_2 |A|^2 = k_0 u_{\mathsf{BF}}(0, 0, z, 0)$

Secondary wave generation

- Can moderately large amplitude waves "self-reflect" in locally decreased stratification due to their own passage?
- "Total" squared buoyancy frequency is $N_T^2(\mathbf{x}, t) = N_0^2(1 - \partial \xi / \partial z)$
- Moderately large amplitude wave frequency is given by weakly nonlinear dispersion relation, $\omega = \omega_0 + \omega_2 |A|^2$
- Self-reflection condition:

$$N_0^2 - N_0^2 \frac{\partial \xi}{\partial z} = \omega_0^2 + 2\omega_0 \omega_2 |A|^2 + O(|A|^4)$$

- Assume $\omega_2 |A|^2 = k_0 u_{\mathsf{BF}}(0, 0, z, 0)$
- Minimize $N_0^2(1 \partial \xi / \partial z)$, solve for critical amplitude:

