Robust Matching for Teams

Daniel Owusu Adu

Department of Mathematics \& Statistics
Queen's University

AMI Seminar: University of Alberta
March 04, 2022

Motivation

Commodity market

- Price that equate demand to supply
- Choose what you want if you can afford
- E.g. Grocery shopping

Motivation

Commodity market

- Price that equate demand to supply
- Choose what you want if you can afford
- E.g. Grocery shopping

Matching market

- Prices do not do all the work
- You have to be chosen
- E.g. College admission, Marriage market, Labor market

Motivation

Commodity market

- Price that equate demand to supply
- Choose what you want if you can afford
- E.g. Grocery shopping

Matching market

- Prices do not do all the work
- You have to be chosen
- E.g. College admission, Marriage market, Labor market

Alvin Roth
David Gale
Lloyd Sharpley

Outline

(1) Classical matching problem
(2) Hedonic model
(3) Matching for teams problem
(4) Robust matching for teams problem
(5) Concluding remarks

Basic matching model

- Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be the set of types of consumers and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ be the set of types of producers, where $\left|x_{i}\right|=a_{i}$ and $\left|y_{j}\right|=b_{j}$.

Basic matching model

- Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be the set of types of consumers and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ be the set of types of producers, where $\left|x_{i}\right|=a_{i}$ and $\left|y_{j}\right|=b_{j}$.

- Assume $\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} b_{j}$.

Basic matching model

- Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be the set of types of consumers and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ be the set of types of producers, where $\left|x_{i}\right|=a_{i}$ and $\left|y_{j}\right|=b_{j}$.

- Assume $\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} b_{j}$.
- If consumer of type x_{i} trade with producer of type y_{j}, they receive a joint satisfaction $s\left(x_{i}, y_{j}\right)$.

Basic matching model

- Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be the set of types of consumers and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ be the set of types of producers, where $\left|x_{i}\right|=a_{i}$ and $\left|y_{j}\right|=b_{j}$.
- Assume $\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} b_{j}$.
- If consumer of type x_{i} trade with producer of type y_{j}, they receive a joint satisfaction $s\left(x_{i}, y_{j}\right)$.
- Portion of the satisfaction to the consumer of type x_{i} will be $\phi\left(x_{i}\right)$.

Basic matching model

- Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be the set of types of consumers and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ be the set of types of producers, where $\left|x_{i}\right|=a_{i}$ and $\left|y_{j}\right|=b_{j}$.

- Assume $\sum_{i=1}^{k} a_{i}=\sum_{j=1}^{m} b_{j}$.
- If consumer of type x_{i} trade with producer of type y_{j}, they receive a joint satisfaction $s\left(x_{i}, y_{j}\right)$.
- Portion of the satisfaction to the consumer of type x_{i} will be $\phi\left(x_{i}\right)$.
- portion of the satisfaction to the producer of type y_{j} will be $\psi\left(y_{j}\right)$.

More on basic matching model

- $\gamma_{i j}$ number of consumers of type x_{i} that engaged in trade with producers of type y_{j}.

More on basic matching model

- $\gamma_{i j}$ number of consumers of type x_{i} that engaged in trade with producers of type y_{j}.

$$
\begin{aligned}
& \sum_{j=1}^{m} \gamma_{i j}=a_{i}, \text { for all } i \in\{1, \ldots, k\} \\
& \sum_{i=1}^{k} \gamma_{i j}=b_{j}, \text { for all } j \in\{1, \ldots, m\}
\end{aligned}
$$

More on basic matching model

- $\gamma_{i j}$ number of consumers of type x_{i} that engaged in trade with producers of type y_{j}.
$\sum_{j=1}^{m} \gamma_{i j}=a_{i}$, for all $i \in\{1, \ldots, k\}$
$\sum_{i=1}^{k} \gamma_{i j}=b_{j}$, for all $j \in\{1, \ldots, m\}$
- $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}_{+}^{k}$ and $b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}_{+}^{m}$, consider the matching set

$$
\Pi(a, b):=\left\{\gamma \in \mathbb{R}_{+}^{k \times m}: \gamma \mathbb{1}_{m}=a \text { and } \gamma^{\mathrm{T}} \mathbb{1}_{k}=b\right\}
$$

More on basic matching model

- $\gamma_{i j}$ number of consumers of type x_{i} that engaged in trade with producers of type y_{j}.

$$
\begin{aligned}
& \sum_{j=1}^{m} \gamma_{i j}=a_{i}, \text { for all } i \in\{1, \ldots, k\} \\
& \sum_{i=1}^{k} \gamma_{i j}=b_{j}, \text { for all } j \in\{1, \ldots, m\}
\end{aligned}
$$

- $a=\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}_{+}^{k}$ and $b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}_{+}^{m}$, consider the matching set

$$
\Pi(a, b):=\left\{\gamma \in \mathbb{R}_{+}^{k \times m}: \gamma \mathbb{1}_{m}=a \text { and } \gamma^{\mathrm{T}} \mathbb{1}_{k}=b\right\} .
$$

Definition (Stable matching (Discrete case))

A matching $\gamma \in \Pi(a, b)$ is stable if there exist functions $\phi(\cdot)$ and $\psi(\cdot)$ satisfies $\phi\left(x_{i}\right)+\psi\left(y_{j}\right)=s\left(x_{i}, y_{j}\right)$, whenever $\gamma_{i j} \neq 0$. We call $(\phi(\cdot), \psi(\cdot), \gamma)$ matching equilibrium.

The continuum case

- $X, Y \subset \mathbb{R}^{d}$ be the set of continuum of consumers and producers, respectively, distributed according to the given measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$.

The continuum case

- $X, Y \subset \mathbb{R}^{d}$ be the set of continuum of consumers and producers, respectively, distributed according to the given measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$.
- $\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}(X \times Y): \gamma \circ \pi_{X}^{-1}=\right.$ μ and $\left.\gamma \circ \pi_{Y}^{-1}=\nu\right\}$, where $\pi_{X}(x, y)=x$ and $\pi_{Y}(x, y)=y$ for all $(x, y) \in X \times Y$.

The continuum case

- $X, Y \subset \mathbb{R}^{d}$ be the set of continuum of consumers and producers, respectively, distributed according to the given measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$.
- $\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}(X \times Y): \gamma \circ \pi_{X}^{-1}=\right.$ μ and $\left.\gamma \circ \pi_{Y}^{-1}=\nu\right\}$, where $\pi_{X}(x, y)=x$ and $\pi_{Y}(x, y)=y$ for all $(x, y) \in X \times Y$.
- Given $s(\cdot, \cdot)$ and the measures μ and ν, our aim is to find $(\phi(\cdot), \psi(\cdot), \gamma)$ such that $\gamma \in \Pi(\mu, \nu)$ and

$$
\phi(x)+\psi(y)=s(x, y), \quad \text { for all }(x, y)-\gamma \text { a.e. }
$$

Optimization problem for stable matching

Theorem (N. E. Gertsky, J. M. Ostroy, W. R. Zame 1992)

The problem of finding a stable matching can be recasted in linear programming (LP) terms:

- Find $\gamma \in \Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}(X \times Y): \gamma \circ \pi_{X}^{-1}=\mu\right.$ and $\left.\gamma \circ \pi_{Y}^{-1}=\nu\right\}$ so as to achieve

$$
P_{s}(\mu, \nu):=\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma
$$

Optimization problem for stable matching

Theorem (N. E. Gertsky, J. M. Ostroy, W. R. Zame 1992)

The problem of finding a stable matching can be recasted in linear programming (LP) terms:

- Find $\gamma \in \Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}(X \times Y): \gamma \circ \pi_{X}^{-1}=\mu\right.$ and $\left.\gamma \circ \pi_{Y}^{-1}=\nu\right\}$ so as to achieve

$$
P_{s}(\mu, \nu):=\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma
$$

This maximization problem is known in the literature as Kantorovich optimal transport problem and it admits a corresponding dual problem

$$
D_{s}(\mu, \nu):=\inf _{(\phi, \psi) \in \Phi_{s}} \int_{X} \phi(x) d \mu+\int_{Y} \psi(y) d \nu
$$

where $\Phi_{s}:=\{(\phi, \psi): \phi(x)+\psi(y) \geq s(x, y)$ for all $(x, y) \in X \times Y\}$.

Optimization problem for stable matching

Theorem (N. E. Gertsky, J. M. Ostroy, W. R. Zame 1992)

The problem of finding a stable matching can be recasted in linear programming (LP) terms:

- Find $\gamma \in \Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}(X \times Y): \gamma \circ \pi_{X}^{-1}=\mu\right.$ and $\left.\gamma \circ \pi_{Y}^{-1}=\nu\right\}$ so as to achieve

$$
P_{s}(\mu, \nu):=\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma .
$$

This maximization problem is known in the literature as Kantorovich optimal transport problem and it admits a corresponding dual problem

$$
D_{s}(\mu, \nu):=\inf _{(\phi, \psi) \in \Phi_{s}} \int_{X} \phi(x) d \mu+\int_{Y} \psi(y) d \nu
$$

where $\Phi_{s}:=\{(\phi, \psi): \phi(x)+\psi(y) \geq s(x, y)$ for all $(x, y) \in X \times Y\}$.

Theorem (Fundamental theorem of optimal transport 1)

If $s(\cdot, \cdot)$ is $L S C$, then $P_{s}(\mu, \nu)=D_{s}(\mu, \nu)$ and $P_{s}(\mu, \nu)$ admits a maximizer.

More on optimization problem

Theorem (Fundamental theorem of optimal transport 2)

- If $s(\cdot, \cdot)$ is continuous, then existence of minimizers for $D_{s}(\mu, \nu)$ holds;

$$
\max _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma=\min _{\phi \in s-\operatorname{conc}(X ; \mathbb{R})} \int_{X} \phi(x) d \mu+\int_{Y} \phi^{c}(y) d \nu
$$

where $\phi^{s}(y):=\max _{x \in X} s(x, y)-\phi(x)$, and $y \in Y$,
$s-\operatorname{conc}(X ; \mathbb{R}):=\left\{\phi: X \rightarrow \mathbb{R}: \exists v: Y \rightarrow \mathbb{R}\right.$ such that $\left.v^{s}=\phi\right\}$.

- The optimal matching γ satisfies

$$
s(x, y)=\phi(x)+\phi^{s}(y) \quad \text { for all }(x, y)-\gamma \text { a.e. }
$$

- The discrete case corresponds to the discrete versions of the LP problem (Shapley and Shibik (1971)).

More on optimal transport theory

- γ can be deterministic (or pure)

Matching concentrated on a graph of \mathbf{T}

More on optimal transport theory

- γ can be deterministic (or pure)

Matching concentrated on a graph of T

Theorem

- $\mu \in \mathcal{P}(X)$ is absolutely continuous with respect to Lebesgue.
- $c(\cdot, y)$ is differentiable on $\operatorname{int}(X)$, for all $y \in Y$ and satisfies if $\left(x, y_{1}, y_{2}\right) \in X \times Y^{2}$ and

$$
\nabla_{x} c\left(x, y_{1}\right)=\nabla_{x} c\left(x, y_{2}\right) \text { then } y_{1}=y_{2} \text {. }
$$

Then the optimal matching of the form

$$
\gamma=(\operatorname{Id} \times T)_{\#} \mu
$$

Outline

(1) Classical matching problem
(2) Hedonic model
(3) Matching for teams problem
(4) Robust matching for teams problem
(5) Concluding remarks

A type of matching model: Hedonic model

Price on Z

Matching X to Y through Z

Structure:

- X, Y and Z model continuum of consumers, producers and goods, where the consumers and the producers are distributed according to μ and ν, respectively.
Behavior: Given $p(\cdot)$,

A type of matching model: Hedonic model

Structure:

- X, Y and Z model continuum of consumers, producers and goods, where the consumers and the producers are distributed according to μ and ν, respectively.
Behavior: Given $p(\cdot)$,
- consumer of type $x \in X$ solves

$$
U(x)=\max _{z \in Z}(u(x, z)-p(z))
$$

where $u(\cdot, \cdot)$ is her direct utility function.

- producer of type $y \in Y$ solves

$$
C(y)=\max _{z \in Z}(p(z)-c(y, z))
$$

where $c(\cdot, \cdot)$ is his cost.

More on hedonic model

- Given $u(\cdot, \cdot)$ and $c(\cdot, \cdot)$ and $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, we want to find a pair $(p(\cdot), \alpha)$, where $\alpha \in \mathcal{P}(X \times Y \times Z)$ such that

$$
\alpha \circ \pi_{X}^{-1}=\mu \quad \text { and } \quad \alpha \circ \pi_{Y}^{-1}=\nu
$$

and $p(\cdot)$ is the price function such that

$$
U(x)=u(x, z)-p(z) \quad \text { and } \quad C(y)=p(z)-c(y, z)
$$

for all $(x, y, z)-\alpha$ a.e in $X \times Y \times Z$.

More on hedonic model

- Given $u(\cdot, \cdot)$ and $c(\cdot, \cdot)$ and $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, we want to find a pair $(p(\cdot), \alpha)$, where $\alpha \in \mathcal{P}(X \times Y \times Z)$ such that

$$
\alpha \circ \pi_{X}^{-1}=\mu \quad \text { and } \quad \alpha \circ \pi_{Y}^{-1}=\nu
$$

and $p(\cdot)$ is the price function such that

$$
U(x)=u(x, z)-p(z) \quad \text { and } \quad C(y)=p(z)-c(y, z)
$$

for all $(x, y, z)-\alpha$ a.e in $X \times Y \times Z$.

- $p(\cdot)$ matches a consumer of type x to a producer of type y through their most preferred good $z \in Z$.

More on hedonic model

- Given $u(\cdot, \cdot)$ and $c(\cdot, \cdot)$ and $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$, we want to find a pair $(p(\cdot), \alpha)$, where $\alpha \in \mathcal{P}(X \times Y \times Z)$ such that

$$
\alpha \circ \pi_{X}^{-1}=\mu \quad \text { and } \quad \alpha \circ \pi_{Y}^{-1}=\nu
$$

and $p(\cdot)$ is the price function such that

$$
U(x)=u(x, z)-p(z) \quad \text { and } \quad C(y)=p(z)-c(y, z)
$$

for all $(x, y, z)-\alpha$ a.e in $X \times Y \times Z$.

- $p(\cdot)$ matches a consumer of type x to a producer of type y through their most preferred good $z \in Z$.
- The pair $(p(\cdot), \alpha)$ is called hedonic equilibrium.

Correspondence between hedonic and matching model

P.-A, Chiappori, R. J. McCann, and L.P. Nesheim (2010): There is a correspondence between the hedonic model and the matching model.

Correspondence between hedonic and matching model

P.-A, Chiappori, R. J. McCann, and L.P. Nesheim (2010): There is a correspondence between the hedonic model and the matching model.

- Given $\mu \in \mathcal{P}(X)$, and $\nu \in \mathcal{P}(Y)$, if $u(\cdot, \cdot)$, and $c(\cdot, \cdot)$ are continuous, then solve

$$
\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma
$$

where $s(x, y)=\max _{z \in Z} u(x, z)-c(y, z)$ to obtain the payoff functions (ϕ, ψ).

Correspondence between hedonic and matching model

P.-A, Chiappori, R. J. McCann, and L.P. Nesheim (2010): There is a correspondence between the hedonic model and the matching model.

- Given $\mu \in \mathcal{P}(X)$, and $\nu \in \mathcal{P}(Y)$, if $u(\cdot, \cdot)$, and $c(\cdot, \cdot)$ are continuous, then solve

$$
\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma
$$

where $s(x, y)=\max _{z \in Z} u(x, z)-c(y, z)$ to obtain the payoff functions (ϕ, ψ).

- There exists a price $p(\cdot)$ satisfying

$$
\min _{y \in Y} c(x, z)-\psi(y) \geq p(z) \geq \max _{x \in X} u(x, z)-\phi(x) .
$$

- $(p(\cdot), \alpha)$, where $\alpha:=\left(\operatorname{Id}_{X} \times \operatorname{Id}_{Y} \times z\right)_{\# \gamma}$, is a hedonic equilibrium pair.

More on correspondence

- $(p(\cdot), \alpha)$ is a hedonic equilibrium pair.

More on correspondence

- $(p(\cdot), \alpha)$ is a hedonic equilibrium pair.
- $\gamma:=\left(\pi_{X} \times \pi_{Y}\right)_{\#} \alpha$ solves

$$
\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma
$$

where $s(x, y)=\max _{z \in Z} u(x, z)-c(y, z)$

- $(U(\cdot), C(\cdot))$ solves

$$
\inf _{(\phi, \psi) \in \Phi_{s}} \int_{X} \phi(x) d \mu+\int_{Y} \psi(y) d \nu
$$

More on correspondence

- $(p(\cdot), \alpha)$ is a hedonic equilibrium pair.
- $\gamma:=\left(\pi_{X} \times \pi_{Y}\right)_{\#} \alpha$ solves

$$
\sup _{\gamma \in \Pi(\mu, \nu)} \int_{X \times Y} s(x, y) d \gamma
$$

where $s(x, y)=\max _{z \in Z} u(x, z)-c(y, z)$

- $(U(\cdot), C(\cdot))$ solves

$$
\inf _{(\phi, \psi) \in \Phi_{s}} \int_{X} \phi(x) d \mu+\int_{Y} \psi(y) d \nu
$$

Matching and hedonic equilibriums are optimizers for optimal transport problems

Outline

(1) Classical matching problem
(2) Hedonic model
(3) Matching for teams problem
(4) Robust matching for teams problem
(5) Concluding remarks

- $\left(X_{0}, \mu_{0}\right)$ parametrize the continuum of consumers.
- $\left(X_{i}, \mu_{i}\right)$ parametrize the continuum of producers, where $i \in\{1, \ldots, N\}$.
- Z the set of all different types of a good in the market.
- $\left(X_{0}, \mu_{0}\right)$ parametrize the continuum of consumers.
- $\left(X_{i}, \mu_{i}\right)$ parametrize the continuum of producers, where $i \in\{1, \ldots, N\}$.
- Z the set of all different types of a good in the market.

Behavior of producers:

- Given wages $\psi_{i}(\cdot)$ producer of type $x_{i} \in X_{i}$ solves

$$
\min _{z \in Z} c_{i}\left(x_{i}, z\right)-\psi_{i}(z)
$$

where $c_{i}(\cdot, \cdot)$ is cost for producer in category $i \in\{1, \ldots, N\}$.

- Assume $p(z)=\sum_{i=1}^{N} \psi_{i}(z)$.

Matching for teams problem

Given $c_{i}(\cdot, \cdot)$ and $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, our aim is to find a family of functions $\psi_{i} \in C(Z ; \mathbb{R})$, probability measures $\gamma_{i} \in \mathcal{P}\left(X_{i} \times Z\right)$, and $\nu \in \mathcal{P}(Z)$ such that

$$
\sum_{i=0}^{N} \psi_{i}(z)=0, \text { for any } z \in Z
$$

- $\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)$ such that

$$
c_{i}\left(x_{i}, z\right)=\psi_{i}(z)+\psi_{i}^{c_{i}}\left(x_{i}\right), \quad \text { for all }\left(x_{i}, z\right)-\gamma_{i} \text { a.e. },
$$

where $\psi_{i}^{c_{i}}\left(x_{i}\right):=\inf _{z \in Z} c_{i}\left(x_{i}, z\right)-\psi_{i}(z)$, for all $x_{i} \in X_{i}$.

Matching for teams problem

Given $c_{i}(\cdot, \cdot)$ and $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, our aim is to find a family of functions $\psi_{i} \in C(Z ; \mathbb{R})$, probability measures $\gamma_{i} \in \mathcal{P}\left(X_{i} \times Z\right)$, and $\nu \in \mathcal{P}(Z)$ such that

$$
\sum_{i=0}^{N} \psi_{i}(z)=0, \text { for any } z \in Z
$$

- $\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)$ such that

$$
c_{i}\left(x_{i}, z\right)=\psi_{i}(z)+\psi_{i}^{c_{i}}\left(x_{i}\right), \quad \text { for all }\left(x_{i}, z\right)-\gamma_{i} \text { a.e., }
$$

where $\psi_{i}^{c_{i}}\left(x_{i}\right):=\inf _{z \in Z} c_{i}\left(x_{i}, z\right)-\psi_{i}(z)$, for all $x_{i} \in X_{i}$.

- $\left(\psi_{i}(\cdot), \nu, \gamma_{i}\right)$, where $i \in\{0, \ldots, N\}$, is called matching equilibrium.

Matching for teams problem

Given $c_{i}(\cdot, \cdot)$ and $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, our aim is to find a family of functions $\psi_{i} \in C(Z ; \mathbb{R})$, probability measures $\gamma_{i} \in \mathcal{P}\left(X_{i} \times Z\right)$, and $\nu \in \mathcal{P}(Z)$ such that

$$
\sum_{i=0}^{N} \psi_{i}(z)=0, \text { for any } z \in Z
$$

- $\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)$ such that

$$
c_{i}\left(x_{i}, z\right)=\psi_{i}(z)+\psi_{i}^{c_{i}}\left(x_{i}\right), \quad \text { for all }\left(x_{i}, z\right)-\gamma_{i} \text { a.e. }
$$

where $\psi_{i}^{c_{i}}\left(x_{i}\right):=\inf _{z \in Z} c_{i}\left(x_{i}, z\right)-\psi_{i}(z)$, for all $x_{i} \in X_{i}$.

- $\left(\psi_{i}(\cdot), \nu, \gamma_{i}\right)$, where $i \in\{0, \ldots, N\}$, is called matching equilibrium.
- Matching equilibrium is deterministic if $\gamma_{i}=\left(\operatorname{Id} \times T_{i}\right)_{\#} \mu_{i}$, where $T_{i}: X_{i} \rightarrow Z$ is a measurable map.

Optimization problem for matching for teams

Theorem (G. Carlier and I. Ekeland, 2010)

The problem of finding a matching equilibrium can be formulated as

- find $\nu \in \mathcal{P}(Z)$ that solves the primal problem

$$
\mathrm{P}:=\inf _{\nu \in \mathcal{P}(Z)} \sum_{i=0}^{N} W_{c_{i}}\left(\mu_{i}, \nu\right)
$$

where γ_{i} solves $W_{c_{i}}\left(\mu_{i}, \nu\right):=\inf _{\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)} \int_{X_{i} \times Z} c_{i}\left(x_{i}, z\right) d \gamma_{i}$.

Optimization problem for matching for teams

Theorem (G. Carlier and I. Ekeland, 2010)

The problem of finding a matching equilibrium can be formulated as

- find $\nu \in \mathcal{P}(Z)$ that solves the primal problem

$$
\mathrm{P}:=\inf _{\nu \in \mathcal{P}(Z)} \sum_{i=0}^{N} W_{c_{i}}\left(\mu_{i}, \nu\right)
$$

where γ_{i} solves $W_{c_{i}}\left(\mu_{i}, \nu\right):=\inf _{\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)} \int_{X_{i} \times Z} c_{i}\left(x_{i}, z\right) d \gamma_{i}$.

- ψ_{i} 's solves the dual problem

$$
\mathrm{P}^{*}:=\sup \left\{\sum_{i=0}^{N} \int_{X_{i}} \psi_{i}^{c_{i}}\left(x_{i}\right) d \mu_{i}: \sum_{i=0}^{N} \psi_{i}(z)=0, \quad \text { for all } z \in Z\right\}
$$

where $\psi_{i}^{c_{i}}\left(x_{i}\right):=\inf _{z \in Z} c_{i}\left(x_{i}, z\right)-\psi_{i}(z)$, for all $x_{i} \in X_{i}$.

Matching for team: main result

Theorem (G. Carlier and I. Ekeland, 2010)

If $c_{i}(\cdot, \cdot)$ is $L S C$, then $\mathrm{P}=\mathrm{P}^{*}$ and minimizers for P exists.

Matching for team: main result

Theorem (G. Carlier and I. Ekeland, 2010)

If $c_{i}(\cdot, \cdot)$ is $L S C$, then $\mathrm{P}=\mathrm{P}^{*}$ and minimizers for P exists.

Theorem (G. Carlier and I. Ekeland, 2010)

- If $c_{i}(\cdot, \cdot) \in C\left(X_{i} \times Z\right)$, then there exist at least one matching equilibrium.

Matching for team: main result

Theorem (G. Carlier and I. Ekeland, 2010)

If $c_{i}(\cdot, \cdot)$ is $L S C$, then $\mathrm{P}=\mathrm{P}^{*}$ and minimizers for P exists.

Theorem (G. Carlier and I. Ekeland, 2010)

- If $c_{i}(\cdot, \cdot) \in C\left(X_{i} \times Z\right)$, then there exist at least one matching equilibrium.
- If $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$ is absolutely continuous with respect to Lebesgue and $c_{i}(\cdot, z)$ is differentiable on $\operatorname{int}\left(X_{i}\right)$, for all $z \in Z$ and satisfies if $\left(x_{i}, z_{1}, z_{2}\right) \in X \times Z^{2}$ and

$$
\nabla_{x_{i}} c_{i}\left(x_{i}, z_{1}\right)=\nabla_{x_{i}} c_{i}\left(x_{i}, z_{2}\right) \text { then } z_{1}=z_{2}
$$

Matching for team: main result

Theorem (G. Carlier and I. Ekeland, 2010)

If $c_{i}(\cdot, \cdot)$ is $L S C$, then $\mathrm{P}=\mathrm{P}^{*}$ and minimizers for P exists.

Theorem (G. Carlier and I. Ekeland, 2010)

- If $c_{i}(\cdot, \cdot) \in C\left(X_{i} \times Z\right)$, then there exist at least one matching equilibrium.
- If $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$ is absolutely continuous with respect to Lebesgue and $c_{i}(\cdot, z)$ is differentiable on $\operatorname{int}\left(X_{i}\right)$, for all $z \in Z$ and satisfies if $\left(x_{i}, z_{1}, z_{2}\right) \in X \times Z^{2}$ and

$$
\nabla_{x_{i}} c_{i}\left(x_{i}, z_{1}\right)=\nabla_{x_{i}} c_{i}\left(x_{i}, z_{2}\right) \text { then } z_{1}=z_{2}
$$

then, matching equilibrium is uniquely deterministic.

Outline

(1) Classical matching problem
(2) Hedonic model
(3) Matching for teams problem
(4) Robust matching for teams problem
(5) Concluding remarks

Literature review

Matching for teams, without uncertainty, has been investigated extensively. We only provide a few related references here

- G. Carlier and I. Ekeland, 2010, Matching for teams, J. Economic Theory.
- I. Ekeland, 2005, An optimal matching problem, J. ESAIM: Control, Optimisation and Calculus of Variations.
- P. A. Chiappori, 2017, Matching with transfers, J. Princeton University Press.
- B . Pass, 2012, Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions, arXiv.
- P. A, Chiappori, R. J. McCann, and B . Pass, 2016, Multidimensional matching, arXiv.

Formulation of robust matching for teams problem

For the producer part:

- Uncertainty in cost of production

Distinct producers

Formulation of robust matching for teams problem

For the producer part:

- Uncertainty in cost of production
- cost of production $\bar{c}_{i}(\cdot, \cdot)$ is of the form
$-\quad$ fixed cost
$\bar{c}_{i}(\cdot, \cdot)=c_{i}(\cdot, \cdot)+\omega_{i}(\cdot, \cdot)$

Formulation of robust matching for teams problem

For the producer part:

- Uncertainty in cost of production
- cost of production $\bar{c}_{i}(\cdot, \cdot)$ is of the form
- fixed cost

Distinct producers

Formulation of robust matching for teams problem

For the producer part:

- Uncertainty in cost of production
- cost of production $\bar{c}_{i}(\cdot, \cdot)$ is of the form
- fixed cost

$$
\bar{c}_{i}(\cdot, \cdot)=c_{i}(\cdot, \cdot)+\omega_{i}(\cdot, \cdot)
$$

- uncertain variable cost in \mathcal{W}_{i}

Formulation of robust matching for teams problem

For the producer part:

- Uncertainty in cost of production
- cost of production $\bar{c}_{i}(\cdot, \cdot)$ is of the form
- fixed cost

$$
\bar{c}_{i}(\cdot, \cdot)=c_{i}(\cdot, \cdot)+\omega_{i}(\cdot, \cdot)
$$

- uncertain variable cost in \mathcal{W}_{i}

Given $\psi_{i}(\cdot)$,

$$
\inf _{z \in Z} \sup _{\omega_{i} \in \mathcal{W}_{i}} c_{i}\left(x_{i}, z\right)+\omega_{i}\left(x_{i}, z\right)-\psi_{i}(z)
$$

Formulation of robust matching for teams problem

For the producer part:

- Uncertainty in cost of production
- cost of production $\bar{c}_{i}(\cdot, \cdot)$ is of the form
- fixed cost

$$
\begin{gathered}
\bar{c}_{i}(\cdot, \cdot)=c_{i}(\cdot, \cdot)+\omega_{i}(\cdot, \cdot) \\
\cdot \text { uncertain variable cost in } \mathcal{W}_{i}
\end{gathered}
$$

Given $\psi_{i}(\cdot)$,

$$
\inf _{z \in Z} \sup _{\omega_{i} \in \mathcal{W}_{i}} c_{i}\left(x_{i}, z\right)+\omega_{i}\left(x_{i}, z\right)-\psi_{i}(z)
$$

- we require

$$
\sum_{i=0}^{N} \psi_{i}(z)=0
$$

Robust matching

Proposition (D. O. Adu and B. Gharesifard (2022))

- If $\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)$ in spite of the uncertainty in variable cost, then $\gamma_{i} \mid \mathcal{W}_{i}=0$, that is for all $\omega_{i} \in \mathcal{W}_{i}$ we have that $\int_{X_{i} \times Z} \omega_{i}\left(x_{i}, z\right) d \gamma_{i}=0$.

Robust matching

Proposition (D. O. Adu and B. Gharesifard (2022))

- If $\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)$ in spite of the uncertainty in variable cost, then $\gamma_{i} \mid \mathcal{W}_{i}=0$, that is for all $\omega_{i} \in \mathcal{W}_{i}$ we have that $\int_{X_{i} \times Z} \omega_{i}\left(x_{i}, z\right) d \gamma_{i}=0$.
- $\Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right):=\left\{\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right): \gamma_{i} \mid \mathcal{W}_{i}=0\right\}$.

Robust matching

Proposition (D. O. Adu and B. Gharesifard (2022))

- If $\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right)$ in spite of the uncertainty in variable cost, then $\gamma_{i} \mid \mathcal{W}_{i}=0$, that is for all $\omega_{i} \in \mathcal{W}_{i}$ we have that $\int_{X_{i} \times Z} \omega_{i}\left(x_{i}, z\right) d \gamma_{i}=0$.
- $\Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right):=\left\{\gamma_{i} \in \Pi\left(\mu_{i}, \nu\right): \gamma_{i} \mid \mathcal{W}_{i}=0\right\}$.
- Existence of robust matching $\Rightarrow \nu \in \mathcal{P}(Z)$ and $\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right)$, for all $i \in\{0, \ldots, N\}$.

Robust matching equilibrium

Given $c_{i}(\cdot, \cdot), \mathcal{W}_{i}$ and $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, our aim is to find a family of functions $\psi_{i} \in C(Z ; \mathbb{R})$, probability measures $\gamma_{i} \in \mathcal{P}\left(X_{i} \times Z\right)$ and $\nu \in \mathcal{P}(Z)$ such that

$$
\sum_{i=0}^{N} \psi_{i}(z)=0, \text { for any } z \in Z
$$

and $\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right)$ such that

$$
c_{i}\left(x_{i}, z\right)=\psi_{i}(z)+\psi^{c_{i}+\omega_{i}}\left(x_{i}\right)-\omega_{i}\left(x_{i}, z\right), \quad \text { for }\left(x_{i}, z\right)-\gamma_{i} \text { a.e }
$$

where $\psi_{i}^{\left(c_{i}+\omega_{i}\right)}\left(x_{i}\right):=\min _{z \in Z}\left(c_{i}\left(x_{i}, z\right)+\omega_{i}\left(x_{i}, z\right)-\psi_{i}(z)\right)$, for some $\omega_{i} \in \mathcal{W}_{i}$.

Robust matching equilibrium

Given $c_{i}(\cdot, \cdot), \mathcal{W}_{i}$ and $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, our aim is to find a family of functions $\psi_{i} \in C(Z ; \mathbb{R})$, probability measures $\gamma_{i} \in \mathcal{P}\left(X_{i} \times Z\right)$ and $\nu \in \mathcal{P}(Z)$ such that

$$
\sum_{i=0}^{N} \psi_{i}(z)=0, \text { for any } z \in Z
$$

and $\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right)$ such that

$$
c_{i}\left(x_{i}, z\right)=\psi_{i}(z)+\psi^{c_{i}+\omega_{i}}\left(x_{i}\right)-\omega_{i}\left(x_{i}, z\right), \quad \text { for }\left(x_{i}, z\right)-\gamma_{i} \text { a.e }
$$

where $\psi_{i}^{\left(c_{i}+\omega_{i}\right)}\left(x_{i}\right):=\min _{z \in Z}\left(c_{i}\left(x_{i}, z\right)+\omega_{i}\left(x_{i}, z\right)-\psi_{i}(z)\right)$, for some $\omega_{i} \in \mathcal{W}_{i}$.

- We call $\left(\psi_{i}(\cdot), \gamma_{i}, \nu\right)$, where $i \in\{0, \ldots, N\}$, a Robust matching equilibrium (RME).

Beyond classical matching and hedonic model

- D. A. Zaev (2015): Studied Kantorovich problem with additional linear constraint.

Beyond classical matching and hedonic model

- D. A. Zaev (2015): Studied Kantorovich problem with additional linear constraint.

Problem statement:

- Given $c(\cdot, \cdot) \in C(X \times Z ; \mathbb{R}), \mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Z)$ and a subspace $\mathcal{W} \subset C(X \times Z ; \mathbb{R})$

$$
\mathrm{K}_{c, \mathcal{W}}(\mu, \nu):=\inf _{\gamma \in \Pi_{\mathcal{W}}(\mu, \nu)} \int_{X \times Z} c(x, z) d \gamma .
$$

- The dual problem is

$$
D_{c, \mathcal{W}}(\mu, \nu):=\sup _{\phi+\psi+\omega \leq c} \int_{X} \phi(x) d \mu+\int_{Z} \psi(z) d \nu
$$

Beyond classical matching and hedonic model

- D. A. Zaev (2015): Studied Kantorovich problem with additional linear constraint.

Problem statement:

- Given $c(\cdot, \cdot) \in C(X \times Z ; \mathbb{R}), \mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Z)$ and a subspace $\mathcal{W} \subset C(X \times Z ; \mathbb{R})$

$$
\mathrm{K}_{c, \mathcal{W}}(\mu, \nu):=\inf _{\gamma \in \Pi_{\mathcal{W}}(\mu, \nu)} \int_{X \times Z} c(x, z) d \gamma
$$

- The dual problem is

$$
D_{c, \mathcal{W}}(\mu, \nu):=\sup _{\phi+\psi+\omega \leq c} \int_{X} \phi(x) d \mu+\int_{Z} \psi(z) d \nu
$$

Theorem (D. A. Zaev (2015))

- We have that $\mathrm{K}_{c, \mathcal{W}}(\mu, \nu)=D_{c, \mathcal{W}}(\mu, \nu)$ and existence of $\mathrm{K}_{c, \mathcal{W}}(\mu, \nu)$ holds if and only if $\Pi_{\mathcal{W}}(\mu, \nu) \neq \emptyset$. In general existence of solution for $D_{c, \mathcal{W}}(\mu, \nu)$ may fail.

Martingale optimal transport on a line

Martingale matchings: $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Z)$

$$
\mathcal{M}(\mu, \nu):=\left\{\gamma \in \Pi(\mu, \nu): \mathbb{E}_{\gamma}\left[\pi_{Z} \mid \pi_{X}\right]=\pi_{X}\right\}
$$

where $\pi_{X}(x, z)=x$ and $\pi_{Z}(x, z)=z$, for all $(x, z) \in X \times Z$.

Martingale optimal transport on a line

Martingale matchings: $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Z)$

$$
\mathcal{M}(\mu, \nu):=\left\{\gamma \in \Pi(\mu, \nu): \mathbb{E}_{\gamma}\left[\pi_{Z} \mid \pi_{X}\right]=\pi_{X}\right\}
$$

where $\pi_{X}(x, z)=x$ and $\pi_{Z}(x, z)=z$, for all $(x, z) \in X \times Z$.
i.e. $\mathbb{E}_{\gamma}\left[\pi_{Z} \mid \pi_{X}\right]=\pi_{X} \Longleftrightarrow \int_{X \times Z} h(x)(z-x) d \gamma=0$, for all $h \in C(X ; \mathbb{R})$.

Martingale optimal transport on a line

Martingale matchings: $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Z)$

$$
\mathcal{M}(\mu, \nu):=\left\{\gamma \in \Pi(\mu, \nu): \mathbb{E}_{\gamma}\left[\pi_{Z} \mid \pi_{X}\right]=\pi_{X}\right\}
$$

where $\pi_{X}(x, z)=x$ and $\pi_{Z}(x, z)=z$, for all $(x, z) \in X \times Z$.
i.e. $\mathbb{E}_{\gamma}\left[\pi_{Z} \mid \pi_{X}\right]=\pi_{X} \Longleftrightarrow \int_{X \times Z} h(x)(z-x) d \gamma=0$, for all $h \in C(X ; \mathbb{R})$.

- V. Strassen (1965) : $\mathcal{M}(\mu, \nu) \neq \emptyset \Longleftrightarrow \mu \preceq_{c} \nu$:

$$
\int_{X} f(x) d \mu \leq \int_{Z} f(z) d \nu, \quad \text { for all convex functions } f(\cdot) \text { over } \mathbb{R} \text {. }
$$

More on martingale optimal transport

Problem statement: $\mathrm{P}_{c}(\mu, \nu):=\inf _{\gamma \in \mathcal{M}(\mu, \nu)} \int_{X \times Z} c(x, z) d \gamma$.

More on martingale optimal transport

Problem statement: $\mathrm{P}_{c}(\mu, \nu):=\inf _{\gamma \in \mathcal{M}(\mu, \nu)} \int_{X \times Z} c(x, z) d \gamma$.
Dual problem: $\mathrm{D}_{c}(\mu, \nu):=\sup _{(\phi, \psi, h) \in \mathcal{D}_{c}} \int_{X} \phi(x) d \mu+\int_{Z} \psi(z) d \nu$, where
$\mathcal{D}_{c}:=\{(\phi, \psi, h): \phi(x)+\psi(z)+h(x)(z-x) \leq c(x, z)$, for all $(x, z) \in X \times Z\}$.

More on martingale optimal transport

Problem statement: $\mathrm{P}_{c}(\mu, \nu):=\inf _{\gamma \in \mathcal{M}(\mu, \nu)} \int_{X \times Z} c(x, z) d \gamma$.
Dual problem: $\mathrm{D}_{c}(\mu, \nu):=\sup _{(\phi, \psi, h) \in \mathcal{D}_{c}} \int_{X} \phi(x) d \mu+\int_{Z} \psi(z) d \nu$, where

$$
\mathcal{D}_{c}:=\{(\phi, \psi, h): \phi(x)+\psi(z)+h(x)(z-x) \leq c(x, z), \text { for all }(x, z) \in X \times Z\}
$$

Theorem (M. Beiglböck and P. Henry-Labordere and F. Penkner (2013))

If $c(\cdot, \cdot)$ LSC and bounded below and $\mu \preceq_{c} \nu$, then $\mathrm{P}_{c}(\mu, \nu)$ admits a minimizer and $\mathrm{P}_{c}(\mu, \nu)=\mathrm{D}_{c}(\mu, \nu)$.

- There exist examples where maximizer for $\mathrm{D}_{c}(\mu, \nu)$ may fail.

More on martingale optimal transport

Theorem (M. Beiglböck, T. Lim and J. Obloj (2019))

If $\mu \preceq_{c} \nu$, then existence for $\mathrm{D}_{c}(\mu, \nu)$ holds when $c(\cdot, \cdot)$ is Lipschitz and there exists $u(\cdot)$ Lipschitz function over Z such that $c(x, \cdot)-u(\cdot)$ is convex over Z.

More on martingale optimal transport

Theorem (M. Beiglböck, T. Lim and J. Obloj (2019))

If $\mu \preceq_{c} \nu$, then existence for $\mathrm{D}_{c}(\mu, \nu)$ holds when $c(\cdot, \cdot)$ is Lipschitz and there exists $u(\cdot)$ Lipschitz function over Z such that $c(x, \cdot)-u(\cdot)$ is convex over Z.

Martingale transport plans are not deterministic in general. Special case: $\mu=\nu \Rightarrow \gamma=(\operatorname{Id} \times T)_{\#} \mu$, where $T(x)=x$.

More on martingale optimal transport

Theorem (M. Beiglböck, T. Lim and J. Obloj (2019))

If $\mu \preceq_{c} \nu$, then existence for $\mathrm{D}_{c}(\mu, \nu)$ holds when $c(\cdot, \cdot)$ is Lipschitz and there exists $u(\cdot)$ Lipschitz function over Z such that $c(x, \cdot)-u(\cdot)$ is convex over Z.

Martingale transport plans are not deterministic in general.
Special case: $\mu=\nu \Rightarrow \gamma=(\operatorname{Id} \times T)_{\#} \mu$, where $T(x)=x$.

Theorem (M. Beiglböck and N. Juillet (2016))

- $\mu \in \mathcal{P}(X)$ is absolutely continuous with respect to Lebesgue measure
- $c(x, z)=q(x-z)$, where $q(\cdot)$ is differentiable whose derivative is strictly convex. There exists $S \subset X$ such that $\gamma\left(\operatorname{Graph}\left(T_{1}\right) \cup \operatorname{Graph}\left(T_{2}\right)\right)=1$ on S.

Robust matching for team: Main result

Theorem (D. O. Adu and B. Gharesifard (2022))

- Let $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, and $c_{i}(\cdot, \cdot) \in C\left(X_{i} \times Z ; \mathbb{R}\right)$, and \mathcal{W}_{i} be such that

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right) \neq \emptyset, \quad \text { for all } i \in\{0, \ldots, N\}\right\},
$$

where $\mu:=\left(\mu_{0}, \ldots, \mu_{N}\right) \in \mathcal{P}\left(X_{0}\right) \times \cdots \times \mathcal{P}\left(X_{N}\right)$ and
$\mathcal{W}:=\mathcal{W}_{0} \times \cdots \times \mathcal{W}_{N}$, is non-empty.

Robust matching for team: Main result

Theorem (D. O. Adu and B. Gharesifard (2022))

- Let $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, and $c_{i}(\cdot, \cdot) \in C\left(X_{i} \times Z ; \mathbb{R}\right)$, and \mathcal{W}_{i} be such that

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right) \neq \emptyset, \quad \text { for all } i \in\{0, \ldots, N\}\right\},
$$

where $\mu:=\left(\mu_{0}, \ldots, \mu_{N}\right) \in \mathcal{P}\left(X_{0}\right) \times \cdots \times \mathcal{P}\left(X_{N}\right)$ and
$\mathcal{W}:=\mathcal{W}_{0} \times \cdots \times \mathcal{W}_{N}$, is non-empty.

- Given $\psi_{i}(\cdot) \in C(Z ; \mathbb{R})$ the problem

$$
\sup _{\omega_{i} \in \mathcal{W}_{i}} \int_{X_{i}} \psi_{i}^{\left(c_{i}+\omega_{i}\right)}\left(x_{i}\right) d \mu_{i}
$$

admits a maximizer for $i \in\{0, \ldots, N\}$.

Robust matching for team: Main result

Theorem (D. O. Adu and B. Gharesifard (2022))

- Let $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$, and $c_{i}(\cdot, \cdot) \in C\left(X_{i} \times Z ; \mathbb{R}\right)$, and \mathcal{W}_{i} be such that

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right) \neq \emptyset, \quad \text { for all } i \in\{0, \ldots, N\}\right\},
$$

where $\mu:=\left(\mu_{0}, \ldots, \mu_{N}\right) \in \mathcal{P}\left(X_{0}\right) \times \cdots \times \mathcal{P}\left(X_{N}\right)$ and
$\mathcal{W}:=\mathcal{W}_{0} \times \cdots \times \mathcal{W}_{N}$, is non-empty.

- Given $\psi_{i}(\cdot) \in C(Z ; \mathbb{R})$ the problem

$$
\sup _{\omega_{i} \in \mathcal{W}_{i}} \int_{X_{i}} \psi_{i}^{\left(c_{i}+\omega_{i}\right)}\left(x_{i}\right) d \mu_{i}
$$

admits a maximizer for $i \in\{0, \ldots, N\}$. Then there exists an $R M E$.

Special case for our main result

- Consider the set

$$
\mathcal{W}_{i}:=\left\{\omega_{i} \in \mathcal{F}\left(X_{i} \times Z ; \mathbb{R}\right): \omega_{i}\left(x_{i}, z\right):=h_{i}\left(x_{i}\right)\left(z-x_{i}\right), \text { where } h_{i} \in C\left(X_{i} ; \mathbb{R}\right)\right\}
$$

- Then

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \mu_{i} \preceq_{c} \nu, \quad \text { for all } i \in\{0, \ldots, N\}\right\} .
$$

Special case for our main result

- Consider the set

$$
\mathcal{W}_{i}:=\left\{\omega_{i} \in \mathcal{F}\left(X_{i} \times Z ; \mathbb{R}\right): \omega_{i}\left(x_{i}, z\right):=h_{i}\left(x_{i}\right)\left(z-x_{i}\right), \text { where } h_{i} \in C\left(X_{i} ; \mathbb{R}\right)\right\} .
$$

- Then

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \mu_{i} \preceq_{c} \nu, \quad \text { for all } i \in\{0, \ldots, N\}\right\} .
$$

- $\mu_{i} \preceq_{c} \nu \Rightarrow \int_{X_{i}} x_{i} d \mu_{i}=\int_{Z} z d \nu$, for all $i \in\{0, \ldots, N\}$.

Special case for our main result

- Consider the set

$$
\mathcal{W}_{i}:=\left\{\omega_{i} \in \mathcal{F}\left(X_{i} \times Z ; \mathbb{R}\right): \omega_{i}\left(x_{i}, z\right):=h_{i}\left(x_{i}\right)\left(z-x_{i}\right), \text { where } h_{i} \in C\left(X_{i} ; \mathbb{R}\right)\right\}
$$

- Then

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \mu_{i} \preceq_{c} \nu, \quad \text { for all } i \in\{0, \ldots, N\}\right\} .
$$

- $\mu_{i} \preceq_{c} \nu \Rightarrow \int_{X_{i}} x_{i} d \mu_{i}=\int_{Z} z d \nu$, for all $i \in\{0, \ldots, N\}$.

The uncertainty in $\omega_{i}(\cdot, \cdot)$ is only in the term $h_{i}(\cdot)$.

- Uncertainty in $\omega_{i}(\cdot, \cdot)$ caused by exogenous factors (prices of fuel, oil, natural gas, hydro etc.) independent of $z \in Z$.

Special case for our main result

- Consider the set

$$
\mathcal{W}_{i}:=\left\{\omega_{i} \in \mathcal{F}\left(X_{i} \times Z ; \mathbb{R}\right): \omega_{i}\left(x_{i}, z\right):=h_{i}\left(x_{i}\right)\left(z-x_{i}\right), \text { where } h_{i} \in C\left(X_{i} ; \mathbb{R}\right)\right\}
$$

- Then

$$
\mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \mu_{i} \preceq_{c} \nu, \quad \text { for all } i \in\{0, \ldots, N\}\right\} .
$$

- $\mu_{i} \preceq_{c} \nu \Rightarrow \int_{X_{i}} x_{i} d \mu_{i}=\int_{Z} z d \nu$, for all $i \in\{0, \ldots, N\}$.

The uncertainty in $\omega_{i}(\cdot, \cdot)$ is only in the term $h_{i}(\cdot)$.

- Uncertainty in $\omega_{i}(\cdot, \cdot)$ caused by exogenous factors (prices of fuel, oil, natural gas, hydro etc.) independent of $z \in Z$.
- Given $\nu \in \mathcal{P}(Z)$, the robust matching $\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right)$ is a martingale.

Optimization Problems for RME

Theorem (D. O. Adu and B. Gharesifard (2022))

The problem of finding an RME can be recasted as

- finding

$$
\nu \in \mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right) \neq \emptyset, \quad \text { for all } i \in\{0, \ldots, N\}\right\} \text { that }
$$

$$
\mathrm{P}_{\mathcal{W}}(\mu):=\inf _{\rho \in \mathcal{M} \mathcal{W}(\mu)} \sum_{i=0}^{N} \mathrm{~K}_{c_{i}, \mathcal{W}_{i}}\left(\mu_{i}, \rho\right),
$$

where $\mathrm{K}_{c_{i}, \mathcal{W}_{i}}\left(\mu_{i}, \rho\right):=\inf _{\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \rho\right)} \int_{X_{i} \times Z} c_{i}\left(x_{i}, z\right) d \gamma_{i}$,

Optimization Problems for RME

Theorem (D. O. Adu and B. Gharesifard (2022))

The problem of finding an RME can be recasted as

- finding

$$
\nu \in \mathcal{M}_{\mathcal{W}}(\mu):=\left\{\nu \in \mathcal{P}(Z): \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right) \neq \emptyset, \quad \text { for all } i \in\{0, \ldots, N\}\right\} \text { that }
$$

$$
\mathrm{P}_{\mathcal{W}}(\mu):=\inf _{\rho \in \mathcal{M} \mathcal{W}(\mu)} \sum_{i=0}^{N} \mathrm{~K}_{c_{i}, \mathcal{W}_{i}}\left(\mu_{i}, \rho\right),
$$

where $\mathrm{K}_{c_{i}, \mathcal{W}_{i}}\left(\mu_{i}, \rho\right):=\inf _{\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \rho\right)} \int_{X_{i} \times Z} c_{i}\left(x_{i}, z\right) d \gamma_{i}$,

- and finding $\psi_{i}(\cdot)$ and $\omega_{i}(\cdot, \cdot)$, where $i \in\{0, \ldots, N\}$ that solves

$$
\mathrm{P}_{\mathcal{W}}^{*} \mathcal{H}(\mu):=\sup _{\left(\omega_{0}, \ldots, \omega_{N}\right) \in \mathcal{W}} \sup _{\left(\varphi_{0}, \ldots, \varphi_{N}\right) \in \mathcal{T}} \sum_{i=0}^{N} \int_{X_{i}} \varphi_{i}^{\left(c_{i}+\omega_{i}\right)}\left(x_{i}\right) d \mu_{i},
$$

where $\mathcal{T}=\left\{\left(\varphi_{0}(\cdot), \ldots, \varphi_{N}(\cdot)\right) \subset C(Z ; \mathbb{R}) \mid \sum^{N} \varphi_{i}(z)=0\right.$, for all $\left.z \in Z\right\}$.

RME are optimizers

Theorem (D. O. Adu and B. Gharesifard (2022))

- If $c_{i}(\cdot, \cdot)$ is $L S C$ and \mathcal{W} is such that $\mathcal{M}_{\mathcal{W}}(\mu) \neq \emptyset$, then $\mathrm{P}_{\mathcal{W}}(\mu)=\mathrm{P}_{\mathcal{W}}^{*}(\mu)$ and the minimizer for $\mathrm{P}_{\mathcal{W}}(\mu)$ exists.

RME are optimizers

Theorem (D. O. Adu and B. Gharesifard (2022))

- If $c_{i}(\cdot, \cdot)$ is LSC and \mathcal{W} is such that $\mathcal{M}_{\mathcal{W}}(\mu) \neq \emptyset$, then $\mathrm{P}_{\mathcal{W}}(\mu)=\mathrm{P}_{\mathcal{W}}^{*}(\mu)$ and the minimizer for $\mathrm{P}_{\mathcal{W}}(\mu)$ exists.
- Existence for $\mathrm{P}_{\mathcal{W}}^{*}(\mu)$ may fail.

RME are optimizers

Theorem (D. O. Adu and B. Gharesifard (2022))

- If $c_{i}(\cdot, \cdot)$ is LSC and \mathcal{W} is such that $\mathcal{M}_{\mathcal{W}}(\mu) \neq \emptyset$, then $\mathrm{P}_{\mathcal{W}}(\mu)=\mathrm{P}_{\mathcal{W}}^{*}(\mu)$ and the minimizer for $\mathrm{P}_{\mathcal{W}}(\mu)$ exists.
- Existence for $\mathrm{P}_{\mathcal{W}}^{*}(\mu)$ may fail.

Proposition (D. O. Adu and B. Gharesifard (2022))

We have that $\left(\psi_{i}(\cdot), \gamma_{i}, \nu\right)$ is an RME for $i \in\{0, \ldots, N\}$, if and only if ν solves $\mathrm{P}_{\mathcal{W}}(\mu)$ and $\left(\psi_{0}(\cdot), \ldots, \psi_{N}(\cdot)\right)$ and $\left(\omega_{0}^{*}(\cdot), \ldots, \omega_{N}^{*}(\cdot)\right)$, with $\omega_{i}^{*} \in \mathcal{W}_{i}$, solves $\mathrm{P}_{\mathcal{W}}^{*}(\mu)$.

Special case: Martingale matching for teams

Theorem (D. O. Adu and B. Gharesifard (2022))

Assume $c_{i}(\cdot, \cdot)$ is Lipschitz on $X_{i} \times Z$ and there exists a Lipschitz function $u_{i}(\cdot)$ over Z such that $c_{i}\left(x_{i}, \cdot\right)-u_{i}(\cdot)$ is convex over Z. Then there exists an RME $\left(\psi_{i}(\cdot), \gamma_{i}, \nu\right)$, for all $i \in\{0, \ldots, N\}$.

Idea:

- Solve $\mathrm{P}_{\mathcal{W}}(\mu)$ to obtain $\nu \in \mathcal{M}_{\mathcal{W}}(\mu)$ such that $\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right)$

Special case: Martingale matching for teams

Theorem (D. O. Adu and B. Gharesifard (2022))

Assume $c_{i}(\cdot, \cdot)$ is Lipschitz on $X_{i} \times Z$ and there exists a Lipschitz function $u_{i}(\cdot)$ over Z such that $c_{i}\left(x_{i}, \cdot\right)-u_{i}(\cdot)$ is convex over Z. Then there exists an $\operatorname{RME}\left(\psi_{i}(\cdot), \gamma_{i}, \nu\right)$, for all $i \in\{0, \ldots, N\}$.

Idea:

- Solve $\mathrm{P}_{\mathcal{W}}(\mu)$ to obtain $\nu \in \mathcal{M}_{\mathcal{W}}(\mu)$ such that $\gamma_{i} \in \Pi_{\mathcal{W}_{i}}\left(\mu_{i}, \nu\right)$
- For $\mathrm{P}_{\mathcal{W}}^{*}(\mu)$, solve

$$
\sup _{\left(\omega_{1}, \ldots, \omega_{N}\right) \in \mathcal{W}} \sup _{\left(\varphi_{1}, \ldots, \varphi_{N}\right) \in \mathcal{T}} \sum_{i=1}^{N} \int_{X_{i}} \varphi_{i}^{\left(c_{i}+\omega_{i}\right)}\left(x_{i}\right) d \mu_{i}+\int_{Z} \varphi_{i}(z) d \nu
$$

to obtain $\left(\psi_{1}, \ldots, \psi_{N}\right)$ and then set

- $\psi_{0}(z)=-\sum_{i=1}^{N} \psi_{i}(z)$, for all $z \in Z$.

Some comments on purity

- We do not expect the martingale matching to be pure.

Some comments on purity

- We do not expect the martingale matching to be pure.

Theorem (D. O. Adu and B. Gharesifard (2022))

- $\left(\psi_{i}(\cdot), \gamma_{i}, \nu\right)$, for $i \in\{0, \ldots, N\}$ be an RME.
- $\mu_{i} \in \mathcal{P}\left(X_{i}\right)$ is absolutely continuous with respect to Lebesgue measure
- $c_{i}\left(x_{i}, z\right)=q_{i}\left(x_{i}-z\right)$, where $q_{i}(\cdot)$ is a differentiable whose derivative is strictly convex.
- There exists $S_{i} \subset X_{i}$ such that $\gamma_{i}\left(\operatorname{Graph}\left(T_{i 1}\right) \cup \operatorname{Graph}\left(T_{i 2}\right)\right)=1$ on S_{i}.

Outline

(1) Classical matching problem
(2) Hedonic model
(3) Matching for teams problem
(4) Robust matching for teams problem
(5) Concluding remarks

Concluding Remarks

Summary:

- Studied robust matching for teams.

Concluding Remarks

Summary:

- Studied robust matching for teams.
- Uncertainty in variable cost translate to optimal transport with additional constraint. Typical case was martingale matching.

Concluding Remarks

Summary:

- Studied robust matching for teams.
- Uncertainty in variable cost translate to optimal transport with additional constraint. Typical case was martingale matching.

Future work:

- Matching problems with capacity constraints.

Concluding Remarks

Summary:

- Studied robust matching for teams.
- Uncertainty in variable cost translate to optimal transport with additional constraint. Typical case was martingale matching.

Future work:

- Matching problems with capacity constraints.
- Matching problems with coordination among individuals.

