## PIMS / AMI Seminar

Friday, February 15, 2013
3:00 p.m.
CAB 357

# "Hausdorff Geometry of Polynomials" 

Blagovest Sendov
Institute of Information and Communication
Technologies Section on Parallel Algorithms
Bulgaria Academy of Sciences


#### Abstract

Let $\mathrm{D}(\mathrm{c} ; \mathrm{r})$ be the smallest disk, with center c and radius r , containing all zeros of the polynomial $p(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)$. In 1958, we conjectured that for every zero $z_{k}$ of $p(z)$, the disk $D\left(z_{k} ; r\right)$ contains at least one zero of the derivative $\mathrm{p}^{\prime}(\mathrm{z})$. More than 100 papers are devoted to this conjecture, proving it for different special cases. But in general, the conjecture is proved only for the polynomials of degree $n \leq 8$. In this lecture we review the latest developments and generalizations of the conjecture.


## References

[1] Brown, J. E. and G. Xiang: Proof of the Sendov conjecture for polynomials of degree utmost eight, J. Math. Anal. Appl. 232, \# 2 (1999), 272-292.
[2] Khavinson D., R. Pereira, M. Putinar and E. Saff: Borcea's variance conjectures on the critical points of polynomials, arXiv:1010.5167v1 [math.CV] 25 Oct 2010
[3] Meng Z.: The critical points of polynomials, arXiv:1301.0226v1 [math.CV] 2 Jan 2013
[4] Schmiesser, G.: The Conjectures of Sendov and Smale, Approximation Theory: A v. dedic. to Bl. Sendov (B. Bojanov, Ed.), DARBA, 2002, 353-369.
[5] Sendov, Bl.: Hausdorff Geometry of Polynomials, East J. on Appr., 7 \# 2 (2001), 1 - 56.

