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Abstract This paper is devoted to the study of monotone wavefronts for cooperative and
partially degenerate reaction-diffusion systems. The existence of monostable wavefronts is
established via the vector-valued upper and lower solutions method. It turns out that the mini-
mal wave speed of monostable wavefronts coincides with the spreading speed. The existence
of bistable wavefronts is obtained by the vanishing viscosity approach combined with the
properties of spreading speeds in the monostable case.
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1 Introduction

There have been extensive investigations on traveling waves and spatial dynamics for
n-dimensional (n ≥ 2) reaction-diffusion systems

∂ui

∂t
= di�ui + fi (u1, . . . , un), t ≥ 0, x ∈ R, 1 ≤ i ≤ n, (1.1)

see, e.g., [10,14,20] and references therein. System (1.1) is a general form of various models
in applied subjects such as combustion physics, chemical kinetics and spatial ecology. Usu-
ally, system (1.1) is said to be non-degenerate if each diffusion coefficient di is positive, and
partially degenerate if some but not all diffusion coefficients are zero. There are two typical
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nonlinearities for f : monostable and bistable, which depends on the number and stability
of equilibria of the reaction system du

dt = f (u). We say (1.1) is cooperative if each fi (u)
is non-decreasing in all components of u with the possible exception of the i th one. In this
work, we always assume that (1.1) is cooperative unless we specify it is unnecessary.

Recall that a traveling wave solution of (1.1) with speed c refers to a pair (U, c), where
U (x +ct) is a nontrivial and bounded solution of (1.1). We call U = (U1, . . . ,Un)

T the wave
profile and c the wave speed. We say (U, c) is a wavefront if U (±∞) exist and U (−∞) �=
U (+∞).

One central problem for (1.1) with monostable nonlinearity is about the spreading speed
and the minimal wave speed of wavefronts. The existence of the minimal wave speed and the
stability of wavefronts for the non-degenerate case were presented by Volpert et al. [20]. The
existence and estimate of the spreading speed were obtained by Weinberger et al. [23] for
general cooperative reaction-diffusion systems. Li et al. [6] also showed that the spreading
speed coincides with the minimal wave speed for the non-degenerate case. In population
biology, there are also quite a few partially degenerate reaction-diffusion models of form
(1.1). Capasso and Maddalena [1] introduced an epidemic model:

⎧
⎪⎨

⎪⎩

∂u1

∂t
= d�u1 − a11u1 + a12u2

∂u2

∂t
= −a22u2 + g(u1),

(1.2)

for which Zhao and Wang [28] established the existence of wavefronts via the scalar upper and
lower solutions method. Lewis and Schmitz [11] presented the following population model:

⎧
⎪⎨

⎪⎩

∂u1

∂t
= d�u1 − µu1 − γ2u1 + γ1u2

∂u2

∂t
= γ u2(1 − u2/K )− γ1u2 + γ2u1,

(1.3)

for which Hadeler and Lewis [3] obtained the existence of the spreading speed, and Wang
and Zhao [21] established the existence of wavefronts by reducing system (1.3) to an integral
equation and then using the theory developed in [16]. Hadeler and Lewis [3] also proposed
and discussed briefly the following population model:

⎧
⎪⎨

⎪⎩

∂u1

∂t
= d�u1 + f (u1)− γ1u1 + γ2u2

∂u2

∂t
= γ1u1 − γ2u2.

(1.4)

Liang et al. [7, Section 3] studied the spreading speed and periodic traveling waves of the
time periodic version of (1.2) by showing that the associated solution maps areα-contractions
and then using the general theory for monotone periodic semiflows. By a similar approach,
Zhang and Zhao [26] established the coincidence of the spreading speed with the minimal
wave speed for system (1.4). It is then natural to ask whether the spreading speed is the
minimal wave speed of monotone wavefronts for general partially degenerate system (1.1)
with monostable nonlinearity. The first purpose of our current paper is to give an affirmative
answer to this question. Note that the solution maps associated with such a system are not
compact with respect to the compact open topology. Moreover, it seems difficult to prove that
these solution maps are α-contractions in the general case of nonlinearity. Thus, we may not
expect to apply the abstract results developed in [22,7,8] to prove the existence of monosta-
ble wavefronts for general partially degenerate systems (1.1). We will use the vector-valued
upper and lower solutions method. As always, the key point in this approach is to construct a
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pair of appropriate upper and lower solutions. Our construction was motivated by Weng and
Zhao’s work [24] on a multi-type SIS epidemic model.

In the bistable case, Volpert et al. [20] gave a complete result about the existence and
stability of the unique (up to translation) wavefront when (1.1) is non-degenerate. Tsai and
Sneyd [19] presented a partially degenerate buffered system

⎧
⎪⎨

⎪⎩

∂u

∂t
= d�u + f (u)+ ∑m

i=1[ki−(bi
0 − vi )− ki+uvi ]

∂vi

∂t
= ki−(bi

0 − vi )− ki+uvi , 1 ≤ i ≤ m,
(1.5)

where f is of bistable type, and also studied the existence of wavefronts for (1.5) by the
shooting method. Note that (1.5) can be transformed to a cooperative and bistable system on
R+ × ∏m

i=1[0, bi
0] under the change of variable ui = bi

0 − vi , 1 ≤ i ≤ m. Kazmierczak and
Volpert [5] then improved the existence result in [19] by taking the limit of wave profiles
of the non-degenerate systems resulted from the small perturbations of the zero diffusion
coefficients. This vanishing viscosity approach was used earlier by Chen [2] for a nonlocal
evolution equation and by Shen [12] for a time periodic lattice differential equation. Tsai
[17] also investigated the global exponential stability of bistable wavefronts for (1.5). Xu
and Zhao [25] studied the existence and global stability of wavefronts for model (1.2) in the
bistable case. Recently, Jin and Zhao [4], using the shooting method, obtained the existence
and global stability of bistable wavefronts for a general two-dimensional partially degenerate
reaction-diffusion system

⎧
⎪⎨

⎪⎩

∂u

∂t
= d�u + f (u, v)

∂v

∂t
= g(u, v).

(1.6)

Further, Tsai [18] investigated the global exponential stability of the wavefront via the
squeezing method under the assumption that the partially degenerate system (1.1) admits a
C1-smooth bistable wavefront. However, the existence of bistable wavefronts for partially
degenerate system (1.1) remains an open problem. The second purpose of our current paper is
to solve this problem. We will utilize the vanishing viscosity method, but the technical details
are quite different from those in [5,12]. In order to use this approach, we need to prove that
wave speeds of the perturbed non-degenerate systems are uniformly bounded and that the
limiting wave profile connects two stable equilibria. The former is done by constructing a
pair of appropriate upper and lower solutions, and the latter is completed by employing the
properties of spreading speeds for the monostable case.

The rest of this paper is organized as follows. In Sect. 2, we present some notations,
assumptions and preliminary results. Section 3 is devoted to the construction of the required
upper and lower solutions and the proof of the existence of monostable wavefronts for (1.1).
It turns out the minimal wave speed coincides with the spreading speed. In Sect. 4, we estab-
lish the existence of bistable wavefronts connecting two stable equilibria for (1.1), and then
make some remarks on the smoothness and global stability of these wavefronts.

2 Preliminaries

We begin with some notations. Let C be the set of all bounded and continuous functions from
R to R

n . For u = (u1, . . . , un)
T , v = (v1, . . . , vn)

T ∈ C, we define u ≥ v(u � v) to mean
that ui (x) ≥ vi (x)(ui (x) > vi (x)), 1 ≤ i ≤ n,∀x ∈ R, and u > v to mean that u ≥ v but
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u �≡ v. Any vector in R
n can be identified as an element in C. For any r ∈ R, we use boldface

r to denote the vector with each component being r , i.e., r = (r, . . . , r)T . For any ω � 0
we define Cω := {u ∈ C : 0 ≤ u ≤ ω}. We equip R

n with the standard norm ‖ · ‖.
A square matrix is said to be cooperative if all off-diagonal entries are non-negative, and

irreducible if it cannot be placed into block lower-triangular form by simultaneous row/col-
umn permutations. It is easy to see that if f is differentiable and the matrix f ′(u) is cooper-
ative, then (1.1) is cooperative. We denote the stability modulus of square matrix A by

s(A) := max{Reλ : det(λI − A) = 0}.
To recall the known results for the monostable case, we need the following assumption:

(H) Assume that f : R
n → R

n satisfies the following conditions:

(1) f is continuous with f (0) = f (1) = 0 and there is no ν other than 0 and 1 such
that f (ν) = 0 and 0 ≤ ν ≤ 1.

(2) System (1.1) is cooperative.
(3) f (u) is piecewise continuously differentiable in u for 0 ≤ u ≤ 1 and differentia-

ble at 0, and the matrix f ′(0) is irreducible with s( f ′(0)) > 0.

Let D := diag(d1, . . . , dn). For any µ > 0, define A(µ) := µ2 D + f ′(0). Since f ′(0) is
cooperative and irreducible, so is A(µ),∀µ > 0. Thus, λ(µ) := s(Aµ) is a simple eigenvalue
of A(µ) with a strongly positive eigenvector v(µ) = (v1(µ), . . . , vn(µ))

T (see, e.g., [13,
Corollary 4.3.2]). We always assume ‖v(µ)‖ = 1,∀µ > 0. Since A(µ) > A(0) = f ′(0),
we have s(A(µ)) > s( f ′(0)) (see, e.g., [13, Corollary 4.3.2]), that is, λ(µ) > s( f ′(0)) > 0.

Define the function�(µ) := λ(µ)
µ
, µ > 0. By [8, Lemma 3.8], we then have the following

properties on �.

Lemma 2.1 �(µ) is decreasing as µ near 0 and tends to infinity as µ ↓ 0; �′(µ) changes
sign at most once on (0,∞) and limµ→∞�(µ) exists, where the limit may be infinity.

From the above lemma, we may define c̄ := infµ>0 �(µ). Clearly, c̄ ≥ 0.

Lemma 2.2 limµ→+∞�(µ) = +∞, and hence, c̄ > 0.

Proof Since D is not the zero matrix, we assume, without loss of generality, that d1 > 0.
Let f ′(0) = (ai j )n×n . Since A(µ)v(µ) = λ(µ)v(µ), we have the first component equality

(d1µ
2 + a11)v1(µ)+

n∑

k=2

a1kvk(µ) = λ(µ)v1(µ).

Note that v(µ) � 0 and a1k ≥ 0,∀k ≥ 2. It then follows that d1µ
2 + a11 ≤ λ(µ), and

hence,�(µ) = λ(µ)
µ

≥ d1µ+ a11
µ

. Thus, limµ→+∞�(µ) = +∞. Since�(µ) > 0,∀µ > 0
and limµ↓0 �(µ) = +∞, we then have c̄ = infµ>0 �(µ) > 0. 
�

Suppose µ∗ ∈ (0,+∞) is the value of µ at which �(µ) attains its infimum. Since
c̄ > 0, we have the following result, which comes from [23, Proposition 2.1, Lemma 3.1 and
Theorems 4.1, 4.2].

Lemma 2.3 Assume (H) holds. Let φ ∈ C1 and u(t, x;φ) be the unique solution of (the
integral form of) (1.1) through φ. Then there exists a real number c∗ ≥ c̄ > 0 such that the
following statements are valid:

(i) If φ has compact support, then limt→∞,|x |≥ct u(t, x;φ) = 0, ∀c > c∗.
(ii) For any c ∈ (0, c∗) and r > 0, there is a positive number Rr such that for any φ ∈ C1

with φ ≥ r on an interval of length 2Rr , there holds limt→∞,|x |≤ct u(t, x;φ) = 1.
(iii) If, in addition, f (min{ρv(µ∗), 1}) ≤ ρ f ′(0)v(µ∗),∀ρ > 0, then c∗ = c̄.
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3 Monostable Wavefronts

In this section, we establish the existence of wavefronts for (1.1) in the monostable case, and
further obtain the minimal wave speed and its coincidence with the spreading speed.

Throughout this section, we make the following assumption:

(K) Assume that f : R
n → R

n satisfies the following conditions:

(1) f is continuous with f (0) = f (1) = 0 and there is no ν other than 0 and 1 such
that f (ν) = 0 and 0 ≤ ν ≤ 1.

(2) System (1.1) is cooperative.
(3) f (u) is piecewise continuously differentiable in u for 0 ≤ u ≤ 1 and differentia-

ble at 0, and the matrix f ′(0) is irreducible with s( f ′(0)) > 0.
(4) There exist a > 0, σ > 1 and r > 0 such that f (u) ≥ f ′(0)u − a‖u‖σ 1 for all

0 ≤ u ≤ r.
(5) For any ρ > 0, f (min{ρv(µ), 1}) ≤ ρ f ′(0)v(µ), ∀µ ∈ (0, µ∗], where µ∗ is the

value of µ at which �(µ) attains its infimum.

The technical conditions (K) (4) and (5) will be used to verify lower and upper solutions
for the wave profile Eq. (3.1), respectively. The condition (K)(5) implies that f (u) is domi-
nated by its linearization at 0 in the direction of v(µ). To give an example of f (u) with this
property, we choose n = 2, D = diag{1, d} with d < 1, and

f (u1, u2) = (u1[3 − 4u1 + u2], (1 − u2)[u2(3u2 − 2)+ 8u1])T ,
which is modified from [23, Example 4.1].

Let B be a ball in R
n centered at 0, B̄ the closure of B. Then the following lemma shows

that (K)(4) is automatically satisfied if f is smooth enough around the origin.

Lemma 3.1 If there is a ball B such that ∂
2 fk (u)
∂ui ∂u j

,∀1 ≤ i, j, k ≤ n, is continuous at every

point in B, then (K )(4) holds.

Proof By Taylor expansion, it follows that for any u ∈ B,

fk(u) = fk(0)+
n∑

i=1

∂ fk(0)
∂ui

ui +
n∑

i=1

n∑

j=1

Ri j (u)ui u j

with

|Ri j (u)| ≤ 1

2
sup
y∈B̄

∣
∣
∣
∣
∂2 fk(y)

∂ui∂u j

∣
∣
∣
∣ := ai jk .

Define a := n max1≤i, j,k≤n ai jk . Then we have

fk(u) ≥
n∑

i=1

∂ fk(0)
∂ui

ui −
n∑

i=1

n∑

j=1

ai jk |ui u j |

≥
n∑

i=1

∂ fk(0)
∂ui

ui −
n∑

i=1

n∑

j=1

ai jk
u2

i + u2
j

2

≥
n∑

i=1

∂ fk(0)
∂ui

ui − a
n∑

i=1

u2
i .

This implies that f (u) ≥ f ′(0)u − a‖u‖21,∀u ∈ B. 
�
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Clearly, assumption (K) ensures the conditions in Lemma 2.3. Let c∗ = c̄ > 0 be the
spreading speed established in Lemma 2.3.

Let c > c∗ be fixed. Substituting u(t, x) ≡ U (x + ct) into (1.1), we get the wave profile
equation

cU ′ = DU ′′ + f (U ) (3.1)

subject to the boundary condition

U (−∞) = 0 and U (+∞) = 1.

Let β > 0 and F(u) = (F1(u), . . . , Fn(u))T with Fi (u) = βui + fi (u). Since f is
Lipschitz continuous, we can choose β sufficiently large so that F(u) ≥ F(w) whenever
1 ≥ u ≥ w ≥ 0. For a bounded solution u with U (−∞) = 0, (3.1) is equivalent to the
system

Ui (ξ) = Gi (U )(ξ), 1 ≤ i ≤ n, (3.2)

where

Gi (U )(ξ) = 1
√

c2 + 4diβ

⎧
⎪⎨

⎪⎩

ξ∫

−∞
eλ1i (ξ−η)Fi (U (η))dη +

∞∫

ξ

eλ2i (ξ−η)Fi (U (η))dη

⎫
⎪⎬

⎪⎭
(3.3)

with

λ1i =
{

c−
√

c2+4diβ

2di
, di > 0

−β
c , di = 0

and λ2i =
{

c+
√

c2+4diβ

2di
, di > 0

+∞, di = 0.

Define an operator T on C by

T (U ) = (G1(U ), . . . ,Gn(U ))
T , ∀U ∈ C. (3.4)

It then follows that any fixed point of T corresponds to a solution of (3.1). As in [28], we
use the upper and lower fixed points of T to define the upper and lower solutions of (3.1),
respectively.

Definition 3.1 A function W ∈ C is called an upper solution of (3.1) if T (W ) ≤ W . A lower
solution of (3.1) is defined by reversing the inequality.

We note that if W ∈ C is a twice continuously differentiable function on R except finite
many points ξi , 1 ≤ i ≤ m, such that

DW ′′(ξ)− cW ′(ξ)+ f (W (ξ)) ≤ 0, ∀ξ �= ξi , 1 ≤ i ≤ m,

and W ′(ξi+) ≤ W ′(ξi−), ∀1 ≤ i ≤ m, it then easily follows that W is an upper solution
of (3.1) (see, e.g., the proof of [9, Lemma 2.5]). A similar note applies to lower solutions of
(3.1) if we reverse the afore-mentioned two inequalities.

The following observation is straightforward.

Lemma 3.2 The following two statements are valid:

(i) T is a monotone operator on C in the sense that Tφ ≥ Tψ whenever φ, ψ ∈ C with
φ ≥ ψ .

(ii) If φ is nondecreasing, then so is Tφ.
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We consider the function �(µ) defined in section 2. By Lemma 2.1, we see that for any
c > c∗, there exists µ1 = µ(c) ∈ (0, µ∗) such that �(µ1) = c and �(µ) < c,∀µ ∈
(µ1, µ

∗]. For ε > 0, let µε = µ1 + ε. Define cε := �(µε). It then follows that c∗ < cε < c
if ε is sufficiently small. Assume that v = (v1, . . . , vn)

T � 0 and vε = (vε1, . . . , v
ε
n)

T � 0
are the eigenvectors associated with λ(µ1) and λ(µε) of A(µ1) and A(µε), respectively, and
‖v‖ = ‖vε‖ = 1.

Define w̄ = (w̄1, . . . , w̄n)
T and w = (w1, . . . , wn)

T with

w̄i = min{1, vi e
µ1ξ } and wi = max{0, γ vi e

µ1ξ − vεi eµεξ },
where the positive parameters ε and γ will be specified later.

Let ξ̄i = 1
µ1

ln 1
vi

and ξ
i
= 1

ε
ln γ vi

vεi
. Then

w̄i (ξ) =
{
vi eµ1ξ , ξ ≤ ξ̄i

1, ξ > ξ̄i
and wi (ξ) =

{
γ vi eµ1ξ − vεi eµεξ , ξ ≤ ξ

i
0, ξ > ξ

i
.

Thus, it easily follows that for any ξ ∈ R, 1 ≤ i ≤ n,

w̄i (ξ) ≤ 1, w̄′
i (ξ+) ≤ w̄′

i (ξ−), wi (ξ) ≤ γ vi e
µ1ξ and w′

i (ξ+) ≥ w′
i (ξ−).

Lemma 3.3 Suppose assumption (K) holds. Then w̄ and w are a pair of upper and lower
solutions as ε and γ are sufficiently small.

Proof Let a, σ, r be chosen in (K)(4). Suppose δε = c − cε . Choose ε and γ sufficiently
small such that

σµ1 > µε, cε ∈ (c∗, c), γ v � vε, γ σ <
δεµε

a
min

1≤i≤n
{vεi }, and γ v � r.

Thus, ξ
i
< 0, eµεξ > eσµ1ξ , ∀ξ ≤ ξ

i
and 0 < w(ξ) � r, ∀ξ ∈ R.

If ξ > ξ̄i , then w̄i (ξ) = 1 and

di w̄
′′
i (ξ)− cw̄′

i (ξ)+ fi (w̄(ξ))

= fi (w̄1(ξ), . . . , w̄i (ξ), . . . , w̄n(ξ))

≤ fi (1, . . . , w̄i (ξ), . . . , 1)

= fi (1) = 0.

If ξ < ξ̄i , then w̄i (ξ) = vi eµ1ξ and by (K)(5), we have

di w̄
′′
i (ξ)− cw̄′

i (ξ)+ fi (w̄(ξ))

= vi diµ
2
1eµ1ξ − vi cµ1eµ1ξ + fi (w̄(ξ))

= (
µ2

1 Dv − cµ1v + f ′(0)v
)

i eµ1ξ + (
f (w̄(ξ))− f ′(0)veµ1ξ

)

i

= (A(µ1)v − λ(µ1)v)i eµ1ξ + (
f (w̄(ξ))− f ′(0)veµ1ξ

)

i

= (
f (w̄(ξ))− f ′(0)veµ1ξ

)

i

= (
f (min{veµ1ξ , 1})− f ′(0)veµ1ξ

)

i

≤ 0.

This indicates w̄ is an upper solution of (3.1).
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If ξ > ξ
i
, then wi (ξ) = 0 and

diw
′′
i (ξ)− cw′

i (ξ)+ fi (w(ξ))

= fi (w1(ξ), . . . , wi (ξ), . . . , wn(ξ))

≥ fi (0, . . . , wi (ξ), . . . , 0)

= fi (0) = 0.

If ξ < ξ
i
, then wi (ξ) = γ vi eµ1ξ − vεi eµεξ , w j (ξ) ≥ γ v j eµ1ξ − vεj e

µεξ ,∀ j �= i , ‖w‖σ ≤
‖γ eµ1ξ v‖σ = γ σ eσµ1ξ and

(
f ′(0)w(ξ)

)

i =
n∑

j=1

∂ fi (0)
∂u j

w j (ξ)

= ∂ fi (0)
∂ui

(γ vi e
µ1ξ − vεi eµεξ )+

∑

j �=i

∂ fi (0)
∂u j

w j

≥
n∑

j=1

∂ fi (0)
∂u j

(γ v j e
µ1ξ − vεj e

µεξ )

= γ eµ1ξ
(

f ′(0)v
)

i − eµεξ
(

f ′(0)vε
)

i .

By assumption (K)(4), we have

fi (w(ξ)) ≥ ( f ′(0)w(ξ))i − a‖w‖σ
≥ γ eµ1ξ

(
f ′(0)v

)

i − eµεξ
(

f ′(0)vε
)

i − aγ σ eσµ1ξ .

And hence,

diw
′′
i (ξ)− cw′

i (ξ)+ fi (w(ξ))

= γ vi e
µ1ξ (diµ

2
1 − cµ1)− vεi eµεξ (diµ

2
ε − cµε)+ fi (w(ξ))

= −γ eµ1ξ
(

f ′(0)v
)

i + eµεξ
(

f ′(0)vε
)

i + vεi µεδεe
µεξ + fi (w(ξ))

≥ vεi µεδεe
µεξ − aγ σ eσµ1ξ

≥ (vεi µεδε − aγ σ )eµεξ

≥ 0.

This suggests w is a lower solution of (1.1). 
�
We are now ready to prove our main result of this section, which shows that the spreading

speed coincides with the minimal wave speed.

Theorem 3.1 Assume (K) holds, and let c∗ be defined as in Lemma 2.3. Then for each c ≥ c∗,
system (1.1) has a nondecreasing wavefront U (x + ct) connecting 0 and 1; while for any
c ∈ (0, c∗), there is no wavefront U (x + ct) connecting 0 and 1.

Proof Let w̄ and w be the pair of upper and lower solutions confirmed in Lemma 3.3.
Consider the iteration scheme

U 0 := w̄, U m := T U m−1, ∀m ≥ 1.

By Lemmas 3.2 and 3.3, it is easy to see that

0 ≤ w ≤ . . . ≤ U m ≤ U m−1 ≤ . . . ≤ U 0 := w̄.
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Thus, U := limm→∞ U m exists. Since w̄ is nondecreasing, so are U m,∀m ≥ 1, and U .
By the Lebesgue dominated convergence theorem, we see that U is a fixed point of T in
C. Choose ξ∗ < min1≤i≤n ξ i

. Then w(ξ∗) � 0. Note that w ≤ U ≤ w̄, it follows that
U (−∞) = 0 and U (+∞) ≥ U (ξ∗) ≥ w(ξ∗) � 0, and hence, U (+∞) = 1 because of
the uniqueness of strongly positive equilibrium between 0 and 1. This gives the existence of
monostable wavefronts in the case where c > c∗.

In the case where c = c∗, we use a limiting argument. Choose the sequence {cm}m≥1 ⊂
(c∗,∞) such that limm→∞ cm = c∗. We have known that for each cm , there exists a wave-
front U m = (U m

1 , . . . ,U
m
n )

T . By the spatial translation invariance of (1.1), U m(−∞) = 0
and U m(+∞) = 1, we may assume U m

1 (0) = 1
2 ,∀m ≥ 1. From the expression (3.2), we

see that { dU m

ds }m≥1 is uniformly bounded by a straightforward computation. Note that each
U m is between 0 and 1. By Arzela–Ascoli theorem and the standard diagonal procedure, it
then follows that there is a subsequence U mk , which pointwise converges to some U∗ ∈ C,
as k → ∞. Obviously, U∗(ξ) is nondecreasing and U∗

1 (0) = 1
2 . By the Lebesgue dominated

convergence theorem and (3.2), we see that U∗ solves (3.2) with c = c∗. Since U∗(±∞)

both are zeros of f and U∗ is nondecreasing, we have U∗(−∞) = 0 and U∗(+∞) = 1.
Thus, (U∗, c∗) is a wavefront connecting 0 and 1.

The nonexistence of monostable wavefronts with speed c ∈ (0, c∗) is a straightforward
consequence of the spreading speed (see, e.g., [8, Theorem 4.3]). 
�

4 Bistable Wavefronts

In this section, we establish the existence of wavefronts connecting two stable equilibria in
the bistable case.

Throughout this section, we make the following assumption:

(L) Assume that f ∈ C1(Rn,Rn) satisfies the following conditions:

(1) f (0) = f (1) = f (α) with 0 � α � 1. There is no ν other than 0, 1 and α such
that f (ν) = 0 with 0 ≤ ν ≤ 1.

(2) System (1.1) is cooperative.
(3) u ≡ 0 and u ≡ 1 are unstable, and u ≡ α is stable, that is,

λ0 := s( f ′(0)) < 0, λ1 := s( f ′(1)) < 0, λα := s( f ′(α)) > 0.

(4) f ′(0), f ′(1) and f ′(α) are irreducible.

Since (1.1) is cooperative, for any b > 0 we can choose β > 0 sufficiently large such that
Qβ(u) := βu + f (u) is nondecreasing in u for −b ≤ u ≤ b. For d = 0, we define a family
of mappings T βd (t) : L∞(R) → L∞(R), t ≥ 0, by

(T βd (t)φ)(x) = e−βtφ(x), ∀x ∈ R, φ ∈ L∞(R);
and for d > 0, we define T βd (t) : L∞(R) → L∞(R) by T βd (0) = I and

(T βd (t)φ)(x) = e−βt
∫ +∞

−∞
1√

4πdt
e− y2

4dt φ(x − y)dy, ∀x ∈ R, φ ∈ L∞(R),

for any t > 0. Recall that D = diag(d1, . . . , dn). We further define

T β(t) := diag(T βd1
(t), . . . , T βdn

(t)). (4.1)
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Definition 4.1 A function w : R+ × R → [−b,b], where [−b,b] := {u ∈ R
n : −b ≤ u ≤

b}, is called an upper (lower) solution of (1.1) if it satisfies

w(t, x) ≥ (≤)T β(t)w(0, x)+
∫ t

0
T β(t − s)Qβ(w(s, x))ds, ∀t ≥ 0, x ∈ R. (4.2)

Let w = (w1, . . . , wn) : R+ × R → [−b,b] be a function with the property that wi is
C1 in t ≥ 0 and C2 in x ∈ R if di �= 0, and wi is C1 in t ≥ 0 if di = 0. It is easy to see that
if w satisfies

∂w

∂t
≥ (≤)D�w + f (w), ∀t ≥ 0, x ∈ R,

then w is an upper (a lower) solution of (1.1).
According to Definition 4.1, upper and lower solutions of (1.1) are not necessarily con-

tinuous. In order to prove the existence of bistable wavefronts (see the proof of Lemma 4.5),
we need the following generalized comparison principle.

Lemma 4.1 Assumeψ1(t, x) andψ2(t, x) are a pair of lower and upper solutions of (1.1) in
the sense of Definition 4.1. Ifψ1(0, x) ≤ ψ2(0, x),∀x ∈ R, thenψ1(t, x) ≤ ψ2(t, x), ∀t ≥
0, x ∈ R.

Proof Let (φ1, . . . , φn)
T = φ := ψ1 −ψ2 and gk(θ, t, x) := Qβ

k (ψ
2(t, x)+θφ(t, x)), 1 ≤

k ≤ n. Then we have

gk(0, t, x) = Qβ
k (ψ

2(t, x)) and gk(1, t, x) = Qβ
k (ψ

1(t, x)).

For any r ∈ R, define [r ]+ = max{r, 0}. Define

lk := max−b≤u≤b,1≤i≤n

∂Qβ
k (u)

∂ui
.

Since Qβ(u) is nondecreasing in u for −b ≤ u ≤ b, it follows that for each 1 ≤ k ≤ n,

φk(t, x) ≤
t∫

0

T βdk
(t − s)

[
Qβ

k (ψ
1(s, x))− Qβ

k (ψ
2(s, x))

]
ds

=
t∫

0

T βdk
(t − s)

⎛

⎝

1∫

0

d

dθ
gk(θ, s, x)dθ

⎞

⎠ ds

=
t∫

0

T βdk
(t − s)

⎛

⎝
n∑

i=1

φi (s, x)

1∫

0

∂

∂ui
Qβ

k (ψ
2(s, x)+ θφ(s, x))dθ

⎞

⎠ ds

≤
t∫

0

T βdk
(t − s)

⎛

⎝
n∑

i=1

[φi (s, x)]+
1∫

0

∂

∂ui
Qβ

k (ψ
2(s, x)+ θφ(s, x))dθ

⎞

⎠ ds

≤
t∫

0

T βdk
(t − s)

(

lk

n∑

i=1

[φi (s, x)]+
)

ds, ∀t ≥ 0, x ∈ R. (4.3)
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Since the right hand side of (4.3) is nonnegative, we further have

[φk(t, x)]+ ≤
t∫

0

T βdk
(t − s)

(

lk

n∑

i=1

[φi (s, x)]+
)

ds, ∀t ≥ 0, x ∈ R. (4.4)

Let �(t, x) := ∑n
k=1[φk(t, x)]+ and

Jk(t, x) :=
⎧
⎨

⎩

e
−βt− x2

4dk t√
4πdk t

, if dk > 0

e−βtδ(x), if dk = 0,

where δ(x) is the Dirac function. By inequality (4.4), it then follows that

�(t, x) =
n∑

k=1

[φk(t, x)]+ ≤
n∑

k=1

t∫

0

T βdk
(t − s)

(

lk

n∑

i=1

[φi (s, x)]+
)

ds

=
t∫

0

n∑

k=1

∞∫

−∞
lk Jk(t − s, x − y)�(s, y)dyds

=
t∫

0

∞∫

−∞
J (s, y)�(t − s, x − y)dyds,

where J (s, y) = ∑n
k=1 lk Jk(s, y). Using the same argument as in [15, Lemma 3.2], we

obtain �(t, x) = 0, which implies ψ1(t, x) ≤ ψ2(t, x). 
�

The following result is about the existence and uniqueness of bistable wavefronts for
non-degenerate systems.

Lemma 4.2 ([20, Theorem 2.1]) Consider
∂u

∂t
= A�u+ f (u), where A = diag(a1, . . . , an)

with each ai > 0. Let the assumption (L) hold. Then there exists a unique (up to trans-
lation) monotone wavefront U (x + ct) connecting 0 and 1, that is, a constant c and a
twice continuously differentiable monotone vector-valued function U, satisfying the system
AU ′′ − cU + f (U ) = 0 subject to the boundary conditions U (−∞) = 0 and U (+∞) = 1.

For any ε > 0, let Dε := diag(dε1 , . . . , dεn ) with

dεi =
{

di , if di �= 0
ε, if di = 0,

and consider the following non-degenerate reaction-diffusion system

∂u

∂t
= Dε�u + f (u). (4.5)

Using the same way as in Definition 4.1, we define upper and lower solutions of system (4.5).
By Lemma 4.2, we immediately see that for any ε > 0, system (4.5) admits a unique wave-
front, that is, a constant cε and a twice continuously differentiable monotone vector-valued
function U ε with U ε(−∞) = 0 and U ε(+∞) = 1.
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We are going to find a convergent subsequence of {(U ε, cε)}ε∈(0,1]. We first prove cε, ε ∈
(0, 1], is bounded. For this purpose, we need to construct a pair of upper and lower solutions
of (4.5). Choose ρ ∈ C2(R,R) such that

ρ(ξ) = 0, ∀ξ ≤ 0; ρ′(ξ) ∈ (0, 1), ∀ξ ∈ (0, 4);
ρ(ξ) = 1, ∀ξ ≥ 4; |ρ′′(ξ)| ≤ 1, ∀ξ ∈ (0, 4).

Let e0, e1 � 0 with ‖e0‖ = ‖e1‖ = 1 be the eigenvectors of f ′(0) and f ′(1) associated
with λ0 and λ1, respectively.

Lemma 4.3 Define

w−(x − Ct; δ, σ ) := (1 + δe0 − δe1)ρ(σ (x − Ct))− δe0

and

w+(x + Ct; δ, σ ) := (1 + δe1 − δe0)ρ(σ (x + Ct))+ δe0.

Then there exist δ̄ > 0, σ̄ > 0 and C̄ > 0 such that for any δ ∈ [δ̄/2, δ̄], σ ∈ [σ̄ /2, σ̄ ] and
C ≥ C̄, w−(x − Ct; δ, σ ) and w+(x + Ct; δ, σ ) are a pair of lower and upper solutions of
system (4.5) with ε ∈ (0, 1].
Proof We only provew−(x−Ct; δ, σ ) is a lower solution since the proof forw+(x+Ct; δ, σ )
is similar. Because λ0 := s( f ′(0)) < 0 and f (δe0) = f ′(0)δe0 + o(δ)e0 as δ is near zero,
we can find δ0 > 0 such that for any δ ∈ (0, δ0],

f (−δe0) ≥ − f ′(0)δe0 + 1

2
λ0δe0 = −1

2
λ0δe0 � 0.

Similarly, we can find δ1 > 0 such that for any δ ∈ (0, δ1],

f (1 − δe1) ≥ −1

2
λ1δe1 � 0,

where λ1 := s( f ′(1)) < 0. Let δ̄ := min{δ0, δ1}. Without loss of generality, we assume
that δ̄ < 1 and 1 + δe0 − δe1 � 0,∀δ ∈ [0, δ̄]. Note that f (−δe0) � − 1

4λ0δ̄e0 � 0 and
f (1 − δe1) � − 1

4λ1δ̄e1 � 0,∀δ ∈ [δ̄/2, δ̄]. It then follows, by the continuity of f , that
there exist θ0 > 0 and σ̄ > 0 such that for any θ ∈ [0, θ0], σ ∈ [0, σ̄ ] and δ ∈ [δ̄/2, δ̄], the
following two inequalities hold

f ((1 + δe0 − δe1)θ − δe0) � Dε(1 + δe0 − δe1)σ
2, ∀ε ∈ (0, 1] (4.6)

and

f ((1 + δe0 − δe1)(1 − θ)− δe0) � Dε(1 + δe0 − δe1)σ
2, ∀ε ∈ (0, 1]. (4.7)

Let l := minρ(ξ)∈[θ0,1−θ0] ρ′(ξ). Define

fmin := ( min−1≤u≤2
f1(u), . . . , min−1≤u≤2

fn(u))
T .

Choose C̄ sufficiently large such that for any C ≥ C̄, σ ∈ [σ̄ /2, σ̄ ] and δ ∈ [δ̄/2, δ̄], there
holds

Cσ l(1 + δe0 − δe1) ≥ − fmin + Dε(1 + δe0 − δe1)σ
2, ∀ε ∈ (0, 1]. (4.8)

Let ξ := x − Ct . For convenience, we use w−(ξ) to denote w−(ξ ; δ, σ ). To show w−(x −
Ct; δ, σ ) is a lower solution, it suffices to verify that Dεw′′−(ξ)+Cw′−(ξ)+ f (w−(ξ)) ≥ 0,
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∀ξ ∈ R, since w− ∈ C2(R,R). Now we suppose δ ∈ [δ̄/2, δ̄], σ ∈ [σ̄ /2, σ̄ ] and C ≥ C̄ .
Thus, inequalities (4.6), (4.7) and (4.8) hold. It follows that if ρ(σξ) ∈ [0, θ0)

⋃
(1 − θ0, 1],

then

Dεw′′−(ξ)+ Cw′−(ξ)+ f (w−(ξ))
= Dε(1 + δe0 − δe1)σ

2ρ′′(σξ)+ Cσ(1 + δe0 − δe1)ρ
′(σξ)+ f (w−(ξ))

≥ −Dε(1 + δe0 − δe1)σ
2 + f ((1 + δe0 − δe1)ρ(σξ)− δe0)

≥ 0;
and if ρ(σξ) ∈ [θ0, 1 − θ0], then

Dεw′′−(ξ)+ Cw′−(ξ)+ f (w−(ξ))
≥ −Dε(1 + δe0 − δe1)σ

2 + Cσ l(1 + δe0 − δe1)+ fmin

≥ 0.

This completes the proof. 
�
The following lemma shows that cε is bounded for ε ∈ (0, 1].

Lemma 4.4 {cε}ε∈(0,1] is bounded.

Proof By Lemma 4.3, we see that there exists C̄ > 0, δ̄ and σ̄ , independent of ε ∈ (0, 1],
such that w−(x − C̄t; δ̄, σ̄ ) and w+(x + C̄t; δ̄, σ̄ ) are a pair of lower and upper solutions
of system (4.5). Since w−(−∞; δ̄, σ̄ ) = −δ̄e0 � 0 = U ε(−∞) and w−(+∞; δ̄, σ̄ ) =
1 − δ̄e1 � 1 = U ε(+∞), we see that for any ε ∈ (0, 1], there exists ξε ∈ R such that
U ε(· + ξε) ≥ w−(·; δ̄, σ̄ ). Thus, by the comparison principle (see Lemma 4.1), we obtain
U ε(x − cε t + ξε) ≥ w−(x − C̄t; δ̄, σ̄ ),∀t ≥ 0, x ∈ R. Thus, U ε(· + (C̄ − cε)t + ξε) ≥
w−(·; δ̄, σ̄ ),∀t ≥ 0, which implies that cε ≤ C̄,∀ε ∈ (0, 1]. Otherwise, cε > C̄ implies
0 = U ε(−∞) � 0, a contradiction. A similar argument gives cε ≥ −C̄,∀ε ∈ (0, 1]. 
�
Lemma 4.5 Assume (L) holds. Then the following two statements are valid:

(i) If U (x + ct) is a non-decreasing traveling wave of (1.1) with U (−∞) = α and
U (+∞) = 1, then c > 0.

(ii) If V (x + ct) is a non-decreasing traveling wave of (1.1) with V (−∞) = 0 and
V (+∞) = α, then c < 0.

Proof Let α := (α1, . . . , αn)
T and B := diag(α1, . . . , αn). Since 0 � α � 1, B and I − B

are both invertible.

(i) Define Û := (I − B)−1(U − α) and E(u) := (I − B)−1 f ((I − B)u + α). Then
E(0) = E(1) = 0 and E ′(u) is cooperative. A direct computation shows that Û (x + ct) is a
solution of the equation

∂tv = D�v + E(v), (4.9)

that is, (Û , c) is a traveling wave of (4.9) with Û (−∞) = 0 and Û (+∞) = 1. Since
E ′(0) = (I − B)−1 f ′(α)(I − B), we see that E ′(0) and f ′(α) are similar and hence, they
have the same eigenvalues. Thus, it’s easy to find that the nonlinearity E satisfies the assump-
tion (H) with f = E . Therefore, (4.9) admits a spreading speed c∗

1, which also has a lower
bound c̄1. By Lemma 2.2 as applied to (4.9), we have c̄1 > 0.
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Choose β > 0 sufficiently large such that Eβ(u) := βu + E(u) is non-decreasing in u
for 0 ≤ u ≤ 1. Then (4.9) can be written as the following integral form

v(t, x) = T β(t)v(0, x)+
∫ t

0
T β(t − s)Eβ(v(s, x))ds, (4.10)

where T β(t) is defined as in (4.1). It is clear that solutions of (4.9) are solutions of (4.10).
Since (Û , c) is a non-decreasing traveling wave of (4.9) and Û (+∞) = 1, we can choose
φ ∈ C1 such that φ ≤ Û with limx→+∞ φ(x) = 1

2 . Obviously, φ, as an initial function, satis-
fies the condition in Lemma 2.3(ii). Let ũ(t, x) be the solution of (4.9) with ũ(0, ·) = φ. By
Lemma 4.1, we then have ũ(t, x) ≤ Û (x + ct). By Lemma 2.3(ii) as applied to (4.9), we see
that limt→∞,|x |≤ĉt ũ(t, x) = 1, ∀ĉ ∈ (0, c∗

1). In particular, we have that for any ĉ ∈ (0, c̄1),

1 = lim
t→∞ ũ(t,−ĉt) ≤ lim inf

t→∞ Û (−ĉt + ct) = lim inf
t→∞ Û

(
(c − ĉ)t

)
,

which implies c ≥ ĉ > 0 because of Û (−∞) = 0.
(ii) Define V̂ := B−1(α− V ) and J (v) = −B−1 f (α− Bv). Then J (0) = J (1) = 0 and

J ′(u) is cooperative. Since J ′(0) = B−1 f ′(α)B, we see that J ′(0) and f ′(α) are similar
and hence, they have the same eigenvalues. Thus, by the same argument as in (i), we obtain
c < 0. 
�

Now we are ready to prove the main result of this section.

Theorem 4.1 Assume (L) hold. Then (1.1) admits a monotone wavefront (U, c) with
U (−∞) = 0 and U (+∞) = 1.

Proof Since {cε}ε∈(0,1] is bounded, we can choose a subsequence of {cε j } j≥1, namely
{c j } j≥1, such that ε j → 0 and c j converges to some real number c. Let D j :=
diag(d j

1 , . . . , d j
n ) denote Dε j and U j be the corresponding wave profile of wave speed

c j . Note that U j (−∞) = 0 and U j (+∞) = 1. It then follows that there exists ξ j , η j ∈ R

such that U j
1 (ξ

j ) = α1/2 and U j
1 (η

j ) = (1 + α1)/2. Define

V j (·) := U j (· + ξ j ), W j (·) := U j (· + η j ), ∀ j ≥ 1.

Then V j
1 (0) = α1/2 and W j

1 (0) = (1+α1)/2,∀ j ≥ 1. Note that {V j } j≥1 consists of mono-
tone vector-valued functions. By Helly’s theorem, it then follows that there exists a subse-
quence, still denoted by {V j } j≥1, which converges to some monotone vector-valued function
V = (V1, . . . , Vn)

T pointwise on R as j → +∞. Clearly, V1(0) = α1/2. Without loss of
generality, we can assume {W j } j≥1 converges to some W = (W1, . . . ,Wn)

T pointwise with
W1(0) = (1 + α1)/2. Denote V±(·) = V (· ± 0) and W±(·) = W (· ± 0). Then V−,W−
are left-continuous and V+,W+ are right-continuous, and V±(ξ) = V (ξ),W±(ξ) = W (ξ)

almost everywhere on R.
Next we proceed by distinguishing between two cases:
Case 1. c �= 0. Choose β > 0 such that F(u) := βu + f (u) is nondecreasing in u for

0 ≤ u ≤ 1. We know that V j satisfies the wave profile equation

D j d2V j

dξ2 − c j dV j

dξ
+ f (V j ) = 0,
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which is equivalent to the following integral system

V j
i (ξ) = 1√

(c j )2+4d j
i β

⎧
⎨

⎩

ξ∫

−∞
eλ

j
1i (ξ−η)Fi (V

j (η))dη

+
∞∫

ξ

eλ
j
2i (ξ−η)Fi (V

j (η))dη

⎫
⎪⎬

⎪⎭
, 1 ≤ i ≤ n (4.11)

with

λ
j
1i = c j −

√

(c j )2 + 4d j
i β

2d j
i

and λ
j
2i = c j +

√

(c j )2 + 4d j
i β

2d j
i

.

By a direct computation, we have

λ1i := lim
j→∞ λ

j
1i = lim

j→∞
c j −

√

(c j )2 + 4d j
i β

2d j
i

= lim
j→∞

−2β

c j +
√

(c j )2 + 4d j
i β

=

⎧
⎪⎨

⎪⎩

c−
√

c2+4diβ

2di
, if di �= 0

−∞, if di = 0, c < 0
−β

c , if di = 0, c > 0,

and

λ2i := lim
j→∞ λ

j
2i =

⎧
⎪⎨

⎪⎩

c+
√

c2+4diβ

2di
, if di �= 0

−β
c , if di = 0, c < 0

+∞, if di = 0, c > 0.

Note that lim j→∞
√

(c j )2 + 4d j
i β = √

c2 + 4diβ �= 0. By the Lebesgue dominated con-
vergence theorem, it then follows that

Vi (ξ) = 1√
c2+4diβ

⎧
⎨

⎩

ξ∫

−∞
eλ1i (ξ−η)Fi (V (η))dη

+
∞∫

ξ

eλ2i (ξ−η)Fi (V (η))dη

⎫
⎪⎬

⎪⎭
, 1 ≤ i ≤ n, (4.12)

which is equivalent to
{

di V ′′
i − cV ′

i + fi (V ) = 0, if di �= 0
−cV ′

i + fi (V ) = 0, if di = 0.

Thus, V (x + ct) satisfies system (1.1), so does W (x + ct).
Case 2. c = 0. By a similar argument as above, we see that

di V ′′
i + fi (V ) = 0, if di �= 0.
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So we only consider the case where di = 0. Since d j
i

d2V j
i

dξ2 − c j dV j
i

dξ + fi (V j ) = 0, for any

test function φ ∈ C∞
0 (R), we have

∫

R

[

d j
i

d2V j
i (ξ)

dξ2 − c j dV j
i (ξ)

dξ
+ fi (V

j (ξ))

]

φ(ξ)dξ = 0,

which is equivalent to

d j
i

∫

R

V j
i (ξ)φ

′′(ξ)dξ − c j
∫

R

V j
i (ξ)φ

′(ξ)dξ +
∫

R

fi (V
j (ξ))φ(ξ)dξ = 0. (4.13)

Letting j → ∞ in (4.13), by the Lebesgue dominated convergence theorem, we obtain∫

R
fi (V (ξ))φ(ξ)dξ = 0,∀φ ∈ C∞

0 (R), which implies fi (V (ξ)) = 0 almost everywhere
on R, and hence, fi (V±(ξ)) = 0 almost everywhere. Thus, for any ξ ∈ R, there exists
ξk → ξ −0 such that fi (V−(ξk)) = 0. Since V−(ξ) is left-continuous, we have fi (V−(ξ)) =
limk→∞ fi (V−(ξk)) = 0. Therefore, fi (V−(ξ)) = 0,∀ξ ∈ R. Similarly, fi (V+(ξ)) = 0 =
fi (W±(ξ)),∀ξ ∈ R.

Till now, we have showed that V and W satisfy the wave profile equation if c �= 0, and V±
and W± satisfy the wave profile equation if c = 0. It remains to show that the boundary con-
ditions at ±∞ hold for V or W if c �= 0 and for V± or W± if c = 0. Obviously V (±∞) both
exists and are the zeros of f between 0 and 1. Since V1(0) = α1/2, we have V (−∞) = 0
and V (+∞) = α or 1. Similarly, W (+∞) = 1 and W (−∞) = α or 0. By Lemma 4.5,
we see that V (+∞) = α and W (−∞) = α cannot hold simultaneously because (V, c) and
(W, c) both are non-decreasing traveling waves of (1.1) with the same wave speed. That is,
either V or W is a wavefront connecting 0 and 1 if c �= 0. Similarly, we see that either V± or
W± is a required wavefront if c = 0. 
�

Remark 4.1 For the bistable wavefront obtained in Theorem 4.1, if di > 0, then the cor-
responding component of the wavefront is twice continuously differentiable; if di = 0 and
c �= 0, then the corresponding component of the wavefront is continuously differentiable; if
di = 0 and c = 0, then the corresponding component of the wavefront may be discontinuous.

In order to obtain the global exponential stability with phase shift of bistable wavefronts,
Tsai [18] assumed that the bistable wavefront under consideration is C1-smooth, and that the
“strong interaction” condition (see (A4) in [18]) holds. Here we have the following remark
on the uniqueness and global stability of bistable wavefronts for partially degenerate system
(1.1).

Remark 4.2 Assume (L) holds, and let U (x+ct)be the monotone bistable wavefront obtained
in Theorem 4.1. If c �= 0, then U (x + ct) is globally exponentially stable (with phase shift),
and system (1.1) admits no other bistable wavefronts (up to translation). Indeed, by similar
arguments as in the proof of [25, Theorem 3.1] and an abstract convergence theorem [27,
Theorem 2.2.4], we can prove the global attractivity (with phase shift) of U (x + ct), which
also implies the uniqueness of bistable wavefronts. Further, a similar spectrum analysis as in
[25, Section 4] proves the local exponential stability. Thus, we obtain the global exponential
stability of the bistable wavefront.

As a consequence of the arguments in the proof of Theorem 4.1, we have the following
remark on monostable wavefronts, which improves Theorem 3.1.
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Remark 4.3 If (H) holds and f (min{ρv(µ∗), 1}) ≤ ρ f ′(0)v(µ∗) for all ρ > 0, then the con-
clusion of Theorem 3.1 is still valid. Indeed, we can choose a sequence of positive numbers
{ε j } j≥1 such that lim j→∞ ε j = 0, and define D j = Dε j . Let c∗

j be the spreading speed of

(1.1) with D replaced by D j . By Lemma 2.3 (iii), it easily follows that lim j→∞ c∗
j = c∗ > 0.

Further, c∗
j is also the minimum wave speed of monotone wavefronts (see, e.g., [8]). For any

given c > c∗, there is an integer J > 0 such that c > c∗
j > 0, ∀ j ≥ J . Thus, there exists a

monotone wavefront V j (x + ct) of (1.1) with D replaced by D j such that V j (−∞) = 0,
V j (∞) = 1, and V j

1 (0) = 1/2 for all j ≥ J . By the same limiting arguments as in the proof
of Theorem 4.1, it then follows that (1.1) has a monotone wavefront V (x + ct) connecting
0 to 1. Clearly, the proof of the existence of the wavefront V (x + c∗t) and the nonexistence
of the wavefront V (x + ct) with c ∈ (0, c∗) is the same as in Theorem 3.1.
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