NAME: _____

Quiz 6

Problem 1. Assume Ω is connected. Use maximum principles to show that the only smooth solutions of the Neumann boundary-value problem

$$\begin{cases} -\Delta u = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \end{cases}$$
(1)

are $u \equiv \text{constant}$.

Solution. Assume u is not a constant. Then there must be x^0 where u attains maximum in \overline{U} . If $x^0 \in U$, the strong maximum principle tells us that u is constant, contradiction. Thus the maximum can only be attained at the boundary, as a consequence $u(x^0) > u(x)$ for all $x \in U$. Now it follows from the Hopf lemma that $\frac{\partial u}{\partial \nu}(x^0) > 0$, contradicting the assumption in the problem.