NAME: _____

Quiz 5

Problem 1. Assume that Ω is bounded and there exists a smooth vector field α such that $\alpha \cdot n \ge 1$ along $\partial \Omega$, where n is the outer normal. Assume $1 \le p < \infty$.

Apply the Gauss-Green Theorem (that is "Gauss formula") to $\int_{\partial\Omega} |u|^p \boldsymbol{\alpha} \cdot \boldsymbol{n} \, dS$, to derive a new proof of the trace inequality

$$\int_{\partial\Omega} |u|^p \, \mathrm{d}S \leqslant C \int_U |Du|^p + |u|^p \, \mathrm{d}x. \tag{1}$$

for all $u \in C^1(\overline{\Omega})$. (Hint: You may need Young's inequality $a \ b \le a^p/p + a^{p'}/p'$ for $p, p' \ge 1, 1/p + 1/p' = 1$)

Solution. We have

$$\int_{\partial\Omega} |u|^p \, \mathrm{d}S \leqslant \int_{\partial\Omega} |u|^p \, \boldsymbol{\alpha} \cdot \boldsymbol{n} \, \mathrm{d}S \tag{2}$$

$$= \int_{\Omega} \nabla \cdot (|u|^p \alpha) \, \mathrm{d}x \tag{3}$$

$$= \int_{\Omega} (\nabla \cdot \boldsymbol{\alpha}) |u|^p + \boldsymbol{\alpha} \cdot \nabla |u|^p dx \tag{4}$$

$$\leqslant C \int_{\Omega} |u|^p + |\nabla(|u|^p)| \, \mathrm{d}x. \tag{5}$$

Now we compute

$$\nabla(|u|^p) = |u|^{p-1}\operatorname{sgn}(u) Du. \tag{6}$$

When p=1, the proof ends here.

For p > 1, using Young's inequality, we have

$$\int |\nabla(|u|^p)| \, \mathrm{d}x = \int |u|^{p-1} |Du| \leqslant \int |u|^p + |Du|^p. \tag{7}$$

Thus ends the proof.