NAME: \qquad

Quiz 4

Problem 1. Consider the Burgers equation with initial data $u_{0}(x)=\left\{\begin{array}{ll}1 & x<0 \\ 0 & x>0\end{array}\right.$. Prove using definition that $u(x, t)=\left\{\begin{array}{ll}1 & x<t / 2 \\ 0 & x>t / 2\end{array}\right.$ is a weak solution. Show that it is furthermore an entropy solution.

Proof. First we show that u is a weak solution. Take any $\Omega \subset \mathbb{R}^{2} \cap\{t>0\}$. Wlog we assume $\Omega \cap\{x=t /$ $2\}$ is nonempty, and $\partial \Omega \cap\{t=0\}$ is nonempty. Thus we have
where

$$
\begin{equation*}
\iint_{\Omega} u \phi_{t}+f(u) \phi_{x} \mathrm{~d} x \mathrm{~d} t=\iint_{U} \phi_{t}+\frac{1}{2} \phi_{x} \mathrm{~d} x \mathrm{~d} t \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
U:=\Omega \cap\{x<t / 2\} . \tag{2}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\partial U=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \tag{3}
\end{equation*}
$$

with $\Gamma_{2}=\partial U \cap\{x=t / 2\}=\Omega \cap\{x=t / 2\}$ and $\Gamma_{3}=\partial U \cap\{t=0, x<0\}$.
Now using Gauss' theorem (integration by parts) we have

$$
\begin{equation*}
\iint_{U} \phi_{t}+\frac{1}{2} \phi_{x} \mathrm{~d} x \mathrm{~d} t=\int_{\partial U} \nu \cdot\binom{\phi}{\phi / 2} \mathrm{~d} S=\int_{\Gamma_{1}}+\int_{\Gamma_{2}}+\int_{\Gamma_{3}} . \tag{4}
\end{equation*}
$$

As $\phi=0$ along $\Gamma_{1}, \quad \int_{\Gamma_{1}}=0$; Along Γ_{2}, we have $\nu \|\binom{-1 / 2}{1}$ which makes the integrand 0 , thus $\int_{\Gamma_{2}}=0$. Along Γ_{3}, we have $\nu=\binom{-1}{0}$ and then

$$
\begin{equation*}
\int_{\Gamma_{3}} \nu \cdot\binom{\phi}{\phi / 2} \mathrm{~d} S=-\int_{x<0} \phi \mathrm{~d} x=-\int_{\mathbb{R}} u_{0} \phi \mathrm{~d} x . \tag{5}
\end{equation*}
$$

Thus u is a weak solution.
Now we show that u is an entropy solution. Fix t. We have

$$
\frac{u(x+a, t)-u(x, t)}{a}= \begin{cases}0 & x+a<t / 2, x<t / 2 \tag{6}\\ -1 & x<t / 2, x+a>t / 2 \leqslant \frac{0}{t} \\ 0 & x>t / 2, x+a>t / 2\end{cases}
$$

Therefore u is an entropy solution.

