
Math 527 A1 Homework 6 (Due Dec. 8 in Class)

Exercise 1. (10 pts) (5.10.9) Integrate by parts to prove the interpolation inequality
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for all u ∈ Cc
∞(U). Assume ∂U is smooth, and prove this inequality if u ∈ H2(U) ∩ H0
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∞(U). Now pick

vk ∈Cc
∞� u in H0

1; wk ∈C∞
(

Ū
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Letting kր∞ finishes the proof. �

Exercise 2. (10 pts) (6.6.2)
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Prove that there exists a constant µ > 0 such that the corresponding bilinear form B[ , ] satisfies the hypothesis of the Lax−

Milgramtheorem,provided

c(x) >− µ (x∈U). (5)

Proof. The space is H0
1(U). Recall that the Lax-Milgram theorem has two conditions, boundedness and

coerciveness. Boundedness follows immediately from the boundedness of the coefficients.
For the coerciveness, we compute
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Here the last step is due to Poincaré inequality. We see that the conclusion follows. �

Exercise 3. (10 pts) (6.6.8)

Letubea smoothsolutionof Lu =−
∑

i,j=1
n

aij uxi xj
= 0 inU.Set v6 |Du|2 + λ u2.Showthat

Lv 60 in U , if λ is large enough. (7)

Deduce

‖Du‖L∞(U) 6C
(

‖Du‖L∞(∂U) + ‖u‖L∞(∂U)

)

. (8)

Proof. As Lu = 0, u satisfies the maximum principle. Therefore as soon as we have shown Lv 6 0, the
conclusion follows. We compute
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Now it is clear that Lv 6 0 when λ is large enough (assuming Daij ∈L∞) �


