Math 527 A1 Homework 6 (Due Dec. 8 in Class)

Exercise 1. (10 pts) (5.10.9) Integrate by parts to prove the interpolation inequality

$$
\begin{equation*}
\int_{U}|D u|^{2} \mathrm{~d} x \leqslant C\left(\int_{U} u^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{U}\left|D^{2} u\right|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{1}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}(U)$. Assume ∂U is smooth, and prove this inequality if $u \in H^{2}(U) \cap H_{0}^{1}(U)$. (Hint: Take $\left\{v_{k}\right\} \subset C_{c}^{\infty}$ converging to u in $H_{0}^{1}(U)$, and $\left\{w_{k}\right\} \subset C^{\infty}(\bar{U})$ converging to u in $H^{2}(U)$.)

Proof. It is clear that the inequality holds for $u \in C_{c}^{\infty}(U)$. Now pick

$$
\begin{equation*}
v_{k} \in C_{c}^{\infty} \longrightarrow u \text { in } H_{0}^{1} ; \quad w_{k} \in C^{\infty}(\bar{U}) \longrightarrow u \text { in } H^{2} . \tag{2}
\end{equation*}
$$

Note that we cannot use one sequence as if $v_{k} \in C_{c}^{\infty} \longrightarrow u$ in H^{2}, u would be in H_{0}^{2}.
Now compute

$$
\begin{equation*}
\left|\int D v_{k} \cdot D w_{k}\right|=\left|\int v_{k} \triangle w_{k}\right| \leqslant\left(\int v_{k}^{2}\right)^{1 / 2}\left(\int\left(\triangle w_{k}\right)^{2}\right)^{1 / 2} \leqslant\left(\int v_{k}^{2}\right)^{1 / 2}\left(\int\left|D w_{k}\right|^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

Letting $k \nearrow \infty$ finishes the proof.

Exercise 2. (10 pts) (6.6.2)

Let

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+c u \tag{4}
\end{equation*}
$$

Prove that there exists a constant $\mu>0$ such that the corresponding bilinear form $B[$,$] satisfies the hypothesis of the Lax -$ Milgram theorem, provided

$$
\begin{equation*}
c(x) \geqslant-\mu \quad(x \in U) \tag{5}
\end{equation*}
$$

Proof. The space is $H_{0}^{1}(U)$. Recall that the Lax-Milgram theorem has two conditions, boundedness and coerciveness. Boundedness follows immediately from the boundedness of the coefficients.

For the coerciveness, we compute

$$
\begin{align*}
& B[u, u]=\int \sum a^{i j} u_{x_{i}} u_{x_{j}}+c u^{2} \geqslant \theta \int|D u|^{2}+\int c u^{2} \geqslant \frac{\theta}{2} \int|D u|^{2}+\frac{\theta}{2 k} \int u^{2}+\int c u^{2}=\frac{\theta}{2} \int|D u|^{2}+\int \\
& \left(\frac{\theta}{2 k}+c\right) u^{2} \tag{6}
\end{align*}
$$

Here the last step is due to Poincaré inequality. We see that the conclusion follows.
Exercise 3. (10 pts) (6.6.8)
Let u be a smooth solution of $L u=-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}=0$ in U. Set $v:=|D u|^{2}+\lambda u^{2}$. Show that

$$
\begin{equation*}
L v \leqslant 0 \quad \text { in } U, \text { if } \lambda \text { is large enough. } \tag{7}
\end{equation*}
$$

Deduce

$$
\begin{equation*}
\|D u\|_{L^{\infty}(U)} \leqslant C\left(\|D u\|_{L^{\infty}(\partial U)}+\|u\|_{L^{\infty}(\partial U)}\right) \tag{8}
\end{equation*}
$$

Proof. As $L u=0, u$ satisfies the maximum principle. Therefore as soon as we have shown $L v \leqslant 0$, the conclusion follows. We compute

$$
\begin{align*}
L v= & -\sum a^{i j}\left(D u \cdot D u+\lambda u^{2}\right)_{x_{i} x_{j}} \\
= & -2 \sum a^{i j}\left[D u_{x_{i} x_{j}} \cdot D u+D u_{x_{i}} \cdot D u_{x_{j}}+\lambda u u_{x_{i} x_{j}}+\lambda u_{x_{i}} u_{x_{j}}\right] \\
= & -2\left[D\left(\sum a^{i j} u_{x_{i} x_{j}}\right) \cdot D u-\sum\left(D a^{i j}\right) u_{x_{i} x_{j}} \cdot D u+\sum a^{i j} D u_{x_{i}} \cdot D u_{x_{j}}+\lambda u \sum a^{i j} u_{x_{i} x_{j}}+\lambda \sum\right. \\
& \left.a^{i j} u_{x_{i}} u_{x_{j}}\right] \\
& (\mathrm{Using} L u=0) \\
\leqslant & -2 \sum\left(D a^{i j}\right) u_{x_{i} x_{j}} \cdot D u-\theta\left|D^{2} u\right|^{2}-\lambda \theta|D u|^{2} \tag{9}
\end{align*}
$$

Now it is clear that $L v \leqslant 0$ when λ is large enough (assuming $D a^{i j} \in L^{\infty}$)

