Math 527 A1 Homework 6 (Due Dec. 8 in Class)
Exercise 1. (10 pts) (5.10.9) Integrate by parts to prove the interpolation inequality

$$
\begin{equation*}
\int_{U}|D u|^{2} \mathrm{~d} x \leqslant C\left(\int_{U} u^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{U}\left|D^{2} u\right|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{1}
\end{equation*}
$$

for all $u \in C_{c}^{\infty}(U)$. Assume ∂U is smooth, and prove this inequality if $u \in H^{2}(U) \cap H_{0}^{1}(U)$. (Hint: Take $\left\{v_{k}\right\} \subset C_{c}^{\infty}$ converging to u in $H_{0}^{1}(U)$, and $\left\{w_{k}\right\} \subset C^{\infty}(\bar{U})$ converging to u in $H^{2}(U)$.)
Exercise 2. (10 pts) (6.6.2)
Let

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{n}\left(a^{i j} u_{x_{i}}\right)_{x_{j}}+c u \tag{2}
\end{equation*}
$$

Prove that there exists a constant $\mu>0$ such that the corresponding bilinear form $B[$,$] satisfies the hypothesis of the Lax -$ Milgram theorem, provided

$$
\begin{equation*}
c(x) \geqslant-\mu \quad(x \in U) . \tag{3}
\end{equation*}
$$

Exercise 3. (10 pts) (6.6.8)

Let u be a smooth solution of $L u=-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}=0$ in U. Set $v:=|D u|^{2}+\lambda u^{2}$. Show that

$$
\begin{equation*}
L v \leqslant 0 \quad \text { in } U \text {, if } \lambda \text { is large enough. } \tag{4}
\end{equation*}
$$

Deduce

$$
\begin{equation*}
\|D u\|_{L^{\infty}(U)} \leqslant C\left(\|D u\|_{L^{\infty}(\partial U)}+\|u\|_{L^{\infty}(\partial U)}\right) . \tag{5}
\end{equation*}
$$

