Math 527 A1 Homework 5 (Due Nov. 26 in Class)
Exercise 1. (15 pts) (Evans 4.7.7) Consider the viscous conservation law

$$
\begin{equation*}
u_{t}+F(u)_{x}-a u_{x x}=0 \quad \text { in } \mathbb{R} \times(0, \infty) \tag{1}
\end{equation*}
$$

where $a>0$ and F is uniformly convex.
i. (5 pts) Show u solves (1) if $u(x, t)=v(x-\sigma t)$ and v is defined implicitly by the formula

$$
\begin{equation*}
s=\int_{c}^{v(s)} \frac{a}{F(z)-\sigma z+b} \mathrm{~d} z \quad(s \in \mathbb{R}) \tag{2}
\end{equation*}
$$

where b and c are constants.
ii. (5 pts) Demonstrate that we can find a traveling wave satisfying
for $u_{l}>u_{r}$, if and only if

$$
\begin{gather*}
\lim _{s \rightarrow-\infty} v(s)=u_{l}, \quad \lim _{s \rightarrow \infty} v(s)=u_{r} \tag{3}\\
\sigma=\frac{F\left(u_{l}\right)-F\left(u_{r}\right)}{u_{l}-u_{r}} . \tag{4}
\end{gather*}
$$

iii. (5 pts) Let u^{ε} denote the above traveling wave solution of (1) for $a=\varepsilon$, with $u^{\varepsilon}(0,0)=\frac{u_{l}+u_{r}}{2}$. Compute $\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}$ and explain your answer.

Proof.

i. Set $u=v(x-\sigma t)$, the equation becomes

$$
\begin{equation*}
-\sigma v^{\prime}+F(v)^{\prime}-a v^{\prime \prime}=0 \tag{5}
\end{equation*}
$$

Integrating, we have

$$
\begin{equation*}
-\sigma v+F(v)-a v^{\prime}=-b \tag{6}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{F(v)-\sigma v+b}{a} \Longrightarrow \frac{\mathrm{~d} s}{\mathrm{~d} v}=\frac{a}{F(v)-\sigma v+b} \tag{7}
\end{equation*}
$$

ii. "Only if". Let $s \rightarrow \pm \infty$, naturally we require $v^{\prime} \rightarrow 0$. thus

$$
\begin{equation*}
-\sigma u_{l}+F\left(u_{l}\right)=-b, \quad-\sigma u_{r}+F\left(u_{r}\right)=-b \tag{8}
\end{equation*}
$$

The conclusion then follows.
"If". It is clear that for $\lim v=u_{l, r}$ as $s \longrightarrow \mp \infty$ to be possible, F has to have two roots. This is possible when $\sigma=\frac{u_{l}+u_{r}}{2}$. Since F is uniformly convex, we have $F>0$ for $v<u_{r}$ and $v>u_{l}, F<0$ for $v \in\left(u_{r}, u_{l}\right)$. Now let $s \nearrow+\infty$

$$
\begin{equation*}
s=\int_{c}^{v(s)} \frac{a}{F(z)-\sigma z+b} \mathrm{~d} z \quad(s \in \mathbb{R}) \tag{9}
\end{equation*}
$$

using argument similar to that in iii, we see that v takes limit u_{r} when $c \in\left(u_{r}, u_{l}\right)$. Similar argument works for $s \longrightarrow-\infty$.
iii. First note that, $v(s)$ cannot "cross" u_{l} or u_{r}. In other words, either $v(s) \geqslant u_{l}$, or $v(s) \leqslant u_{r}$, or $v(s) \in$ $\left[u_{r}, u_{l}\right]$. To see this, assume the contrary. Wlog assume v has values above and below u_{l}. Then as $v \rightarrow u_{l}$ as $s \rightarrow-\infty$, there is s_{0} such that v reaches maximum $v_{\max }>u_{l}$. At this point, we have $v^{\prime}=$ 0 and therefore $v_{\text {max }}$ solves

$$
\begin{equation*}
-\sigma v+F(v)=-b \tag{10}
\end{equation*}
$$

But as $-\sigma v+F(v)$ is uniformly convex (thus strictly convex), there can be at most two solutions. As u_{l} and u_{r} already solve it, we obtain contradiction. ${ }^{1}$

Next we show that, in fact for all s finite, $v(s) \in\left(u_{r}, u_{l}\right)$. To see this, study the formula

$$
\begin{equation*}
s=\int_{c}^{v(s)} \frac{\varepsilon}{F(z)-\sigma z+b} \mathrm{~d} z . \tag{11}
\end{equation*}
$$

1. From this it is clearly see that in the condition $u^{\varepsilon}(0,0)=\frac{u_{l}+u_{r}}{2}$, the RHS can be replaced by any value in (u_{r}, $\left.u_{l}\right)$, as the purpose is just to restrict all v in $\left[u_{l}, u_{r}\right]$.

As F is strictly convex, the behavior of the denominator close to u_{l} and u_{r} is like $\left(z-z_{0}\right)^{-1}$. And thus if $v(s)=u_{l}$ or u_{r}, necessarily $s=\mp \infty$.

Finally, fix any $s \neq 0$ finite, we have

$$
\begin{equation*}
\frac{s}{\varepsilon}=\int_{c}^{v(s)} \frac{1}{F(z)-\sigma z+b} \mathrm{~d} z \tag{12}
\end{equation*}
$$

When $\varepsilon \searrow 0$, the LHS $\rightarrow \mp \infty$, consequently $v(s) \rightarrow u_{l}$ or u_{r}. Thus we see that as $\varepsilon \searrow 0, v^{\varepsilon}$ converges to v at every $s \neq 0$.

Exercise 2. (5 pts) (5.10.3) Denote by U the open square $\left\{x \in \mathbb{R}^{2}| | x_{1}\left|<1,\left|x_{2}\right|<1\right\}\right.$. Define

$$
u(x)= \begin{cases}1-x_{1} & x_{1}>0,\left|x_{2}\right|<x_{1} \tag{13}\\ 1+x_{1} & x_{1}<0,\left|x_{2}\right|<-x_{1} \\ 1-x_{2} & x_{2}>0,\left|x_{1}\right|<x_{2} \\ 1+x_{2} & x_{2}<0,\left|x_{1}\right|<-x_{2}\end{cases}
$$

For which $1 \leqslant p \leqslant \infty$ does u belong to $W^{1, p}(U)$?
Solution. First we can easily check that $u \in C(\bar{U})$ and is smooth inside each triangle. If we define \boldsymbol{v} piecewisely such that $\boldsymbol{v}=D u$ in each triangle, it is clear that $\boldsymbol{v} \in W^{1, p}$ for any p. Now what is left to show is that $\boldsymbol{v}=D u$ in U.

Take any $\phi \in C_{0}^{1}(U)$. Denote by $U_{i}, i=1, \ldots, 4$, the triangles. We have

$$
\begin{equation*}
\int_{U} \boldsymbol{v} \phi=\sum_{i} \int_{U_{i}} D u \phi=-\sum_{i} \int u D \phi+\sum_{i} \int_{\partial U_{i}} \boldsymbol{n}_{i} u \phi \tag{14}
\end{equation*}
$$

As u is continuous across any common boundary of any two U_{i} 's, and $\phi=0$ on ∂U, the boundary terms sum up to 0 .

Exercise 3. (10 pts) (5.10.14) Verify that if $n>1$, the unbounded function $u=\log \log \left(1+\frac{1}{|x|}\right)$ belongs to $W^{1, n}(U)$, for $U=B^{0}(0,1)$.

Proof. Compute

$$
\begin{equation*}
D u=\frac{1}{\log \left(1+\frac{1}{|x|}\right)} \frac{1}{1+\frac{1}{|x|}}\left(-\frac{x}{|x|^{3}}\right) \tag{15}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
|D u| \leqslant C \frac{1}{\log \left(1+\frac{1}{|x|}\right)} \frac{1}{|x|} \tag{16}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\int_{B(0,1)}|D u|^{n} \mathrm{~d} x \leqslant C \int_{0}^{1} \frac{1}{\log \left(1+\frac{1}{r}\right)^{n}} \frac{1}{r} \mathrm{~d} r \tag{17}
\end{equation*}
$$

Setting $z=\log \left(1+\frac{1}{r}\right)$, we have

$$
\begin{equation*}
\int_{B(0,1)}|D u|^{n} \mathrm{~d} x \leqslant C \int_{\log 2}^{\infty} \frac{1}{z^{n}} \mathrm{~d} z<+\infty \tag{18}
\end{equation*}
$$

when $n>1$.

