Exercise 1. (6 pts) Let u be a weak solution of the scalar conservation law. Show that if $u \in C^{1}(\Omega)$ for some domain Ω , then it is a classical solution in Ω , that is

$$u_t + f(u)_x = 0 \text{ for } (x,t) \in \Omega, \qquad u(x,0) = u_0 \text{ when } (x,0) \in \Omega.$$
 (1)

Proof. Without loss of generality, we can assume that $\Omega \cap \{t=0\}$ is not empty.

First, take any $U \subseteq \Omega$ such that $U \cap \{t = 0\}$ is empty. Take a test function ϕ supported in U. By the definition of weak solution, we have

$$\int_{U} \left[u \phi_t + f(u) \phi_x \right] \mathrm{d}x \, \mathrm{d}t = 0.$$
⁽²⁾

As $u, f(u) \in C^1$, we can integrate by parts to obtain

$$\int_{U} \left[u_t + f(u)_x \right] \phi = 0.$$
(3)

Here $u_t + f(u)_x$ is a continuous function. We claim that it is identically 0 in U. Assume it is not. Then there is $(x_0, t_0) \in U$ such that $u_t + f(u)_x \neq 0$ at (x_0, t_0) . Wlog assume $[u_t + f(u)_x](x_0, t_0) > 0$. Then there is $\varepsilon > 0$ such that $[u_t + f(u)_x](x, t) > 0$ in $B_{\varepsilon}(x_0, t_0)$. Now we can take $\phi \in C_0^1(B_{\varepsilon}(x_0, t_0))$ with $\phi \ge 0$ (for example, a rescaled and translated version of $\exp\left[-\frac{1}{1-r^2}\right]$) and obtain contradiction.

As U is arbitrary, we conclude that $u_t + f(u)_x = 0$ in $\Omega \cap \{t > 0\}$. Now take $\phi \in C_0^1(\Omega)$. Since u is a weak solution, we have

$$\int_{\Omega \cap \{t>0\}} \left[u \,\phi_t + f(u) \,\phi_x \right] \mathrm{d}x \,\mathrm{d}t + \int_{\Omega \cap \{t=0\}} u_0 \,\phi = 0. \tag{4}$$

Performing integration by parts on the first integral and using $u_t + f(u)_x = 0$ in $\Omega \cap \{t > 0\}$, we have

$$\int_{\Omega \cap \{t=0\}} \nu \cdot \begin{pmatrix} u \\ f(u) \end{pmatrix} \phi + u_0 \phi = 0.$$
(5)

As $\nu = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, we have

$$\int_{\Omega \cap \{t=0\}} (u - u_0) \phi = 0$$
(6)

and $u|_{t=0} = u_0$ follows from the arbitrariness of ϕ .

Exercise 2. (6 pts) Let u(x, t) be a weak solution of the scalar conservation law with initial value $u_0(x)$. Show that for any $\lambda > 0$, $u(\lambda x, \lambda t)$ is a weak solution for the same equation with initial value $u_0(\lambda x)$.

Proof. Recall that u is a weak solution of the conservation law

$$u_t + f(u)_x = 0, \quad u(x,0) = u_0 \tag{7}$$

if for any $\phi \in C_0^1(\mathbb{R}^2)$, we have

$$\iint_{t>0} u(x,t) \left[\partial_t \phi(x,t)\right] + f(u(x,t)) \left[\partial_x \phi(x,t)\right] dx dt + \int_{\mathbb{R}} u_0(x) \phi(x,0) dx = 0.$$
(8)

Therefore we need to prove that

$$\iint_{t>0} u(\lambda x, \lambda t) \left[\partial_t \phi(x, t)\right] + f(u(\lambda x, \lambda t)) \left[\partial_x \phi(x, t)\right] \mathrm{d}x \,\mathrm{d}t + \int_{\mathbb{R}} u_0(\lambda x) \,\phi(x, 0) \,\mathrm{d}x = 0. \tag{9}$$

Define $\psi(\lambda x, \lambda t) = \phi(x, t)$. It's clear that $\psi(y, s) \in C_0^1(\mathbb{R}^2)$. The LHS becomes

$$\iint_{t>0} u(\lambda x, \lambda t) \left[\partial_t \psi(\lambda x, \lambda t)\right] + f(u(\lambda x, \lambda t)) \left[\partial_x \phi(\lambda x, \lambda t)\right] dx dt + \int_{\mathbb{R}} u_0(\lambda x) \psi(\lambda x, 0) dx.$$
(10)

Make a change of variables $y = \lambda x, s = \lambda t$. We have

LHS =
$$\iint_{t>0} u(y,s) \lambda \psi_s(y,s) + f(u(y,s)) \lambda \psi_y(y,s) \lambda^{-2} dy ds + \int_{\mathbb{R}} u_0(y) \psi(y,0) \lambda^{-1} dy$$

= $\lambda^{-1} \left[\iint_{t>0} u(y,s) \psi_s(y,s) + f(u(y,s)) \psi_y(y,s) dy ds + \int_{\mathbb{R}} u_0(y) \psi(y,0) dy \right]$
= 0 (11)

as u is a weak solution. Thus ends the proof.

Exercise 3. (6 pts) Consider the Burgers equation with initial data $u_0(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$. Show that the following two functions

$$u_1(x,t) = \begin{cases} 0 & x < t/2 \\ 1 & x > t/2 \end{cases}, \qquad u_2(x,t) = \begin{cases} 0 & x < 0 \\ x/t & 0 < x < t \\ 1 & x > 0 \end{cases}$$
(12)

are both weak solutions to the problem.

Proof.

- u_1 is a weak solution.

Take any $\phi \in C_0^1(\mathbb{R}^2)$. If the support of ϕ does not intersect with x = t/2, then we have

$$\iint_{t>0} u \,\phi_t + \left(\frac{u^2}{2}\right) \phi_x + \int_{\mathbb{R}} u_0 \,\phi(x,0) = -\iint_{t>0} \left[u_t + \left(\frac{u^2}{2}\right)_x \right] \phi = 0. \tag{13}$$

If the support of ϕ intersect with x = t/2, then denote

$$\Omega_L = \operatorname{supp} \phi \cap \{x < t/2\} \cap \{t > 0\}, \qquad \Omega_R = \operatorname{supp} \phi \cap \{x > t/2\} \cap \{t > 0\}$$
(14)

and also

$$\Gamma = \operatorname{supp} \phi \cap \{x = t/2\}, \qquad \Gamma_L = \overline{\Omega}_L \cap \{t = 0\}, \qquad \Gamma_R = \overline{\Omega}_R \cap \{t = 0\}.$$
(15)

We have

$$\begin{split} \iint_{t>0} u \,\phi_t + \left(\frac{u^2}{2}\right) \phi_x + \int_{\mathbb{R}} u_0 \,\phi(x,0) &= \iint_{\Omega_L} u \,\phi_t + \left(\frac{u^2}{2}\right) \phi_x + \iint_{\Omega_R} u \,\phi_t + \left(\frac{u^2}{2}\right) \phi_x \\ &+ \int_{\Gamma_L} u_0 \,\phi + \int_{\Gamma_R} u_0 \,\phi \\ &= -\iint_{\Omega_L} \left[u_t + \left(\frac{u^2}{2}\right)_x \right] \phi - \int_{\Gamma_L} u_0 \,\phi + \int_{\Gamma} \mathbf{n}_L \cdot \\ \left(\frac{u}{\left(\frac{u^2}{2}\right)}\right) \\ &- \iint_{\Omega_R} \left[u_t + \left(\frac{u^2}{2}\right)_x \right] \phi - \int_{\Gamma_R} u_0 \,\phi + \int_{\Gamma} \mathbf{n}_R \cdot \\ \left(\frac{u}{\left(\frac{u^2}{2}\right)}\right) \\ &+ \int_{\Gamma_L} u_0 \,\phi + \int_{\Gamma_R} u_0 \phi \\ &= \iint_{\Omega_L} \mathbf{n} \cdot \left(\frac{[u_l - u_r]}{\frac{1}{2}[u_l^2 - u_r^2]}\right) = \iint_{x=t/2} \mathbf{n} \cdot \left(\frac{-1}{-1/2}\right) = \end{split}$$
(16)

The last step follows from the fact that u satisfies the jump condition.

- u_2 is a weak solution. Note that u_2 is a classical solution in $\{x < 0\}$, $\{0 < x < t\}$, $\{x > 0\}$ respectively. The proof is done after writing

$$\iint_{t>0} u \phi_t + \left(\frac{u^2}{2}\right) \phi_x + \int_{\mathbb{R}} u_0 \phi(x,0) = \iint_{D_1} + \iint_{D_2} + \iint_{D_3}$$
(17)

and then using the same argument as for u_1 . Note that as u_2 is continuous across the boundaries between D_1 and D_2 as well as D_2 and D_3 , the integrals along them vanish.

Exercise 4. (12 pts) (Evans 3.5.20)

Compute explicitly the unique entropy solution of

$$u_t + \left(\frac{u^2}{2}\right)_x = 0 \quad \text{in } \mathbb{R} \times (0, \infty); \qquad u = g \quad \text{on } \mathbb{R} \times \{t = 0\}.$$

$$(18)$$

for

$$g(x) = \begin{cases} 1 & x < -1 \\ 0 & -1 < x < 0 \\ 2 & 0 < x < 1 \\ 0 & x > 0 \end{cases}$$
(19)

Solution. It is clear that initially we have two shocks and one rarefaction wave. The two shocks are

- 1. Starting from (-1,0) with slope 2, that is $x = \frac{t}{2} 1$.
- 2. Starting from (1,0) with slope 1, that is x = t + 1.

Note that after passing (0, 2) and (2, 1) both shocks are not straight anymore: Both will meet the rarefaction wave between x = 0 and x = 2t:

$$u = \frac{x}{t}.$$
(20)

Denote these two curvy shocks by $x_1(t)$ and $x_2(t)$. First consider $x_1(t)$.

When t < 2 we have $x_1(t) = \frac{1}{2}t - 1$. For $t \ge 2$ we have

$$\dot{x}_1(t) = \frac{1}{2} \left(\frac{x_1}{t} + 1 \right), \qquad x_1(2) = 0.$$
 (21)

Now let $y(t) = x_1(t) - t$. We have

$$\dot{y}(t) = \dot{x}_1(t) - 1 = \frac{x_1}{2t} - \frac{1}{2} = \frac{y}{2t} \implies y = Ct^{1/2}.$$
 (22)

Now as $y(2) = x_1(2) - 2 = -2$, we have $C = -\sqrt{2}$. Thus

$$x_1(t) = \begin{cases} \frac{1}{2}t - 1 & t \leq 2\\ t - \sqrt{2}t^{1/2} & t > 2 \end{cases}.$$
 (23)

For $x_2(t)$ we have

$$\dot{x}_2(t) = \frac{1}{2} \left(\frac{x_2}{t} + 0 \right), \qquad x_2(1) = 2.$$
 (24)

Solving the equation we have

$$\ln x = \frac{1}{2} \ln t + C \implies x = C t^{1/2}.$$
(25)

Using $x_2(1) = 2$ we have

$$C = 2. \tag{26}$$

Thus the right shock is

$$x_2(t) = \begin{cases} t+1 & t \leq 1\\ 2t^{1/2} & t > 1 \end{cases}.$$
(27)

Setting $x_1(t) = x_2(t)$ we see that the two shocks meet at the point $\left(4 + 2\sqrt{2}, 6 + 4\sqrt{2}\right)$.

Finally, after $t = 6 + 4\sqrt{2}$, there is only one shock with speed 1/2:

$$x - \left(4 + 2\sqrt{2}\right) = \frac{t - \left(6 + 4\sqrt{2}\right)}{2} \iff x = \frac{t}{2} + 1.$$
 (28)

To the left u = 1 and to the right u = 0.