MatH 527 A1 HOMEWORK 4 (DUE Nov. 5 IN CLASS)

Exercise 1. (6 pts) Let u be a weak solution of the scalar conservation law. Show that if u € C1(£)
for some domain 2, then it is a classical solution in €2, that is

ug+ f(u), =0 for (z,t) €, u(z,0) =up when (z,0) € Q. (1)
Proof. Without loss of generality, we can assume that 2N {t=0} is not empty.

First, take any U € 2 such that U N {¢t =0} is empty. Take a test function ¢ supported in U. By
the definition of weak solution, we have

/U r - F () b dardi =0, (2)

As u, f(u) € C, we can integrate by parts to obtain

/ [+ f(u),] ¢=0. (3)
U

Here u; + f(u), is a continuous function. We claim that it is identically 0 in U. Assume it is not.
Then there is (xo, to) € U such that u, 4+ f(u), # 0 at (zo, to). Wlog assume [u; + f(u), | (x0, to) > 0.
Then there is € > 0 such that [us + f(u),](z,t) >0 in Bc(xo,to). Now we can take ¢ € Cj(Be(zo, to))

with ¢ >0 (for example, a rescaled and translated version of exp[ - ﬁ]) and obtain contradiction.

As U is arbitrary, we conclude that u; + f(u), =0 in QN {t>0}. Now take ¢ € C§(£2). Since u is a
weak solution, we have

/ [udr+ f(u) ¢z da dt-i—/ up ¢ =0. (4)
QN {t>0}

QN {t=0}

Performing integration by parts on the first integral and using u; + f(u),=0 in QN {t >0}, we have

/m{t_O} ( Flu) )“” uo ¢=0. (5)

/ (u—up) =0 (6)
QN {t=0}

and u |;—o = ug follows from the arbitrariness of ¢. O

As V:( 0

-1 ), we have

Exercise 2. (6 pts) Let u(x, t) be a weak solution of the scalar conservation law with initial value
uo(z). Show that for any A >0, u(Ax, At) is a weak solution for the same equation with initial value
uo(A ).

Proof. Recall that u is a weak solution of the conservation law

ug+ f(u),=0, u(x,0)=ug (7)
if for any ¢ € C&(Rz), we have
// u(z,t) [Orp(x, )] + f(u(z, 1)) [Opp(z,t)] dedt +/ uo(z) ¢(x,0)dx=0. (8)
>0 R
Therefore we need to prove that
//t>0 u(Az, At) [Oep(x, t)] + f(u(Ax, At)) [Oxp(x,t)] dedt + /]R uo(Ax) ¢(x,0)dz=0. 9)

Define 1(Az, At) = ¢(z,t). It’s clear that ¢(y, s) € C5(R?). The LHS becomes

//t>0 u(Az, A) [0y (A, A )]+ fu(Az, A1) [Ozp(Ax, At)] da:dt—i—/ up(Az) Pp(Az,0)dz. (10)

R



Make a change of variables y=Az,s=M\t. We have
UHS = [ [ (o) Auly9) + Fuly. ) Ay, 9) A2 dydst [ wofy) 0w 002 dy
t>0 R
- Al[// ) 0l 5) + Ty 5)) 00,9 dy s+ [ uo<y>w(y,0>dy]
t>0 R

=0 (11)
as u is a weak solution. Thus ends the proof. O
Exercise 3. (6 pts) Consider the Burgers equation with initial data ug(z) = { (1) iig Show that
the following two functions
0 z<0
w(a )= O T2 e ={ 2t 0<a<t (12)
1 z>t/2
1 x>0
are both weak solutions to the problem.
Proof.
— wuq is a weak solution.
Take any ¢ € C&(]R2). If the support of ¢ does not intersect with x =t/2, then we have
[ (2o [ o[ [ae() oo o
t>0 t>0
If the support of ¢ intersect with 2 =t/2, then denote
Qr=supp o N{x <t/2} N {t>0}, Qr=supp pN{z>t/2}N{t>0} (14)
and also
I'=supp pN{x=1/2}, IL=Q,Nn{t=0}, Fr=0rN{t=0}. (15)
We have

[l (5 ) fprmtemn = [, wors () ors [, wors (i) o
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The last step follows from the fact that u satisfies the jump condition.

(16)



— wug is a weak solution. Note that us is a classical solution in {x < 0}, {0 < z < t}, {z > 0}
respectively. The proof is done after writing

[ (§)ors fomsco [ Lo ff, o

and then using the same argument as for u;. Note that as wug is continuous across the bound-
aries between Dy and Dy as well as Dy and D3, the integrals along them vanish. [l

Exercise 4. (12 pts) (Evans 3.5.20)
Compute explicitly the unique entropy solution of

2
1”4—(%) =0 in]RX(0,00); u=g onIRx{t:O}. (18)
for ¢
1 z<—-1
_J 0 —-1<x<0
9(x) = 2 0<z<1 (19)
0 z>0

Solution. It is clear that initially we have two shocks and one rarefaction wave. The two shocks are

1. Starting from (—1,0) with slope 2, that is = :% -1

2. Starting from (1, 0) with slope 1, that is z =t + 1.

Note that after passing (0,2) and (2, 1) both shocks are not straight anymore: Both will meet the rar-
efaction wave between £ =0 and x=2t:

u= % (20)

Denote these two curvy shocks by x1(t) and x(t). First consider z1(t).
When ¢ <2 we have z1(t) zét — 1. For ¢t >2 we have

Lo l/x _
xl(t)_§(7+1), 21(2) =0. (21)
Now let y(t) =z1(t) —t. We have
. . 1
gty =di(t) ~ 1= -5 =5 — y=Ct'/>. (22)

Now as y(2) =21(2) —2=—2, we have C'= — /2. Thus

1
S <

nty={4 37t s (23)
t—2tY2% t>2

For z5(t) we have

gaz(t):%(%m), oa(1)=2. (24)
Solving the equation we have
ln:v:%lnt—i—C — x=CtY2 (25)
Using 22(1) =2 we have
C=2. (26)
Thus the right shock is
wo-{13h 151

Setting x1(t) = z2(t) we see that the two shocks meet at the point (4—|— 22,6 +4 \/5)



Finally, after ¢t =6+ 4 /2, there is only one shock with speed 1/2:

t—(6+4v§)

x—(4+2\/§)= 5

To the left =1 and to the right u=0.
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