
Math 527 A1 Homework 4 (Due Nov. 5 in Class)

Exercise 1. (6 pts) Let u be a weak solution of the scalar conservation law. Show that if u ∈C1(Ω)
for some domain Ω, then it is a classical solution in Ω, that is

ut + f(u)
x
= 0 for (x, t)∈Ω, u(x, 0)= u0 when (x, 0)∈Ω. (1)

Proof. Without loss of generality, we can assume that Ω∩ {t= 0} is not empty.
First, take any U ⋐ Ω such that U ∩ {t = 0} is empty. Take a test function φ supported in U . By

the definition of weak solution, we have
∫

U

[uφt + f(u) φx] dx dt=0. (2)

As u, f(u)∈C1, we can integrate by parts to obtain
∫

U

[

ut + f(u)x

]

φ=0. (3)

Here ut + f(u)
x
is a continuous function. We claim that it is identically 0 in U . Assume it is not.

Then there is (x0, t0) ∈ U such that ut + f(u)
x
� 0 at (x0, t0). Wlog assume

[

ut + f(u)
x

]

(x0, t0) > 0.

Then there is ε > 0 such that
[

ut + f(u)
x

]

(x, t)> 0 in Bε(x0, t0). Now we can take φ ∈ C0
1(Bε(x0, t0))

with φ> 0 (for example, a rescaled and translated version of exp
[

− 1

1− r2

]

) and obtain contradiction.

As U is arbitrary, we conclude that ut + f(u)
x
= 0 in Ω∩ {t > 0}. Now take φ∈C0

1(Ω). Since u is a
weak solution, we have

∫

Ω∩{t>0}

[uφt + f(u) φx] dxdt+

∫

Ω∩{t=0}

u0 φ= 0. (4)

Performing integration by parts on the first integral and using ut + f(u)
x
=0 in Ω∩{t > 0}, we have

∫

Ω∩{t=0}

ν ·
(

u

f(u)

)

φ+ u0 φ= 0. (5)

As ν=
(

− 1
0

)

, we have
∫

Ω∩{t=0}

(u− u0) φ= 0 (6)

and u N t=0 = u0 follows from the arbitrariness of φ. �

Exercise 2. (6 pts) Let u(x, t) be a weak solution of the scalar conservation law with initial value
u0(x). Show that for any λ > 0, u(λ x, λ t) is a weak solution for the same equation with initial value
u0(λx).

Proof. Recall that u is a weak solution of the conservation law

ut + f(u)
x
= 0, u(x, 0)= u0 (7)

if for any φ∈C0
1
(

R
2
)

, we have

∫ ∫

t>0

u(x, t) [∂tφ(x, t)] + f(u(x, t)) [∂xφ(x, t)] dxdt+

∫

R

u0(x) φ(x, 0) dx=0. (8)

Therefore we need to prove that
∫ ∫

t>0

u(λx, λ t) [∂tφ(x, t)] + f(u(λ x, λ t)) [∂xφ(x, t)] dxdt+

∫

R

u0(λx) φ(x, 0) dx=0. (9)

Define ψ(λ x, λ t)= φ(x, t). It’s clear that ψ(y, s)∈C0
1
(

R
2
)

. The LHS becomes
∫ ∫

t>0

u(λx, λ t) [∂tψ(λ x, λ t)] + f(u(λ x, λ t)) [∂xφ(λ x, λ t)] dxdt+

∫

R

u0(λx) ψ(λ x, 0) dx. (10)



Make a change of variables y=λx, s=λ t. We have

LHS =

∫ ∫

t>0

u(y, s)λψs(y, s)+ f(u(y, s)) λψy(y, s)λ−2 dy ds+

∫

R

u0(y) ψ(y, 0)λ−1 dy

= λ−1

[ ∫ ∫

t>0

u(y, s) ψs(y, s)+ f(u(y, s)) ψy(y, s) dy ds+

∫

R

u0(y) ψ(y, 0) dy

]

= 0 (11)

as u is a weak solution. Thus ends the proof. �

Exercise 3. (6 pts) Consider the Burgers equation with initial data u0(x) =

{

0 x< 0
1 x> 0

. Show that

the following two functions

u1(x, t) =







0 x< t/2
1 x> t/2

, u2(x, t)=







0 x< 0
x/t 0<x< t
1 x> 0

(12)

are both weak solutions to the problem.

Proof.

− u1 is a weak solution.

Take any φ∈C0
1
(

R
2
)

. If the support of φ does not intersect with x= t/2, then we have

∫ ∫

t>0

uφt +

(

u2

2

)

φx +

∫

R

u0 φ(x, 0)=−
∫ ∫

t>0

[

ut +

(

u2

2

)

x

]

φ= 0. (13)

If the support of φ intersect with x= t/2, then denote

ΩL = supp φ∩ {x< t/2}∩ {t> 0}, ΩR = supp φ∩ {x> t/2}∩ {t> 0} (14)

and also

Γ = supp φ∩{x= t/2}, ΓL =ΩL∩ {t= 0}, ΓR = ΩR∩{t=0}. (15)

We have
∫ ∫

t>0

uφt +

(

u2

2

)

φx +

∫

R

u0 φ(x, 0) =

∫ ∫

ΩL

uφt +

(

u2

2

)

φx +

∫ ∫

ΩR

uφt +

(

u2

2

)

φx

+

∫

ΓL

u0 φ+

∫

ΓR

u0 φ

= −
∫ ∫

ΩL

[

ut +

(

u2

2

)

x

]

φ −
∫

ΓL

u0 φ +

∫

Γ

nL ·




u
(

u2

2

)





−
∫ ∫

ΩR

[

ut +

(

u2

2

)

x

]

φ −
∫

ΓR

u0 φ +

∫

Γ

nR ·




u
(

u2

2

)





+

∫

ΓL

u0 φ+

∫

ΓR

u0 φ

=

∫

Γ

n ·
(

[ul −ur]
1

2

[

ul
2− ur

2
]

)

=

∫

x=t/2

n ·
(

− 1
− 1/2

)

=

0. (16)

The last step follows from the fact that u satisfies the jump condition.



− u2 is a weak solution. Note that u2 is a classical solution in {x < 0}, {0 < x < t}, {x > 0}
respectively. The proof is done after writing

∫ ∫

t>0

uφt +

(

u2

2

)

φx +

∫

R

u0 φ(x, 0) =

∫ ∫

D1

+

∫ ∫

D2

+

∫ ∫

D3

(17)

and then using the same argument as for u1. Note that as u2 is continuous across the bound-
aries between D1 and D2 as well as D2 and D3, the integrals along them vanish. �

Exercise 4. (12 pts) (Evans 3.5.20)
Compute explicitly the unique entropy solution of

ut +

(

u2

2

)

x

= 0 in R× (0,∞); u= g on R×{t= 0}. (18)

for

g(x)=















1 x<− 1
0 − 1<x< 0
2 0<x< 1
0 x> 0

. (19)

Solution. It is clear that initially we have two shocks and one rarefaction wave. The two shocks are

1. Starting from (− 1, 0) with slope 2, that is x=
t

2
− 1.

2. Starting from (1, 0) with slope 1, that is x= t+1.

Note that after passing (0, 2) and (2, 1) both shocks are not straight anymore: Both will meet the rar-
efaction wave between x=0 and x= 2 t:

u=
x

t
. (20)

Denote these two curvy shocks by x1(t) and x2(t). First consider x1(t).

When t< 2 we have x1(t)=
1

2
t− 1. For t> 2 we have

ẋ1(t)=
1

2

(

x1

t
+ 1
)

, x1(2)= 0. (21)

Now let y(t)= x1(t)− t. We have

ẏ(t) = ẋ1(t)− 1=
x1

2 t
− 1

2
=

y

2 t
� y=C t1/2. (22)

Now as y(2)=x1(2)− 2 =− 2, we have C =− 2
√

. Thus

x1(t)=







1

2
t− 1 t6 2

t− 2
√

t1/2 t > 2
. (23)

For x2(t) we have

ẋ2(t)=
1

2

(

x2

t
+ 0
)

, x2(1)= 2. (24)

Solving the equation we have

lnx=
1

2
ln t+C � x=C t1/2. (25)

Using x2(1)= 2 we have

C = 2. (26)

Thus the right shock is

x2(t)=

{

t+ 1 t6 1

2 t1/2 t > 1
. (27)

Setting x1(t)= x2(t) we see that the two shocks meet at the point
(

4+ 2 2
√

, 6+ 4 2
√ )

.



Finally, after t= 6+ 4 2
√

, there is only one shock with speed 1/2:

x−
(

4+ 2 2
√ )

=
t−
(

6+ 4 2
√ )

2
� x=

t

2
+ 1. (28)

To the left u=1 and to the right u= 0.


