MatH 527 A1 HOMEWORK 2 (DUE Oct. 8 IN CLASS)

Exercise 1. (6 pts) Prove the mean value formula for harmonic functions using Poisson’s formula for the ball (see
Evans 2.2.4c for the formula).
Proof. The Poisson formula reads (p.41)
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na(n)r 8B,(0) |z —y|

Taking x =0 we have |z — y| =r and therefore
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u(0)=—F—— g(y)dS=-—5— u(y)dsS. (2)
©) na(n)r*=! Jap (0 @) |0Br| JaB,(0) @)
Thus the mean value formula is proved for x = 0. The general case is equivalent to this one due to the translation invari-
ance of Laplace’s equation. O

Exercise 2. (7 pts)
a) (Evans 2.5.3) Modify the proof of the mean value formulas to show for n >3 that
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b) (Optional) Prove the above using Green’s function for the ball B,.

Proof. Following Evans p.26, we define
1

o(r) = 55— u(y)dS. (4)
|0Br| Jop,(x)
Thus all we need to prove is
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On Evans p.26 it is derived that
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‘We compute
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and the conclusion immediately follows.

In the above computation we have used the fact that
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To see this, compute
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Exercise 3. (4 pts) (Evans 2.5.12) Suppose u is smooth and solves us — Au =0 in R" X (0, c0).
i. (1 pt) Show ux(z,t):= u()\ x, N2 t) also solves the heat equation for each \ € R.
ii. (3 pts) Use (i) to show v(x,t): =z Du(x,t) + 2t u¢(x,t) solves the heat equation as well.

Proof.
i. Direct calculation.
ii. Notice that v =24 . O
O [a=1

Exercise 4. (7 pts) (Evans 2.5.15) Given g: [0,00) — R, with g(0) =0, derive the formula

22

u(z, t) \/ﬂ /O - 3/2 T g(s)d (10)
for a solution of the initial/boundary-value problem
Ut — Uz =0 in Ry X (0, 00); u=0 on Ry x {t=0}; u=g on {x=0} x [0, c0). (11)
(Hint: Let v(x,t) :=u(x,t) — g(t) and extend v to {& <0} by odd reflections.)
Proof. After the extension v solves
vt—vmz{ g_,(gt;(t) zig , v(z,0)=0. (12)

Then the formula gives
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Some manipulation yields
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U(x7t):/() \/ﬁ{/z e A(t—9) g'(s) dz_L e At—s) g'(s) dz:| (14)
This leads to
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Now set
z
w=— 2 (16)
2t—s
and change variable, we have
t L
v(w,t):i/ g'(s) /2\/tT e=#dz |ds. 17)
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Integrating by parts, we get the result. O

Exercise 5. (6 pts) (Evans 2.5.24) Let u € C%(R x [0, o)) solve the initial-value problem for the wave equation in
one dimension:

Ut —Uge =0 in R x (0, 00); u=g, uu=h onRx {t=0}. (18)
Suppose g, h have compact support. the kinetic energy is k(t) ::% J fooo u%(x, t) dz and the potential energy is p(t) :=
5 f u2(x,t) dz. Prove
i. (3 pts) k(t)+ p(t) is constant in t.
ii. (3 pts) k(t)=p(t) for all large enough times ¢.
Proof.
i. Multiply the equation by u:, integrate.
T
0 = / / Ut (Ut — Ug ) do dt
0 R
T 2 2
= / / YY) gedt
uf | uf uf | uf
= [+ - F % )0 = kD) + () = O+ 2(0). (19)

ii. Using d’Alembert’s formula we have

u(e,) =3 loe+ 0+ o —01+3 [ hway (20)



which gives

w(e,1) =5 [g'(@+1) = g/ — ) + h(z+ 1) + h(z — )] (21)
g (z, ) :% ['(z +1) + g'(z —t) + h(z +t) — h(z — 1)]. (22)

The conclusion follows after noticing that all “cross terms” vanish, e.g.
/ g'(x+t)h(z—1)=0 (23)
R

for ¢ large enough (say g, h are supported in ( — R, R), then when ¢ > R, at least one of x 4+ ¢ must lie outside the
support), and all other terms are independent of t, e.g.

/g’(x +t)h(z+t)= /g’(z) h(z)dz. (24)
O

Exercise 6. (Optional) (Evans 2.5.9) Let u be the solution of
Au=0 in RY; u=g on R} (25)
given by Poisson’s formula for the half-space. Assume g is bounded and g(z) = |z| for z € ORY, |z| <1. Show Du is not

bounded near z =0. (Hint: Estimate M)

(For those who know the following stuff: This is the unboundedness of Riesz operators on L° in disguise.)



