Math 527 A1 Homework 2 (Due Oct. 8 in Class)

Exercise 1. (6 pts) Prove the mean value formula for harmonic functions using Poisson's formula for the ball (see Evans 2.2.4c for the formula).
Exercise 2. (7 pts)
a) (Evans 2.5.3) Modify the proof of the mean value formulas to show for $n \geqslant 3$ that

$$
\begin{equation*}
u(0)=\frac{1}{\left|\partial B_{r}\right|} \int_{\partial B_{r}} g \mathrm{~d} S+\frac{1}{n(n-2) \alpha(n)} \int_{B_{r}}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f \mathrm{~d} x \tag{1}
\end{equation*}
$$

b) (Optional) Prove the above using Green's function for the ball B_{r}.

Exercise 3. (4 pts) (Evans 2.5.12) Suppose u is smooth and solves $u_{t}-\triangle u=0$ in $\mathbb{R}^{n} \times(0, \infty)$.
i. (1 pt) Show $u_{\lambda}(x, t):=u\left(\lambda x, \lambda^{2} t\right)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
ii. (3 pts) Use (i) to show $v(x, t):=x \cdot D u(x, t)+2 t u_{t}(x, t)$ solves the heat equation as well.

Exercise 4. (7 pts) (Evans 2.5.15) Given $g:[0, \infty) \mapsto \mathbb{R}$, with $g(0)=0$, derive the formula

$$
\begin{equation*}
u(x, t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3 / 2}} e^{\frac{-x^{2}}{4(t-s)}} g(s) \mathrm{d} s \tag{2}
\end{equation*}
$$

for a solution of the initial/boundary-value problem

$$
\begin{equation*}
u_{t}-u_{x x}=0 \text { in } \mathbb{R}_{+} \times(0, \infty) ; \quad u=0 \text { on } \mathbb{R}_{+} \times\{t=0\} ; \quad u=g \text { on }\{x=0\} \times[0, \infty) \tag{3}
\end{equation*}
$$

(Hint: Let $v(x, t):=u(x, t)-g(t)$ and extend v to $\{x<0\}$ by odd reflections.)
Exercise 5. (6 pts) (Evans 2.5.24) Let $u \in C^{2}(\mathbb{R} \times[0, \infty)$) solve the initial-value problem for the wave equation in one dimension:

$$
\begin{equation*}
u_{t t}-u_{x x}=0 \quad \text { in } \mathbb{R} \times(0, \infty) ; \quad u=g, u_{t}=h \quad \text { on } \mathbb{R} \times\{t=0\} \tag{4}
\end{equation*}
$$

Suppose g, h have compact support. the kinetic energy is $k(t):=\frac{1}{2} \int_{-\infty}^{\infty} u_{t}^{2}(x, t) \mathrm{d} x$ and the potential energy is $p(t):=$ $\frac{1}{2} \int_{-\infty}^{\infty} u_{x}^{2}(x, t) \mathrm{d} x$. Prove
i. (3 pts) $k(t)+p(t)$ is constant in t.
ii. (3 pts) $k(t)=p(t)$ for all large enough times t.

Exercise 6. (Optional) (Evans 2.5.9) Let u be the solution of

$$
\begin{equation*}
\triangle u=0 \text { in } \mathbb{R}_{+}^{n} ; \quad u=g \text { on } \partial \mathbb{R}_{+}^{n} \tag{5}
\end{equation*}
$$

given by Poisson's formula for the half-space. Assume g is bounded and $g(x)=|x|$ for $x \in \partial \mathbb{R}_{+}^{n},|x| \leqslant 1$. Show $D u$ is not bounded near $x=0$. (Hint: Estimate $\frac{u\left(\lambda e_{n}\right)-u(0)}{\lambda}$).
(For those who know the following stuff: This is the unboundedness of Riesz operators on L^{∞} in disguise.)

