
(Nov. 3, 3pm – 4: 30pm, CAB457)

Math 527 ( 2008) Midterm

Problem 1 . For any bounded, continuous function g : R � R we define a function f : R2 � R by

f ( x1 , x2 ) =

{
1 x2 > g( x1 )
0 x2 < g( x1 )

. ( 1 )

Let Tf ∈ D ′
(
R2
)
be the distribution corresponding to f .

a) ( 1 0 pts) Compute the distributional derivative ∂2Tf (∂2 means ∂

∂x 2
) .

b) ( 1 0 pts) Now let gn(x ) = n− α sin (n x ) with α > 0 , and define fn(x1 , x2 ) in the above manner.
Let Tn be the distribution corresponding to fn . Find out the limit of the distributions ∂2Tn as
n↗∞ and prove convergence.

c) (Extra 1 0 pts) Does the limiting behavior remain the same when α = 0? If your answer is
yes, prove your claim; If your answer is no, construct a counter-example.

Solution.

a) Let φ (x1 , x2 ) ∈ C0
∞( R2

)
be a test function. Then by definition of distributional derivatives we

have

(∂2Tf ) ( φ ) = − Tf (∂2φ )

= −
∫

R 2

f ( x1 , x2 ) (∂2φ (x1 , x2 ) ) dx1 dx2

= −
∫

− ∞

∞ [ ∫

− ∞

∞
f ( x1 , x2 ) (∂2φ (x1 , x2 ) ) dx2

]
dx1

= −
∫

− ∞

∞
[ ∫

g ( x 1 )

∞
∂2φ (x1 , x2 ) dx2

]
dx1

= −
∫

− ∞

∞
− φ (x1 , g(x1 ) ) dx1

=

∫

R

φ (x1 , g(x1 ) ) dx1 . ( 2 )

b) First for the particular gn ’ s , we have

(∂2Tn) ( φ ) =

∫

R

φ ( x , gn( x) ) dx. ( 3)

Now note that gn(x ) → 0 uniformly on R, which means φ( x , gn(x ) ) → φ( x , 0) uniformly too.
Thus

(∂2Tn) ( φ) =

∫

R

φ( x , gn( x ) ) dx→
∫

R

φ (x , 0) dx. ( 4)

c) The answer is no. For a counter-example, recall that we have sin2n x → 1

2

�
0 in D ′(R) . Thus

we construct a function φ( x1 , x2 ) ∈ C0
∞ such that it is bounded | φ | 6 1 , and equals x2

2 in
the “box” [ − R, R] × [ − 1 , 1 ] and vanishes outside [ − (R + 1 ) , (R + 1 ) ] × [ − 2 , 2 ] , and finally
φ( x1 , 0) = 0 for all x1 . We see that

(∂2Tn) ( φ) =

∫

− R

R

sin2 n x dx + O ( 1 )→0 =

∫

R

φ (x , 0) dx ( 5)

when we take R large enough.



Remark 1 . This is an special case of the theory of Young measures which deals with the
behavior of nonlinear functionals under weak convergence and has been successfully applied to
calculus of variations, conservation laws, control theory, etc. For our Tn , in fact one can show
that

(∂2Tn) ( φ) →
∫

R

[ ∫

− 1

1

φ( x , z ) dν ( z )

]
dx ( 6)

where dν is the following measure on [ − 1 , 1 ] :

dν ( z ) =
dz

π 1 − z2
√ . ( 7)

In other words, we have the following convergence in the space of measures

δx 2 = g ( x 1 ) → χR × [ − 1 , 1 ] dν ( x2 ) dx1 . ( 8)

For completeness we sketch how to obtain dν ( z ) here. Write

(∂2Tn) ( φ) =

∫

R

φ (x , sin n x ) dx

=
∑

k

∫
2 k π

n

2 ( k + 1 ) π

n

φ (x , sin n x ) dx

=
∑

k

∫
2 k π

n

2 ( k + 1 ) π

n

φ

(
2 k π

n
, sin n x

)
dx + Rn

=
∑

k

2 π

n

[ ∫

− 1

1

φ

(
2 k π

n
, z

)
dν ( z )

]
+ Rn

=

∫

R

∫

− 1

1

φ (x , z ) dν ( z ) dx + Rn + Rn
′ ( 9)

Here the last equality is because the sum can be seen as a Riemann sum. It is easy to show
that both Rn , Rn′ tends to 0 as n↗∞ .

Problem 2. Let Ω be a bounded, connected domain with smooth boundary. Let u ∈ C2 ( Ω) ∩ C( Ω)
be harmonic.

a) ( 1 0 pts) State and prove the mean value formula for u .

b) ( 1 0 pts) State and prove the strong maximum principle.

Proof. See lecture notes. �

Problem 3. Let Ω be a bounded domain with smooth boundary. u ∈ W0
1 , 2 ( Ω) is said to be an eigen-

function of the operator − 4 with Dirichlet boundary condition if u is a weak solution of

− 4u = λ u in Ω , u = 0 on ∂Ω . ( 1 0)

for some λ ∈ R. This λ is called the corresponding eigenvalue.

a) ( 1 0 pts) Prove that for any Ω ′ ⊂ ⊂ Ω and any k ∈ N , u ∈ Wk , 2 ( Ω ′) .

b) (Extra 5 pts) Prove that u ∈ C∞ ( Ω) .

c) ( 1 0 pts) Prove that if λ is an eigenvalue, then λ > 0 .

Solution.

a) From the regularity theory of weak solutions for − 4u = f , we know

‖ u ‖
W k , 2 ( Ω ′ )

6 C
[
‖ u ‖ L 2 ( Ω )

+ ‖ f ‖
W k − 2 , 2 ( Ω )

]
( 1 1 )



where C depends on Ω ′ , Ω and k . Now in our case f = λ u ∈ W 1 , 2 ( Ω) . This means u ∈ W3 , 2 ( Ω ′)
for any Ω ′ ⊂ ⊂ Ω ( and therefore automatically in W2 , 2 ( Ω ′) too) . Now for any Ω ′ ⊂ ⊂ Ω , we can
find Ω ′′ such that Ω ′ ⊂ ⊂ Ω ′′ ⊂ ⊂ Ω . Then f = λ u ∈ W3 , 2 ( Ω ′ ′) � u ∈ W5 , 2 ( Ω ′) . Iterate, we can
cover all k .

One can also make this argument rigorous by using induction ( similar to the exercise we
have done) .

b) For any Ω ′ and any k , we have u ∈ Wk , 2 ( Ω ′) . Embedding gives u ∈ Cm ( Ω ′) for any m < k − n

2

where n is the dimension. The arbitrariness of k implies u ∈ C∞ ( Ω ′) , then the arbitrariness of
Ω ′ gives u ∈ C∞ ( Ω) .

c) There are at least two ways of showing this.

• Method 1 . Maximum principle.
S ince u ∈ C∞ , it is a classical solution. We know that the weak maximum principle

holds for

− 4u + c( x) u = 0 ( 1 2 )

when c( x) > 0 . Thus the weak maximum principle holds when λ 6 0 . As a consequence,
the only solution to

− 4u = λ u , u
�
∂Ω = 0 ( 1 3)

is 0 and therefore such λ is not an eigenvalue. ( I forgot to put u
�

0 in the problem.
Points will be added back if this is the only reason why you weren’ t able to finish the
proof. )

• Method 2 . Variational formulation.
S ince u ∈ W0

1 , 2 ( Ω) , it can be used as a test function in the weak formulation, that is
∫
| ∇u | 2 = −

∫
(4u) u =

∫
(λ u) u = λ

∫
u2 ( 1 4)

From this it is clear that λ > 0 unless ∇u = 0 . But in that case u is a constant. The
proof is ended by noticing that the only constant function in W0

1 , 2 ( Ω) is 0 .

Problem 4. (Extra 1 0 pts) . Let u > 0 be harmonic in the whole space Rn . Prove that u must be a
constant.

Proof. Fix any x
�
y . We will show u(x ) = u( y) . Take any r > | x − y |

2
, we have by mean value formula

| u(x ) − u( y) | =
1

| Br |

∣∣∣∣∣

∫

Br ( x )

u −
∫

Br ( y )

u

∣∣∣∣∣

=
1

| Br |

∫

Br ( x )4Br ( y )

u (Because u > 0)

6 1

| Br |

∫

B
r+
| x − y |

2

(
x + y

2

)
\B

r − | x − y |
2

(
x + y

2

) u

=
1

| Br |



∫

B
r+
| x − y |

2

(
x + y

2

) u −
∫

B
r − | x − y |

2

(
x + y

2

) u




=
1

| Br |

[
u

(
x + y

2

) ∣∣∣ Br+
| x − y |

2

∣∣∣ − u
(
x + y

2

) ∣∣∣ Br− | x − y |
2

∣∣∣
]

= u

(
x + y

2

) ( r +
| x − y |

2

) n
−
(
r − | x − y |

2

) n

rn

→ 0 as r↗∞ . ( 1 5)



Note that we have used the mean value formula twice!

• Method 2 . ( Suggested by Niksirat) . First using mean value formula ( or maximum principle) we
see that if u(x ) = 0 for some x , then u ≡ 0 .

Now take any two points x , y . We modify the proof of the Harnack inequality to show that
u( y) /u(x ) = 1 . Take R > | x − y | . We have

u( x ) =
1

| BR |

∫

BR( x )

u > 1

| BR |

∫

BR− | x − y | ( y )

u =

∣∣ BR− | x − y |
∣∣

| BR |
u( y) . ( 1 6)

Taking R↗∞ we conclude u(x ) > u( y) . Switching the role of x and y we have u( y) > u(x ) .
Thus ends the proof. �


