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THE RIEMANN PROBLEM
The Riemann problem for (scalar or system of) conservation laws is the following

u <0
u, x>0

w ), =0, ()= { (1)
1. The Riemann problem for a scalar conservation law.

Our plan is to find out all entropy solutions to this problem. In light of the uniqueness theorem, it suf-
fices to construct one entropy solution for each initial value, that is for each pair of wu;, u,-.

First notice that if u(z,?) is a solution to the scalar conservation law, so is u(Az, At) for any constant
A> 0. Thus it is natural to consider solutions of the special form u(z,t)=U(x/t).

It turns out there are three cases.

1. u;=1wu,. In this case obviously the constant solution u=wug is the entropy solution.

2. f'(u) > f’(ur). In this case we know

u xr<st
t)= 2
u(z,?) {uT r>st (2)
with % = W is an entropy solution, and is thus the entropy solution. Such a solution is

called a shock wave.

3. f'(w) < f'(uy). In this case we try to find a smooth solution of the form U(x/t).
Set £ =x/t, we have
z 1

=vo(-%). U=vo(3) ®)

and the equation becomes

U@ -+ rg] =0 0
which reduces to
—&+ ' (U)=0 (5)
if we assume U’(&) # 0 everywhere.

Now since f” > 0, f’is an increasing function. Therefore for each & € (f'(w), f'(ur)) we can
find a unique U € (u;, u,) such that f'(U)=¢ and furthermore U (§) is differentiable (Implicit Func-
tion Theorem).

Therefore

u; < f(u)t
uz,t) =4 UE) z=£t, Ee(f'(w), f'(ur), f(U)=¢E. (6)

ur x = f(uy).
Such a solution is called a rarefaction wave.
Thus we have completely solved the Riemann problem for scalar conservation laws.

2. Shock inequalities for systems of conservation laws.

Before we try to solve systems of conservation laws, we need to gain some intuition of how the solu-
tions should look like (For scalar conservation law, we reach this goal by analyzing rarefaction waves and
shock waves).

2.1. System of linear constant coefficient first order hyperbolic equations.
We first consider the linear first order hyperbolic system

ug+ Aug, =0 (7)

where u € R™ and A is an constant n X n matrix with n distinct real eigenvalues A1 < Ay < --- < A, (This
means the system is hyperbolic).



A
To solve this equation, let S be the matrix which diagonalize A, thatis S™'1AS=A= ( ' ) or
An
equivalently A=.5 A S~! Now setting v=5""u, we have
vit+Av,=0 (8)

. Ul
If we write v=| :

Un

), we have

(vi), + Ai (vi),, = 0. (9)
Thus we can solve each v; separately.

Keeping in mind that we are aiming at constructing shocks for systems of conservation laws — the rela-
vance can be see by writing

ug+ f(u), =us+ (D f(u)) ug (10)

and note that D f(u) is an n X n matrix now — we study the constant coefficient problem in the domain
{(z,t):t >0,z > s(t)}, where s(t) is “modeling” the shock discontinuity. We assume that the initial values
for all v; have been assigned.

Note that each v; is propagating along the lines
boundary values need to be set along x=s(¢t) + .1

On the other hand, if we are considering {(z,t):t >0, x < s(t)}, it’s those v; with A; < s(t) who need
extra boundary conditions along = =s(t) —.

dsi

- = Ai. This means for those v; with A; > s(t),

2.2. System of linear first order hyperbolic equations.
Now we consider the linear hyperbolic system with variable coefficients.

ur+ Az, t)uy =0 (11)

where the n x n matrix A(x,t) has n distinct eigenvalues at each (z,t): Ai(x,t) < -+ < Ap(z, ). Similar to

)\1 I,t
the constant coefficient case, we take S(z, t) such that S™' A S = A(x, t) = ( =9 ) Setting
An(@, t)
v(z,t)=S"Yx,t)u(z,t), we have
vt—I—A(x,t)vx:S;lu—l—AS;lu:(S{lS—i-AS;lS)v. (12)
For each v; we have
(vi), + Ai(, t) (vi), = fi(S, A, v, 2, t). (13)

Although the equation is complicated, each w; still propagates along the characteristic curve % =

Ai(8i(t),t). Therefore we still have the same conclusion about extra boundary conditions.

2.3. Construction of shock waves.
Finally we return to the context of systems of conservation laws. Writing the equation as

u+ (D f(u)) uy =0 (14)

we denote the eigenvalues of D f(u) by Ai(u) <--- < Ap(u).
Now let = s(t) be a discontinuity. Denote by u, the limiting value of u to the right of it, and by w;
the limiting value from the left. Then we have

—  If Ap(ur) < s <Agg1(ur), then we need n — k boundary conditions along = = s(t) +;
—  If Ap(w) <8 < Amga(w), then we need m boundary conditions along = = s(t) — .

Thus overall we need n — k + m conditions along x = s(t) to be able to determine the solution on both
sides of the discontinuity.

Such conditions can only come from the jump condition (note that s is a scalar, while others are n-
vectors)

s (wr —ur) = f(w) = f(ur) (15)

1. By writing z = s(t) + (or — ) we emphasize the fact that the value only needs to be assigned to the “right side”
(or “left side”) of the curve x = s(t).



which consists of n equation. If we eliminate s from it, we are left with n — 1 conditions on u;, u.
As a consequence, to make the problem solvable, we have to require

n—k+m=n—-1<+<= m=k—-1. (16)

In other words, a “reasonable” discontinuity must satisfy

Ao(ur) <8< Agg1(ur),  Ap—1(w) <5< Ag(w) (17)
or equivalently,

)\k(ur) <s< )\k(ul), )\k_l(ul) <s< )\k+1(uT) (18)
for some k € {2, ..., n — 1}. Such a discontinuity is called a k-shock wave, emphasizing the fact that it is
a “shock” if we focus on the k-th equation:

(k) + Ak(v) (k) = fh- (19)

Remark 1. In the special case Ap(u;) = s = Ag(u,), no shock inequalities are needed. One can check that
correct numbers of conditions are present on both sides. This corresponds to the so-called “contact discon-
tinuities”.

3. Rarefaction waves.
A rarefaction wave is a smooth solution (in part of space-time, of course) which can be written as

u(z,t)=U(z/t). (20)
Letting £ =x/t, the system becomes
(¢1-Df)Ue=0. (21)
Therefore £ is an eigenvalue of D f and Ug is the corresponding eigenvector.
The condition
(€1 =Df(U))Ug=0 (22)
can be seen as an ODE system with the unknown U (which is an n-vector) as a function of £. In practice,

the question is starting from U = u; at & = A(w;), can we solve this equation to obtain U(§) so that the
solution exists till & = A(u,)? We will see that in general this cannot be done.

4. Solving systems of conservation laws — the p-system.
As a highly non-trivial example illustrating what we have learned so far and at the same time indi-
cating what a general theory should be like, we try to solve the Riemann problem for the p-system:

vi—uy = 0 (23)
u+p(v), = 0 (24)

which can be rewritten as
Uﬁ—F(U)w:O (25)

where U = ( v ) F(U)= ( e ) with initial data

We further assume p’ <0, p”’ > 0. An example of such a system is the governing equations for isentropic or
polytropic gas dynamics where p(v) =kv~ " with v € (1, 3).
It is easy to calculate

DF(U)—< p,?v) " ) (27)



which gives

MU)=—+/—p'(v) <0< /= D'(v) = (V). (28)
Our plan is to start from Uj, and try to “connect” to U, using finitely many shock waves and rarefaction
waves. It turns out that, starting from any ( ) € R?, the states that can be connected to it by either a

shock or a rarefaction wave lies on a particular curve. Therefore the Riemann problem is solvable only
when U; and U, can be connected by finitely many such curves. Thus the first thing is to identify these
curves. In other words, we need to identify all possible shocks and rarefaction waves.

4.1. Possible shocks.
From our discussion on shocks, we know there are two possibilities:

—  1-shock:

A(Ur) <s<AM(Uy), s<X2(Uy). (29)
—  2-shock:

A2(Uy) <s < Aa(Uy), s> Ai(Uh). (30)

As A1 <0 and Ay > 0, we have s <0 for 1-shocks and s >0 for 2-shocks.

A) 1-shocks. We solve all states ( . ) that can be connected to ( ) by a 1-shock.
The conditions are

s(v—u) = —(u—uw) (31)
s(u—u) = pv)—plv) (32)
V=0 (v) < s < —y/=p'(w) (33)
Eliminating s from the jump conditions, we obtain

u—u ==+ \/ (v—uy) (p(v) — p(vy)). (34)

Now since
—V=p'(v) <= V/=p'(v) (35)

we obtain

p'(v) <p'(v) = v<uy (36)

dueto p” > 0. Now v — v; < 0 and s < 0 gives u — u; < 0 which means we need to take the minus
sign:

w—w =1/~ (v~ o) (p(v) — p(e1))- (37)

Thus any ( ) that can be connected to ( - ) by a 1-shock must lie on the curve

Si: u—w=+/—(v—u) (p(v) —p(w)) =s1(v; Uy). (38)
Note that, in this case
s=—+/=1'(0) (39)
for some 6 € (v, v;) and therefore satisfies the condition for the 1-shock.

B) 2-shocks. Similarly, the conditions are

s(v—v) = —(u—1uw) (40)
s(u—w) = p(v)—p(v) (41)
—p'(v) < s < y/=p'(u). (42)

By a similar argument as for the 1-shock, we see that any ( ) that can be connected to ( Zl ) via
l
a 2-shock must lie on

So: u—uw=—+/(v—u) (p(v) — p(w)) = s2(v; Uy). (43)




4.2. Possible rarefaction waves.
The conditions for a rarefaction wave solution is

(= 2 ) ()= w0

We take A=)\ and A3 to obtain the 1- (2-) rarefaction waves.

A) l-rarefaction wave.
Recall that A\; =—+/— p’(v) we have

—v/=p' (V) ve+us = 0. (45)

Note that as A; is an eigenvalue, the other equation is redundant. From this we have

N O e et (9

for all (Z) what can be connected to (ZZL ) by a l-rarefaction wave. Next note that in fact we

must have & = A1 which means A; is either increasing or decreasing. When \; is decreasing we
should use a 1-shock, therefore Ai(v) > Ai(v;) which means v > v; due to the assumptions on p.

Thus we denote
Ry: u—ulz/ V=0'(y)dy=ri(v,U), v>u. (47)
v

This is the curve passing all ( Z ) which can be connected to U; by a 1-rarefaction wave.

B) 2-rarefaction wave.
Similarly, we have

Ra: u—ulz—/ V=0'(y)dy=ra(v; Uy), v >wv. (48)
vy

4.3. Solving the p-system.

It turns out that when we vary Uj, the four “half-curves” R; Ra, Si, S2 cover the whole R? for inter-
esting p.2 This means we can solve the Riemann problem by connecting U; and U, using at most two
waves, see pp. 317 — 320 of Smoller’s book for details.

5. Solving systems of conservation laws — general theory.

We will proceed in a somewhat not-fully-rigorous manner. For details and subtleties see Chapter 17 of
Smoller’s book.

We denote by A1, ..., Ak, I1, ...y lg, 71, ..., 7% the eigenvalues, left eigenvectors and right eigenvectors of
D f. The dependence on u should be understood and is made implicit.

5.1. Riemann invariants and rarefaction waves.
Recall that u(z,t) =U(z/t) is a k-rarefaction wave if Ug || r5. Now if w is a function of w such that

T V=0 (49)
then we have

Ug-Vuw:0(:)di§w:O (50)
which means w is invariant along any curve tracing the change of u through a rarefaction wave. Such w is
called a k-Riemann invariant.

Treating r; - Vw = 0 as a 1st order PDE, we see that in general we can find n — 1 independent solu-
tions in the sense that their gradients are linearly independent at every point. Thus for each k, there are
n — 1 k-Riemann invariants.

2. See pp. 312 — 316 of Smoller’s book.



Now consider the n — 1 level sets of these Riemann invariants. Their intersection is a curve which is
tangent to 7 everywhere. If wu; is on one of these curves, all the possible u’s that can possibly be con-
nected to wu; has to lie on the same curve.

One should keep in mind that as r; depends on u, the equation 7y - V,w = 0 is quasi-linear and there-
fore we can only expect local existence of these curves.

Example 2. Consider the p-system
v — Uy =0, ug+p(v), =0. (51)

We have f :( ;(;) ) and D f :( p,?v) _01 ) which leads to

AM=—+/=p(v), Aa=+/—p'(v) (52)

= ( —:;)/(’U) )7 T2 = ( ;/:(lv) ) (53)

Thus we can try to solve, say, the 2-Riemann invariants from

— vw+\/m8uwzr2-V( )w:O. (54)

and

v
u

The solution is given by

w:u—l-/v Vv —0'(y) dy. (55)

From the above discussion we can formulate the following definition.

Definition 3. Let u be a C*! solution in a domain D, and suppose that all k-Riemann invariants are con-
stant in D. Then u is called a k-simple wave (or a k-rarefaction wave).

Remember that for systems of conservations, in general w is not constant along the characteristic
curves anymore, and as a consequence, these characteristic curves are not straight lines anymore. How-
ever, for simple waves, these curves are still straight!

Theorem 4. Let u be a k-simple wave in a domain D. Then the characteristics of the kth field
dz

— = 56
are straight lines and w is constant along them.
Proof. Let wy, ..., w,—1 be the k-Riemann invariants. We know that they remain constants along the

characteristic curve, in other words, if s is a parameter along this curve, we have

dw,; du

Furthermore, multiplying the equation by [ from the left, we have

d
lk~d—Z:lk-(ut+)\kuz):O. (58)

Since Iy - 7 # 0 and 7 - Vw; =0 for all j =1,...,n — 1, we conclude that I, Vws, ..., Vw, _1 are linearly
independent and % =0 immediately follows. 0

Now we try to establish the existence of k-simple waves. Recall that u(x,t) = U(z/t) being a k-simple
wave if and only if

(61— Df(U)) Ue=0 (59)



where £ =x/t. This leads to two conditions

Ue || ri(U) and %({U):l' (60)
Thus it is natural to try
T=nU©),  Ulww)=u, (61)

As we start from the left side of the wave, necessarily £ > Ag(w;). The solution to the above nonlinear
ODE/PDE exists locally.
Now we need to check the second condition, we compute

dAx(U(§))

qe o =Ue Vadk=ri- Vi (62)
The requirement that it equals 1 becomes the condition
Tk V=1 (63)

which is guaranteed only when 74 - V, A # 0. The kth characteristic family is said to be genuinely non-
linear when this is satisfied.

Example 5. Consider the scalar conservation law u; + f(u), = 0. In this case A(u) = f’(u) and the gen-
uine nonlinearity thus becomes the condition

f'(u)#0 (64)

or equivalently f”(u)> 0.

Summarizing the above, we obtain the following theorem after some more computation (see pp. 326 —
327 of Smoller’s book):

Theorem 6. Let the kth characteristic field be genuinely nonlinear in a domain N, and mormalized so
that ry, - VA =1. Let u; be any point in N. There exists a one-parameter family u=u(e) with 0 <e < a,
u(0) =y, which can be connected to u; on the right by a k-centered simple wave. The parametrization can
be chosen so that w=ry and U =1y

Remark 7. Using the Riemann invariants, we see that u is the implicit function defined by

wa(w) — wr(ur)
F(u)= )
(u) Wn—1(w) — wp—1(w)
)\k(u) — /\k(ul) — £
And the genuine nonlinearity is equivalent to the non-singularity of the Jacobian matrix.

Remark 8. One can see that genuine nonlinearity is in fact a condition on the second derivative of f
(which is a 3-tensor). Let A=D f. We have Ary = \,rg. Taking ri-V we obtain

T VAry+A(rg-Vre) = (k- VAg) 1+ Ak (g - Vrg). (66)
Multiply by I from the left, we have
lg-(ri-VA) -rp=(g-15) (1 - V). (67)
As I, - r,# 0, the conclusion follows.

5.2. Shocks.
Any shock must satisfy the jump condition

s (u—w)= f(u) = f(w) (68)



which after canceling s become n — 1 equations. It’s tempting to use implicit function theorem directly to
obtain an one-parameter solution curve, but this turns out to be too good to be true as u = u; obviously
solves the system.

Instead we re-write the jump condition as

s(u—ul)—l/o disf(ulJrs(u—ul))ds (= w) = Gu) (u—w). (69)

Thus w;, u form a shock with speed s if and only if s is an eigenvalue of G and u — wu; is the corresponding
eigenvector.

Now using hyperbolicity, when u is close enough to u;, we can assume G having n distinct eigenvalues
p1 < --- < py, with corresponding eigenvectors Ly, ..., L,. Thus the condition that v — w; being the kth
eigenvector is the same as

L;-(u—w)=0, JFk. (70)

We apply the implicit function theorem to obtain the solution curve u = u(e). Such curves are called k-
shocks.
As L;—1;, it is easy to see that 4 (0) || 5. Furthermore we have

Proposition 9. Along the k-shock, if the kth characteristic field is genuinely nonlinear, we can choose a
parametrization so that ug(0) = rg, and Ux(0) = 7y where the RHS are both at w;. Moreover, with this

o . 1
parametrization s(0) = Ag(w;) and $(0) = 5
Proof. This done by taking derivatives of the jump condition as well as the relation (D f) i = A\ 7k. See
Smoller pp. 330 — 331 for details. O

Remark 10. What’s important to notice here, is that the curves for shocks and rarefaction waves has
the same first and second derivatives at u;. Furthermore when w; and u are close, that is the shock

is “weak”, the shock speed s~ M

Remark 11. One can further show by direct computation that the change in a k-Riemann invariant
across a k-shock is of third order in €. See Smoller pp. 332 — 333 for details.

The last thing we need to do for k-shocks is to verify that they are indeed shocks, in the sense that
they satisfy the entropy conditions

/\kfl(ul)<s(u)<)\k+1(u), )\k(u)<s(u)</\k(ul). (71)

Theorem 12. The shock inequalities hold along the curve u=wu(e) if and only if € <0.

Proof. Ap_1(w;) < s < Ap+1(u) automatically holds when u and u; are close enough as s(0) = Ag(w;) €
(Me—1(wr), Ak+1(w)). For s < Ag(ui), we note that s(0) = A\x(w;) and $(0) = % Therefore s(u) < Ag(uy) if
and only if £ <0.

When € < 0, Ag(u) < s(u) is satisfied because $(0) = % while Az = 7% - VA, = 1 due to genuine nonlin-
earity. O

Remark 13. Now we can “connect” the curves for the k-simple waves and the k-shocks to obtain n C?
curves passing u;. These curves form a local coordinate system and as a consequence, all states u, close
enough to u; can be reached through n — 1 intermediate states.

5.3. Contact discontinuities.

What happens when the k-th characteristic field is not genuinely nonlineair? We assume that 7y -
VAr=0in a domain V. The characteristic field is said to be linearly degenerate here.

In this case, A; is a Riemann invariant and therefore is constant along the curve

d
d—Z:Tk, u(0) = uy. (72)



Now for any u on this curve, we can define

) ow x<t)\k(ul)
v(:v,t)—{ u x>t p(u) = Ap(w) (73)

Such a discontinuous solution is called a “contact discontinuity”. To see that it satisfies the jump condi-

tion, we differentiate
d

de

which immediately leads to the jump condition.

[f(u) =su]=(Df)re— A =0 (74)

Remark 14. Recall how we obtain the shock inequalities by considering boundary conditions along the
two sides of a discontinuity. In the case of a contact discontinuity, there is a “jump”, but since the charac-
teristic curves are straightlines parallel to this jump, the two sides just do not interfere with each other.

5.4. Solving the general Riemann problem.

Theorem 15. Let u; € N and assume that the system is hyperbolic with each characteristic field either
genuinely nonlinear or linearly degenerate in N. Then there is a neighborhood of w; such that if u, in this
neighborhood, the Riemann problem has a solution. The solution consists of at most (n + 1) constant
states separated by shocks, centered simple waves, or contact discontinuities. There is precisely one solu-
tion of this kind in this neighborhood.

Proof. See Smoller pp. 335 — 336. O

Further readings.

e J. Smoller, Shock Waves and Reaction-Diffusion Equations, §D of Chapter 16, §D of
Chapter 15, Chapter 17.

Exercises.

Exercise 1. Let u(x,t) be a weak solution of the scalar conservation law with initial value ug(z). Show that for any X >
0, u(Ax,At) is a weak solution for the same equation with initial value ug(A x).

Exercise 2. Let s be the speed of a k-shock. What is the relation between s and other eigenvalues, that is X;(uz), Ai(ur)
with i< k7 Is it possible that a k-shock is at the same time a m-shock for some m# k?

Exercise 3. Consider the scalar conservation law, write it as us + f’(u) uy =0. Then use the argument presented in this
lecture to show that, if z =s(t) is a discontinuity, then we need the shock condition

fl(ur) > s> f'(ur) (75)

to determine the solution on both sides.



