The Single Conservation Law: Asymptotics

In this lecture we study the behavior of entropy solutions at t / ∞. Intuitively, the total variation of the solution for each fixed t decreases as t / ∞. Therefore we expect converging behavior as $t \nearrow \infty$.

1. Uniform decay for initial values with compact support.

First note that we can always replace f by $f-c$ and also do the change of variables $x^{\prime}=x-f^{\prime}(0) t$ such that the equation reduces to

$$
\begin{equation*}
u_{t}+f(u)_{x}=0,\left.\quad u\right|_{t=0}=u_{0} \tag{1}
\end{equation*}
$$

with $f(0)=f^{\prime}(0)=0$. Recall that we always assume $f^{\prime \prime}>0$.
We will prove the following theorem.
Theorem 1. (Uniform decay) Assume that $f^{\prime \prime}>0, f(0)=f^{\prime}(0)=0$, and that $u_{0}(x)$ is a bounded measurable function having compact support. Then the unique entropy solution decays to 0 uniformly at a rate $t^{-1 / 2}$ as $t \nearrow \infty$.

- Main idea.

Since $f^{\prime \prime}>0$, there is $\mu>0$ such that $f^{\prime \prime}>\mu$ for all $u \in\left[-\left\|u_{0}\right\|_{L^{\infty}},\left\|u_{0}\right\|_{L^{\infty}}\right]$ which leads to

$$
\begin{equation*}
f^{\prime}(u)=f^{\prime}(u)-f^{\prime}(0)=f^{\prime \prime}(\xi) u \quad \Longrightarrow \quad|u| \leqslant\left|f^{\prime}(u)\right| / \mu \tag{2}
\end{equation*}
$$

Now recall the equation for (backward) characteristics,

$$
\begin{equation*}
x=x_{0}+f^{\prime}\left(u_{0}\left(x_{0}\right)\right) t \quad \Longrightarrow \quad\left|f^{\prime}\left(u_{0}\left(x_{0}\right)\right)\right| \leqslant \frac{\left|x-x_{0}\right|}{t} \tag{3}
\end{equation*}
$$

Combine the above, we obtain

$$
\begin{equation*}
|u| \leqslant c \frac{\left|x-x_{0}\right|}{t} \tag{4}
\end{equation*}
$$

The desired result follows if we can show $\left|x-x_{0}\right|<C t^{1 / 2}$ for all (x, t) in the support of u. It suffices to show that the support of $u(\cdot, t)$ grows no faster than $C t^{1 / 2}$.

- A technical remark.

The equation for characteristics only holds in the smooth part of the solution. According to a theorem by R. DiPerna, ${ }^{1}$ when $f^{\prime \prime}>0$ the solution is always piecewise smooth. Furthermore note that for any entropy solution, the backward characteristic can always reach $t=0$.

- Now we try to obtain the bound on the growth of the support of $u(\cdot, t)$. Denote by $s_{+}(t)$ the infimum of x such that $u(y, t)=0$ for all $y>x . s_{-}(t)$ is defined similarly. Thus the goal is to show

$$
\begin{equation*}
s_{+}(t)-s_{-}(t) \leqslant C t^{1 / 2} \tag{5}
\end{equation*}
$$

Fix $t=T$. Note that $u\left(s_{+}(T)+, T\right)=0$. Now if $u\left(s_{+}(T)-, T\right)=0$, then we have $\frac{\mathrm{d}}{\mathrm{d} t} s^{+}(t)=0$ at $t=$ T;

If $u\left(s_{+}(T)-, T\right)>0(<0$ is prohibited by the entropy condition), consider the region enclosed by the backward characteristic from $\left(s_{+}(T), T\right), t=0$, and $x=s_{+}(T)$. Call the three curves Γ_{1}, Γ_{2}, Γ_{3}.

Integrating the equation

$$
\begin{equation*}
u_{t}+f(u)_{x}=0 \tag{6}
\end{equation*}
$$

over this region and using the jump condition, we obtain

$$
\begin{equation*}
\int_{\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}} u \mathrm{~d} x-f(u) \mathrm{d} t=0 . \tag{7}
\end{equation*}
$$

[^0]Now along $\Gamma_{1}, u=u\left(s_{+}(T)+, T\right)$ (denote by \bar{u}) which gives

$$
\begin{equation*}
\int_{\Gamma_{1}}=\int_{0}^{T}\left[u f^{\prime}(u)-f\right) \mathrm{d} t=T\left[\bar{u} f^{\prime}(\bar{u})-f(\bar{u})\right] \tag{8}
\end{equation*}
$$

Along Γ_{2} we have

$$
\begin{equation*}
\int_{\Gamma_{2}}=-\int_{y}^{\infty} u_{0}(x) \mathrm{d} x \tag{9}
\end{equation*}
$$

where y is the intersection of Γ_{1} and $t=0$.
Along Γ_{3} we have

Therefore we have

$$
\begin{equation*}
\int_{\Gamma_{3}}=0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
T\left[\bar{u} f^{\prime}(\bar{u})-f(\bar{u})\right] \leqslant \max _{y} \int_{y}^{\infty} u_{0}(x) \mathrm{d} x . \tag{11}
\end{equation*}
$$

Expanding f at 0, we have

$$
\begin{equation*}
u\left(s_{+}(T)+, T\right) \leqslant C t^{-1 / 2} \tag{12}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
s^{+} \leqslant C t^{1 / 2} \tag{13}
\end{equation*}
$$

The bound on s^{-}is estimated similarly.

2. Asymptotic profile for initial values with compact support.

We use the following notation:

Define

$$
\begin{equation*}
q \equiv \max _{y} \int_{y}^{\infty} u_{0}(x) \mathrm{d} x,-p \equiv \min _{y} \int_{-\infty}^{y} u_{0}(x) \mathrm{d} x, k=f^{\prime \prime}(0) \tag{14}
\end{equation*}
$$

$$
w(x, t)=\left\{\begin{array}{ll}
\frac{x}{k t} & s_{-}-\sqrt{2 k p} t^{1 / 2}<x<s_{+}+\sqrt{2 k q} t^{1 / 2} \tag{15}\\
0 & \text { otherwise }
\end{array} .\right.
$$

This function is called an " N-wave" due to its shape at every fixed t. Then we have

$$
\begin{equation*}
\|u(\cdot, t)-w(\cdot, t)\|_{L^{1}(\mathbb{R})}=O\left(t^{-1 / 2}\right) \quad \text { as } \quad t \nearrow \infty \tag{16}
\end{equation*}
$$

In other words, as t / ∞, all the details in the initial data are lost.
To see why such convergence makes sense, we take any (x, t) and let $y(x, t)$ be the intersection of the backward characteristic and the x-axis. Thus we have

$$
\begin{equation*}
u(x, t)=u_{0}(y, t) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
x=y(x, t)+f^{\prime}\left(u_{0}(y(x, t))\right) t=y(x, t)+f^{\prime}(u(x, t)) t=y(x, t)+f^{\prime \prime}(\theta) u t+O\left(u^{2}\right) t \tag{18}
\end{equation*}
$$

Since $u=O\left(t^{-1 / 2}\right)$ as $t \nearrow \infty, \theta=O\left(t^{-1 / 2}\right)$ and therefore

$$
\begin{equation*}
x=y(x, t)+f^{\prime \prime}(0) u t+O\left(u^{2}\right) t=y(x, t)+k u t+O(1) . \tag{19}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
u(x, t)=\frac{x}{k t}+O\left(t^{-1}\right) \tag{20}
\end{equation*}
$$

Combine with

$$
\begin{equation*}
s_{+}(t) \leqslant s_{+}+\left[\sqrt{2 k q}+O\left(t^{-1 / 2} \ln t\right)\right] t^{1 / 2}, \quad s_{-}(t) \geqslant s_{-}-\left[\sqrt{2 k p}+O\left(t^{-1 / 2} \ln t\right)\right] t^{1 / 2} \tag{21}
\end{equation*}
$$

leads to the result.
For details see J. Smoller book pp. 295-297.

3. Convergence for periodic solutions.

When the initial value is periodic, we have better decay rate.
Theorem 2. Let $f^{\prime \prime}>0$ and let $u_{0} \in L^{\infty}(\mathbb{R})$ be piecewise monotonic periodic function of period p. Then we have

$$
\begin{equation*}
\left|u(x, t)-\bar{u}_{0}\right| \leqslant \frac{2 p}{h t} \tag{22}
\end{equation*}
$$

where $\bar{u}_{0}=\frac{1}{p} \int_{0}^{p} u_{0}(x) \mathrm{d} x$, and $h \equiv \min \left\{f^{\prime \prime}(u):|u| \leqslant\left\|u_{0}\right\|_{L^{\infty}}\right\}$.
The idea again is the consider backward characteristics. Since u_{0} is piecewise monotonic and periodic, so is u at any time t. Let y_{1}, \ldots, y_{n} be the points where u changes from increasing to decreasing or vice versa, at time t. Then due to periodicity,

$$
\begin{equation*}
\text { Total variation of } u=2 \sum_{i \text { odd }} u\left(y_{i}, t\right)-u\left(y_{i+1}, t\right)=2 \sum_{i \text { even }} u\left(y_{i}, t\right)-u\left(y_{i-1}, t\right) . \tag{23}
\end{equation*}
$$

Here we have assumed that $\left[y_{1}, y_{2}\right],\left[y_{3}, y_{4}\right], \ldots$ are the decreasing intervals.
Now if we consider backward characteristics (which are straight lines!) starting from y_{i} 's, we would have

$$
\begin{equation*}
p \geqslant \sum_{i \text { odd }}\left(y_{i+1}-y_{i}\right)+\left[\sum_{i \text { odd }} u\left(y_{i}, t\right)-u\left(y_{i+1}, t\right)\right] t \geqslant\left[\sum_{i \text { odd }} u\left(y_{i}, t\right)-u\left(y_{i+1}, t\right)\right] t \tag{24}
\end{equation*}
$$

This shows the total variation of u decays like t^{-1}, and the desired result follows.

Further readings.

- J. Smoller, Shock Waves and Reaction-Diffusion Equations, §C of Chapter 16.

[^0]: 1. R. J. DiPerna, Singularities of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal., 60, 75-100, 1975.
