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The S ingle Conservation Law: Existence and Uniqueness

In this lecture we will prove the existence and uniqueness of entropy solutions to the single conservation
law

ut + f (u) x = 0 , u( x , 0) = u0 ( 1 )

where f ′ ′ > 0 .

• Many details of the proofs are omitted, because some of them are too hard while some others too
easy. Anyone interested in these details should read Chapter 1 6 of Smoller’ s book.

1 . Existence of entropy solution.

Theorem 1 . Let u0 ∈ L∞ (R) , and let f ∈ C2
(
R) with f ′′ > 0 on

{
u : | u | 6 ‖ u0 ‖ L∞

}
. Then there exists a

weak solution u with the following properties:

a ) | u( x , t) | 6 ‖ u0 ‖ L∞ ≡M, ( x , t) ∈ R × R+ .

b ) There is a constant E > 0 , depending only on M, µ = min
{
f ′′(u) : | u | 6 ‖ u0 ‖ L∞

}
and A = max{

| f ′( u) | : | u | 6 ‖ u0 ‖ L∞
}
such that for every a > 0 , t > 0 , and x ∈ R ,

u(x + a , t) − u(x , t)

a
<
E

t
. ( 2 )

c ) u is stab le and depends continuously on u0 in the following sense: If v0 ∈ L∞ (R) with ‖ v0 ‖ L∞ 6
‖ u0 ‖ L∞ , and v is the corresponding solution constructed from the process in the proof, then for
every x1 , x2 ∈ R with x1 < x2 , and every t > 0 ,

∫

x 1

x 2

| u(x , t) − v ( x , t) | dx 6
∫

x 1 − At

x 2 +At

| u0 (x ) − v0 ( x) | dx. ( 3)

Remark 2. We first check that a) – c) are satisfied by every C1 solution. In particular, recall that when
u is C1 , we have

u(x , t) = u0 (x0 ) ( 4)

where x0 + f ′(u0 ( x0 ) ) t = x . Thus

u(x , t) = u0 (x − f ′(u(x , t) ) t) . ( 5)

Differentiating we obtain

ux ( x , t) = u0
′ ( x0 ) [ 1 − f ′ ′(u) ux t ]

�
ux ( x , t) =

u0
′ (x0 )

1 + u0
′ (x0 ) f ′ ′(u0 (x0 ) ) t

6 (min f ′ ′) − 1

t
. ( 6)

Remark 3. Note that c) implies the uniqueness only for solutions obtained from the construction in the
proof. This does not exclude the existence that other entropy solutions not obtained from the particular
construction process.

Remark 4. The entropy condition implies some regularity in the solution. More specifically, recall that
the “total variation” of a function f over an interval [a , b ] is defined as

‖ f ‖ TV ≡ sup
n∈ N

a= a 1 < a 2< � < an= b

∑

i= 1

n− 1

| f ( ai) − f ( ai− 1 ) | . ( 7)

For any t > 0 , take c > E/ t , we see that u( x , t) = v (x ) + c x where v ( x) is decreasing. It is easy to verify
that

‖ u ‖ TV 6 ‖ v ‖ TV + ‖ c x ‖ TV < ∞ ( 8)

over any finite interval. Therefore although the initial data is only L∞ , the solution becomes more regular
as soon as t > 0 in the sense that it has locally bounded total variation for each t > 0 .



One can easily show that, a function with locally bounded total variation can have at most countably
many jump discontinuities, and is differentiable almost everywhere.

Now we sketch the proof of the theorem. The idea is to consider the following finite difference dis-
cretization of the equation

un
k+ 1 −

(
un+ 1
k + un− 1

k
)
/ 2

∆ t
+
f
(
un+ 1
k

)
− f
(
un− 1
k

)

2 ∆x
= 0 ( 9)

with initial values

un
0 ≡ u0 (n∆x ) ( 1 0)

and show that

− The solution satisfies the discrete versions of a) , b) , c) .

− As ∆t , ∆x ↘ 0 , the discrete solutions ( or a subsequence of them) converge to a weak solution satis-
fying a) , b) , c) . The convergence would be a weak version of unk → u(n∆x , k ∆t) .

1 . The discrete solutions satisfy a) – c) . Recall the notation M ≡ ‖ u0 ‖ L∞ , µ = min
{
f ′ ′(u) : | u | 6

‖ u0 ‖ L∞
}
and A = max

{
| f ′(u) | : | u | 6 ‖ u0 ‖ L∞

}
.

a) Show that
∣∣ unk
∣∣ 6 M for all n ∈ Z , k ∈ Z+ ∪ { 0} .

Some manipulation of the difference equation gives

un
k+ 1 =

(
1

2
+

∆ t

2 ∆x
f ′
(
θn
k
) )

un− 1
k +

(
1

2
− ∆ t

2 ∆x
f ′
(
θn
k
) )

un+ 1
k . ( 1 1 )

This implies ∣∣∣ unk+ 1
∣∣∣ 6 max

{ ∣∣ un− 1
k

∣∣ ,
∣∣ un+ 1
k
∣∣ } ( 1 2 )

as long as the CFL condition
A∆t

∆x
6 1 ( 1 3)

is satisfied.

b) Let

E ≡ min ( µ/ 2 , A/4M)
− 1 . ( 1 4)

We will show that
un
k − un− 2

k

2 ∆x
6 E

k ∆t
. ( 1 5)

Note that this implies
un
k − un− 2m

k

2 m∆x
6 E

k ∆t
( 1 6)

which is the discrete version of the entropy condition.
The proof is too long to be included here. Details can be found in J. Smoller’ s book, pp.

269 – 272 .

c) Let
{
un
k
}
and

{
vn
k
}
be solutions corresponding to the initial values

{
un

0
}
and

{
vn

0
}
, respec-

tively, with sup
∣∣ un0
∣∣ , sup

∣∣ vn0
∣∣ 6 M . Then for k > 0 we have

∑

| n | 6 N

∣∣ unk − vnk
∣∣ ∆x 6

∑

| n | 6N+ k

∣∣ uk0 − vk0
∣∣ ∆x. ( 1 7)

The proof of this is very similar to that of a) after setting wn
k ≡ un

k − vn
k and representing

wn
k+ 1 by wn− 1

k and wn+ 1
k .

2 . Convergence to entropy solutions

• Preparations – uniform bounds.



To be able to pass to the limit, we need the following bounds ( proofs are omitted. See
Smoller’ s book for details) :

a. L∞ bound. This has already been established in the first step;

b. TV bound. We have ∑

| n | < X/∆x

∣∣ un+ 2
k − unk

∣∣ 6 c ( 1 8)

for any X > 0 and k ∆t > α > 0 . The RHS c depends on X and α .

c. L1 local Lipschitz continuity in t . We have

Lemma. If ∆ t/∆x > δ > 0 , and ∆t , ∆x 6 1 , then there exists an L > 0 , independent
of ∆ t , ∆x , such that if k > p, k − p is even and p∆ t > α > 0 ,

∑

| n | 6 X/ ∆x

∣∣ unk − unp
∣∣ ∆x 6 L ( k − p) ∆t. ( 1 9)

A similar estimate for k − p odd also holds.

Note that the above is the discrete version of the L1 local Lipschitz continuity in
t :

‖ u(x , t) − u(x , t ′) ‖ L 1 ( − X , X )
6 C | t − t ′ | . ( 20)

The reason why k − p is even or odd matters is that un
k+ 1 depends on un

k − 1 but not
un
k .

• The limit exists.
The first thing we need to settle is in what sense are we talking about the convergence,

as for each ( ∆ t , ∆x)
{
un
k
}
is just a bunch of numbers, while the alleged limit is a function.

To fix this, we define a function U∆t , ∆x out of each
{
un
k
}
as follows:

U∆ t , ∆x (x , t) = un
k for all n∆x 6 x < (n + 1 ) ∆x , k ∆ t 6 t < ( k + 1 ) ∆t. ( 21 )

We will now show that there is a subsequence Ui(x , t) which is a Cauchy sequence in L1 .
More specifically, we show

Lemma. There exists a subsequence {Ui } ⊂ {U∆ t ,∆x } which converges to a measurab le
function u(x , t) in the sense that for any X > 0 , t > 0 , and T > 0 , both

∫

| x | 6 X
| Ui(x , t) − u(x , t) | dx � 0 ( 22 )

and ∫

06 t6 T

∫

| x | 6 X
| Ui(x , t) − u(x , t) | dx dt � 0 . ( 23)

Proof. The main steps are the following.

a. Fix any k > 0 . S ince U∆ t ,∆x ( · , k ∆ t) ’ s are uniformly bounded and each U∆ t ,∆x has
locally finite total variation and therefore can be written as the difference of two
monotone functions, we can find a subsequence converging pointwise according to a
theorem obtained by E. Helley in 1 91 2 . 1

1 . The “Helley Selection Theorem” says, every sequence of uniformly bounded sequence of monotone functions contains a
subsequence which converges at every point .

To see this , note that first by the standard diagonal argument we can find a subsequence ( all subsequences will still be
denoted { fn } ) which converges on a countable dense subset of R , say Q . Denote the limit by f . Now we extend the defini-
tion of f from Q to the whole R by setting f ( x ) = supr∈ Q , r6 x f ( r) ( wlog we can assume all fn are non-decreasing, thus f is
non-decreasing over Q ) . Such f (x ) is non-decreasing and therefore can have only countably many discontinuities. We choose
a subsequence once more to obtain fn such that { fn( x ) } is Cauchy for all x ∈ Q and for all x which is a discontinuity of f .
F inally, at any continuous point of f , fn( x ) � f (x ) by the standard ε/3 argument.



b. For this subsequence, Lebesgue’ s dominated convergence theorem implies Ui( x , t) con-
verges in L1 for this particular t = k ∆ t .

c. By a diagonal argument, we can obtain a new subsequence Ui( x , t) which converges in
L1 for all t ∈ Q+ .

d. By the standard ε/ 3 -type argument, we can show that Ui( x , t) converges in L1 (R) for
every t . Denote the limit by u(x , t) .

e. S ince Ui is uniformly bounded, so is u , and therefore ‖ Ui − u ‖ L 1 ( − X , X )
is a bounded

function in t . Application of Lebesgue’ s dominated convergence theorem then gives
∫

06 t6 T

∫

| x | 6 X
| Ui(x , t) − u(x , t) | dx dt � 0 . ( 24)

�

• The limit satisfies the entropy condition.
This follows from straightforward computation of

Ui(x , t) − Ui( x ′ , t)
x − x ′ ( 25)

combined with the pointwise convergence.

• The limit is a weak solution.

a. First as u0 ∈ L∞ and therefore locally L1 , Ui( x , 0) → u0 in L1 .

b. In this last step, we take any φ ∈ C0
3 , multiply the difference equation by φn

k ∆x ∆t
where φnk = φ (n∆x , k ∆t) , and then sum over n, k . It is easy to obtain

lim
n , k↗∞

∫∫
[Uiφt + f (Ui) φx ] +

∫

t= 0

Ui φ = 0 ( 26)

which immediately gives the same equality for u .

2. Uniqueness of entropy solution.
To show uniqueness, we need to show that if u , v are two entropy solutions, then necessarily u − v = 0

for almost all (x , t) . S ince u , v ∈ L1 , we only need to show that uε − vε = 0 for all ε where uε =
1

ε
ρ
( x
ε

)
∗ u

is the mollified function from u . As uε and vε are smooth, we finally see that the only thing need to be
shown is ∫

(u − v ) φ = 0 ( 27)

for all φ in, say, C0
1 .

• Main idea of the proof.
What we have is the weak formulation which is satisfied by both u and v :

∫∫
u ψt + f (u) ψx +

∫

t= 0

u0 ψ = 0 ,

∫∫
v ψt + f ( v ) ψx +

∫

t= 0

v0 ψ = 0 ( 28)

where ψ is any C0
1 function.

Subtracting the two equations, and remembering u0 = v0 , we have
∫∫

(u − v )

[
ψt +

f (u) − f ( v )

u − v ψx

]
= 0 . ( 29)

Now setting F(x , t) ≡ f ( u) − f ( v )

u − v , all we need to do is to show that for any φ ∈ C0
1 , we can find ψ ∈

C0
1 such that

ψt + F( x , t) ψx = φ. ( 30)

The fn constructed converges everywhere, the limit is f at all rat ional points as well as all points where f is continuous,
at the remaining points , the limit may be other values than f ( x ) .



For initial conditions, we assume φ = 0 for t > T and take ψ = 0 along t = T .

• Where’ s the catch.
The above transport equation can be solved ( formally) by the method of characteristics. Let

x ( t) solves
dx

dt
= F(x ( t) , t) , ( 31 )

we obtain
dψ

dt
( x( t) , t) = φ (x ( t) , t) , ψ

�
t=T = 0 ( 32 )

which leads to

ψ ( x( t) , t) =

∫

T

t

φ ( x( s ) , s ) ds . ( 33)

Remember that we want ψ ∈ C1 and at the same time has compact support.

− Does ψ have compact support?
Recall first that we solve ψ by setting ψ = 0 for t > T . Next notice that ψ can be non-

zero only along those characteristics which passes the support of φ . Now since F is uni-
formly bounded, the slope of the characteristics are uniformly bounded and the boundedness
of ψ ’ s support follows.

− Is ψ ∈ C1 ?
This is where the catch is. As u , v are only in L1 , F(x , t) is in general not Lipschitz and

therefore the characteristics may collide with one another. When that happens, ψ is not in
C1 anymore. In fact, as F( x , t) can only be expected to be in L1 ∩ L∞ , even the existence of
the solution is questionable!

• Fixing the problem.
We have seen that the obstacle is that F is not Lipschitz. To overcome this, we replace F by a

smooth approximation Fε such that Fε → F locally in L1 , and call the corresponding solution ψε .
Then we have ∫∫

(u − v ) φ =

∫∫
( u − v ) [ψt

ε + Fε ( x , t) ψx
ε ] dx dt. ( 34)

Comparing with the definition of weak solutions, we obtain
∫∫

(u − v ) φ =

∫∫
( u − v ) [F (x , t) − Fε ( x , t) ] ψxε dx dt. ( 35)

As soon as we have shown the uniform boundedness of ψxε , we can take ε↘ 0 and obtain
∫∫

(u − v ) φ = 0 ( 36)

and finish the proof.

• Uniform boundedness of ψxε .
If we naïvely mollify F , there is no way we can obtain this bound as in general ψxε grows as the

Lipschitz constant of Fε grows, and the latter grows like ε− 1 . On the other hand, the subtle situa-
tion here is that we can make F smooth in a more sophisticated manner, which allows us to take
advantage of the entropy condition (which hasn’ t been used so far! ) .

Instead of mollifying F directly, we mollify u , v and define

Fε (x , t) =
f (uε ) − f ( vε )

uε − vε =

∫

0

1

f ′( θ uε + ( 1 − θ ) vε ) dθ . ( 37)

This gives
∂Fε

∂x
=

∫

0

1

f ′′( θ uε + ( 1 − θ ) vε )
[
θ
∂uε

∂x
+ ( 1 − θ ) ∂v

ε

∂x

]
dθ ( 38)

which is uniformly bounded from above if ∂uε

∂x
and ∂v ε

∂x
are so – and this is indeed the case due to

the entropy condition.



Thus we obtain
∂Fε

∂x
6 C

t
( 39)

for some positive constant C . 2

From this bound one can show that

| ψxε (x , t) | 6 C log t− 1 ( 40)

using the argument presented on p. 287 of J. Smoller’ s book.
Finally, recall that we want to prove

∫∫

t> 0
(u − v ) [F − Fε ] | ψxε | dx dt � 0 ( 41 )

as ε→ 0 . It is easy see that F − Fε→ 0 in L1 . Combine this with the fact tat F − Fε is uniformly
bounded, we can show that

Fε � F in Lp for any 1 6 p< ∞ . ( 42 )

Now the desired limit holds as | ψxε | is uniformly bounded for any 1 6 q < ∞ . 3

Further readings.
Missing details can be found in

• J. Smoller, Shock Waves and Reaction-Diffusion Equations , §A, §B of Chapter 1 6.

Exercises.

Exercise 1 . Let f : R � R be of locally bounded total variation , that is the total variation over any finite interval is
finite. P rove that

1 . f can have at most countably many jump discontinuit ies . ( H int : Consider the number of jumps of size > 1 /n over
the interval [ − n, n ] and then sum up. )

2 . f is differentiable almost everywhere. ( H int : Define g( x ) = The total variat ion of f over [ − x , x ] , show that both g

and f − g are monotone. The fact that monotone functions are differentiable almost everywhere can be taken for
granted. )

Exercise 2 . The most “natural” finite difference discret izat ion of the equation is obviously

un
k+ 1 − unk

∆t
+
f
(
un+ 1
k

)
− f

(
un
k
)

∆x
= 0 . ( 43)

Try to carry out the existence proof using this scheme. At which step does it break down?

2 . Note that if we solve a transport equation forward, ut + a(x , t) ux = φ , then when a is increasing, that is ax > 0 , the
characterist ics are moving away from one another, which means ux remain bounded; In the current situation, we are solving
backwards from t = T to t = 0 , thus ax 6 0 is “good” and ax > 0 is “bad”. This is why we do not need a lower bound of ∂F

ε

∂x
.

3 . For an elementary – and therefore much more tricky – argument , see pp. 2 87 – 290 of J . Smoller’ s book.


