Oct. 31

SEMIGROUP METHOD

In this lecture we establish properties of the heat equation through the abstract theory of semigroups. Let
u(x,t) be a solution to the heat equation. Then we have

1. u(z,t; +t2) is the same as v(t2) where v solves the heat equation with initial value u(z,t1);
2. limg~ g u(x, t) = u(z, to).
If we define a family of operators T; by
Tw(x)=u(z,t) (1)
where u(z,t) solves the heat equation with initial value v(z), then one can check:
1. Tov =wv for any v;
2. Ty, 44,0 =T, (T3,v) for all t1,t2 > 0;
3. limy 4, Tyw =T,v for all v.
This motivates the following definition.
Definition 1. (Continuous semigroup of operators) Let B be a Banach space, and for t >0, let Ty:
B B be continuous linear operators with
1. To=1d;
1. Tpyyto="Tt, 0Ty, for all t1,t220;
did. limy_4, T =Ty v for all to >0 and all ve B2
Then the family {Tt}t>0 is called a continuous? semigroup (of operators).
Example 2. In the case of the heat equation, one can take the space B to be the space of bounded uni-
formly continuous functions Cf, with the norm
ol g = s . 3)
Note that from the maximum principle, we have furthermore
1T g < (4)
for all ¢ >0. A semigroup with this extra property is called “contracting”.

1. Infinitesimal generators.
The whole theory of semigroups is modeled after the theory of linear constant-coefficient ODE sys-
tems:

i —Au=0, u(0) = up. (5)
One can show that a family of operators {1;} defined by Tiuo =u(t) is a continuous semigroup. Note that

the property of T; is determined by the matrix A.
Now we try to recover A from T;. We write

Ao =1i(0) = fi{%% [u(t) — u(0)] = }ii%% [Too — Toug] = }ii%% (T, — Ty] uo. (6)
This holds for any ug, therefore
1
A=1lim — [T} — Ty. 7
Jim, 5 [Ty — To] (7)
1. One may be tempted to require
thII; Tt :Ttm (2)

but this requirement would be too strong severely restrict the application of the resulting theory.

2. The “continuous” here refers to the fact that Ty is continuous with respect to the parameter t.



We try to do the same thing for general continuous semigroups.

Definition 3. (Infinitesimal generators) Let {T.},., be a continuous semigroup on a Banach space
B. We put

D(A)E{veleiér(lJ%(Tt—Id)v exists}CB (8)
t
and call the linear operator
A: D(A)~ B, 9)
defined as
1
Av=lim — (T — Id 10
v=lim (T~ 1), (10)

the infinitesimal generator of the semigroup {Ti}.

Remark 4. In general, D(A) is not B.
Also note that the limit always exists for v =0. Therefore D(A) is never empty.

D(A) has the following property.

Lemma 5. For allve D(A), and all t >0, we have

TtA’U:ATtU. (11)
That is A commutes with all T}’s.
Proof. For v e D(A), we have
T; Av="T; lim 1 (Ts —Id)v = lim l[Tt.l,_s —Ti]v=lim 1 (Ts—1d) Tyv=ATiv. (12)
sN\0 S t\.0 S sN\.0 S
Here the second equality used the fact that T} is continuous and linear. O

2. Contracting semigroups.
Let {T:} be a contracting semigroup, that is {7}} is a continuous semigroup, and furthermore

[Tl < ]l (13)

Let A be its infinitesimal generator. We want to show that D(A) is dense in B. We do this through con-
structing for any v € B a sequence {Jyv} C D(A) such that Jyv—v in B as A /oo, where

J)\’UE/ Ae M T.vds (14)
is well-defined for A > 0.3 0
L[| < [[v]]-

To see this, compute

[l x|

H / de T vds
0

/ Ae s ITsv] ds
0

/ Ae= ¥ ||lv||ds (Recall Ty is contracting)
0

= ||v||/ de s ds
0
[[vll- (15)

N

N

2. Jyv—wvin B. That is
[[Jav —v]|—0 as A o0. (16)

3. See J. Jost Partial Differential Equations, pp. 130-131 for details.



We compute

([T —v] = H/ Ne MTvds —v
0
= H/ Ae 2 (Tyv —wv)ds||. (17)
0
For any € > 0, there is 6 > 0 such that
ITov—v||<S,  VO<s<6. (18)
Thus we write
ool = | [T ae @—uas
0
5 9]
< / Ae s (Tyv —v)ds —i—H/ Ae 2 (Tyv —v)ds
0 s
5 o0
< / )\e"\SHTSU—UHds—i—/ Ae 2| Tsv| + ||v||] ds
50 5 Js
< —/ )\e_)‘sds+2||v||/ Ae s ds
2 Jo 5
< %+2||U|| e, (19)
The RHS is less than e for all A >Xo=46""log(4 ||v|| /¢).
3. Forve B, Jyve D(A) for all A>0.
We need to show the limit
1
lim = (7T; — Id)J. 20
&%t( L —1d)Jyw (20)
exists.
Compute
1 1 o
?(Tt—ld)J,\v = ?(Tt—ld) Ae MTsvds
0
= l/ )\e_)‘STHSUds—l/ de MT vds
t Jo t Jo
= l/ Ae”e_’\S/TS/vds'—l/ de MT vds
tJi t Jo
eM—_1 [> 1 [
= / /\efASTSvds——/ Ae AT, vds. (21)
t t t Jo
It is clear that the limits exist for both terms. More specifically, as ¢ \ 0, we have
M—1 [ 1 [
; / Ae MTovds — X Jy; ?/ Ae M vds — \v. (22)
t 0
Therefore Jyv € D(A), and furthermore
AJ)\’U:)\(J)\—Id)U. (23)

4. Combining the above, we have the following theorem.

Theorem 6. Let {T;},., be a contracting semigroup with infinitesimal generator A. then D(A) is
dense in B.

Remark 7. One can also define the (two-sided) derivative of T} at time ¢ > 0: D;T3: D(DT};) — B by set-
ting
.1
(DtTt)U = ]}LHIO ﬁ (Tt+h v — Tt 1}) (24)



and D(D;T%) is the subspace of B in which the above limit exists.
It turns out that such a definition is not necessary, due to the following lemma.

Lemma 8. ve D(A) implies ve D(D.T}), and furthermore

DtTtU:ATt’U:TtAU. (25)
Proof. For any ve D(A), we have
.1 1
}}{‘TIOE (Tt+h—Tt)U:}}1<‘TIOE(Th —Id) Tt’U:ATt V. (26)

Thus the right derivative exists.
For the left derivative, we write (h>0)

(T =T v =T Av=To 4| 3 (i~ Dyv— Av | +(Tep—Ti) Av—0 (27)

as h \, 0, since T;_p, is uniformly bounded and T; A v is continuous with respect to t. O

3. The resolvent.
The resolvent is defined by

R\, A)=(A1d—A4)" 1 (28)

We have the following results.

Theorem 9. Let A be the infinitesimal generator of a contracting semigroup. For X\ > 0, the operator
(AId — A)~" is invertible, and we have

L

(AId—A)""=R(\, A)= S

Ix, (29)
that is,

R(/\,A)v:/ e Tyvds. (30)
0

Proof.

—  We show first that AId — A is injective (one-to-one), which implies that (AId — A) ™" is well-defined.
Since A Id — A is a linear operator, it suffices to show that there is no nonzero v € D(A) such
that (A\Id — A) v=0, or equivalently Av= Av, for A > 0.
For this particular v, we have

D.Tiv=T, Av=X\(Tyv) (31)
which implies
Tw=e v (32)
This obviously contradicts the assumption that {1}} is contracting.
—  We need to show
()\Id—A)_lv:%JAv (33)

or equivalently
(Ald—A) Jyv=Av (34)
for any v € B. But this is just (23).
— Combining the above, we have show
1. (A\Id — A) is one-to-one on D(A);
2. (MId — A) maps the image of Jy to the whole Banach space B.



This two facts force the image of Jy to be exactly D(A) and consequently (A Id — A) is bijective
from D(A) to B. O

Lemma 10. (Resolvent equation) Under the same assumption as the above theorem, we have for A,
pn>0,

R(A,A) =~ R(p, A) = (1 — A) R(A, A) R(j1, A). (35)

Proof. Omitted. O

4. Hille-Yosida Theorem.

Theorem 11. (Hille-Yosida) Let A: D(A) — B be a linear operator whose domain of definition D(A) is
dense in the Banach space B. Suppose that the resolvent R(n, A) = (n1d — A)~" eaists for all n € N, and

that
1 -1
(m__A>
n

Then A generates a unique contracting semigroup.

<1 for alln €N, (36)

Proof. We just sketch the proof. For details see J. Jost Partial Differential Equations, pp. 139-142.
Let

1 \!
JnE(Id—EA> . (37)
1. We first show that
lim Jyv=v Yv e B. (38)
n /oo
Recall that D(A) is dense in B, therefore since ||Jy|| < 1 uniformly it suffices to show this for all
veD(A).
For such v we compute
JpAv=Jp (A—nld)v+n Jo=n(J,—Id)v. (39)
Thus
Jnv—sz"TAUHO (40)

again due to the uniform bound on J,.

2. Since ||Jp]| <1, we define
T\™ = exp(—tn) exp(tn J,) =exp(t A J,) (41)

which is a contracting semigroup. The plan now is to show that Tt(")

group (Note that A .J, — A strongly so this plan makes sense).

3. For any ue D(A),
t
H / Dt(Tt@gT;")u)ds
0

t
H / ™ 7™ (A T, — J, AJvds
0

(A Tn = T Ao
t(Jn = Jm)(Av)]| (42)

converges to the desired semi-

=i

/N

Thus for each v € D(A), {Tt(n)v} is a Cauchy sequence. One can further conclude that this also
holds for all v € B.



4. Now define T} to be the limit. We claim that it is a continuous contracting semigroup.

HTt+sv_Tthv” § ’Tt+sv_Tt(:?gv +

T - T T

+HTt(n)TSv—TtTSUH—>O. (43)
5. Next we show that the infinitesimal generator is A. Let v € D(A), we have

lim 1 (Tow—v) = lim 1 lim (Tt(")v - v)
N0 t t\O0 T n oo

t
— lim L tim [ 7™ AT, vds
t\.0 t n,/o0o Jo

t
= lim 1 T, Avds
t\O T Jg
= Av. (44)
Thus if A is the infinitesimal generator of T}, we have D(A) C D(A) and A = A in D(A).
We now show D(A) = D(A). Take any n > 0. By assumption we know n Id — A is a bijection
from D(A) to B. On the other hand, since A is the generator of a contracting semigroup, nId — A

is a bijection from D(/i) to B%. Therefore D(A)= D(A)

6. Finally we show that such 7; is unique.
Assume the contrary, that is there is T; with the same generator A. We compute
d

aTsTt—sU:ATsTt—sU_TsATt—s'U:O' (45)

Setting s =0 and ¢ we obtain T} v = Tt V. O

5. Application to the heat equation.

We would like to show that A = A satisfies the conditions in the Hille-Yosida theorem and thus there
is a unique solution to the heat equation. We set B to be the space of bounded, uniformly continuous
functions.

All we need to show is that, if

(Id—%A) 1f:g<:>g—%Ag:f, (46)
then
sup 9] <sup | f], (47)
Note that this is equivalent to
supg <sup [f|, sup(—g) <sup|f] (48)
Since (—g)—%A(—g)z(—f) and | f|=|— f|, it suffices to show
sup g <sup f. (49)

There are two cases.

1. If g attains its maximum at some point xo, then Ag(xo) <0, which implies
1
sup f > f(z0) = g(z0) — — Lg(x0) > 9(20) =sup g. (50)

2. If g does not attain its maximum, we consider auxiliary functions

2
9ge(x) = g(x) — e |z[". (51)
Since g is bounded, g. attains its maximum at some z., where we have
Age(z:) 0= Ag(z:) <2de (52)

4. See references for the proof of this.



Now for any y, by the choice of x. we have

9(y) < ge(y)+elyl
< gs($5)+5 |y|
= glae) e |z’ +< |y)
< g(Is)+E|y|2
< glxo) A Jre( 294y
< g(xe) —— g € m |y|
= fao) e ( )
2
 ores () @
Taking € \,0 we obtain
g(y)gsupf for all y = supg<sup f (54)

and finish the proof.
Further reading.

e K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,
Chapter 1 and the first 3 sections of Chapter 2.

e J. Jost, Partial Differential Equations, Chapter 6.
Exercises.
Exercise 1. Let B be the space R™. Define a family of operators {T;} by Tiup=u(t) where u solves
uw—Au=0, u(0) = ug. (55)

Show that {T;} is a continuous semigroup. When is it contracting? For those A generating a contracting semigroup,
show directly that AId — A is invertible for all A > 0.

Exercise 2. Let B be C§(R). Define a family of operators {T;} by
(Te f)(z) = fz +1). (56)

Show that {T;} is a continuous semigroup. Find its infinitesimal generator A (meaning: both the formula for A and the
domain D(A)).



