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Semigroup Method

In this lecture we establish properties of the heat equation through the abstract theory of semigroups. Let
u( x , t) be a solution to the heat equation. Then we have

1 . u( x , t1 + t2 ) is the same as v ( t2 ) where v solves the heat equation with initial value u( x , t1 ) ;

2 . limt↘ t0 u( x , t) = u( x , t0 ) .

If we define a family of operators Tt by

Ttv (x ) = u( x , t) ( 1 )

where u( x , t) solves the heat equation with initial value v ( x) , then one can check:

1 . T0v = v for any v ;

2 . Tt1 + t2v = Tt2 (Tt1v ) for all t1 , t2 > 0 ;

3 . limt→ t0 Ttv = Tt0v for all v .

This motivates the following definition.

Definition 1 . (Continuous semigroup of operators) Let B be a Banach space , and for t > 0 , le t Tt :
B � B be continuous linear operators with

i. T0 = Id ;

ii. Tt1 + t2 = Tt2 ◦ Tt1 for all t1 , t2 > 0 ;

iii. limt→ t0 Ttv = Tt0v for al l t0 > 0 and all v ∈ B. 1
Then the family {Tt } t> 0 is cal led a continuous 2 semigroup (of operators).

Example 2. In the case of the heat equation, one can take the space B to be the space of bounded uni-
formly continuous functions Cb0 , with the norm

‖ u ‖
Cb

0 = sup | u | . ( 3)

Note that from the maximum principle, we have furthermore

‖ Ttu ‖ Cb0 6 ‖ u ‖ Cb0 ( 4)

for all t > 0 . A semigroup with this extra property is called “contracting”.

1 . Infinitesimal generators.
The whole theory of semigroups is modeled after the theory of linear constant-coefficient ODE sys-

tems:

u̇ − A u = 0 , u( 0) = u0 . ( 5)

One can show that a family of operators {Tt } defined by Ttu0 = u( t) is a continuous semigroup. Note that
the property of Tt is determined by the matrix A .

Now we try to recover A from Tt . We write

A u0 = u̇ ( 0) = lim
t↘ 0

1

t
[u( t) − u( 0) ] = lim

t↘ 0

1

t
[Ttu0 − T0u0 ] = lim

t↘ 0

1

t
[Tt − T0 ] u0 . ( 6)

This holds for any u0 , therefore

A = lim
t↘ 0

1

t
[Tt − T0 ] . ( 7)

1 . O ne may be tempted to re quire

lim
t→ t 0

Tt = Tt 0 , ( 2 )

b ut this re quirement would be too strong severe ly re stric t the applica tion of the re sulting theory.

2 . The “continuous” here refers to the fac t tha t Tt is continuous with re spec t to the parame te r t .



We try to do the same thing for general continuous semigroups.

Definition 3. ( Infinitesimal generators) Let {Tt } t> 0 be a continuous semigroup on a Banach space
B. We put

D (A) ≡
{
v ∈ B : lim

t↘ 0

1

t
(Tt − Id) v exists

}
⊂ B ( 8)

and call the linear operator

A : D (A) � B , ( 9)

defined as

Av ≡ lim
t↘ 0

1

t
(Tt − Id) v , ( 1 0)

the infinitesimal generator of the semigroup {Tt } .

Remark 4. In general, D (A) is not B .
Also note that the limit always exists for v = 0 . Therefore D (A) is never empty.

D (A) has the following property.

Lemma 5. For all v ∈ D (A) , and all t > 0 , we have

Tt Av = ATt v . ( 1 1 )

That is A commutes with al l Tt’ s.

Proof. For v ∈ D (A) , we have

Tt Av = Tt lim
s↘ 0

1

s
(Ts − Id) v = lim

t↘ 0

1

s
[Tt+ s − Tt ]v = lim

s↘ 0

1

s
(Ts − Id) Tt v = ATt v . ( 1 2 )

Here the second equality used the fact that Tt is continuous and linear. �

2. Contracting semigroups.
Let {Tt } be a contracting semigroup, that is {Tt } is a continuous semigroup, and furthermore

‖ Tt v ‖ 6 ‖ v ‖ . ( 1 3)

Let A be its infinitesimal generator. We want to show that D (A) is dense in B . We do this through con-
structing for any v ∈ B a sequence {Jλv } ⊂ D (A) such that Jλv→ v in B as λ↗∞ , where

Jλv ≡
∫

0

∞
λ e− λ s Ts v ds ( 1 4)

is well-defined for λ > 0 . 3

1 . ‖ Jλv ‖ 6 ‖ v ‖ .
To see this, compute

‖ Jλv ‖ =

∥∥∥∥
∫

0

∞
λ e− λ sTs v ds

∥∥∥∥

6
∫

0

∞
λ e− λ s ‖ Ts v ‖ ds

6
∫

0

∞
λ e− λ s ‖ v ‖ ds (Recall Ts is contracting)

= ‖ v ‖
∫

0

∞
λ e− λ s ds

= ‖ v ‖ . ( 1 5)

2 . Jλv→ v in B . That is

‖ Jλv − v ‖ → 0 as λ↗∞ . ( 1 6)

3 . See J . Jost Part ial D ifferential Equations , pp. 1 30–1 31 for details .



We compute

‖ Jλv − v ‖ =

∥∥∥∥
∫

0

∞
λ e− λ sTs v ds − v

∥∥∥∥

=

∥∥∥∥
∫

0

∞
λ e− λ s (Ts v − v ) ds

∥∥∥∥ . ( 1 7)

For any ε > 0 , there is δ > 0 such that

‖ Ts v − v ‖ < ε

2
, ∀0 6 s 6 δ. ( 1 8)

Thus we write

‖ Jλv − v ‖ =

∥∥∥∥
∫

0

∞
λ e− λ s (Ts v − v ) ds

∥∥∥∥

6
∥∥∥∥∥

∫

0

δ

λ e− λ s (Ts v − v ) ds

∥∥∥∥∥ +

∥∥∥∥
∫

δ

∞
λ e− λ s (Ts v − v ) ds

∥∥∥∥

6
∫

0

δ

λ e− λ s ‖ Ts v − v ‖ ds +

∫

δ

∞
λ e− λ s [ ‖ Tsv ‖ + ‖ v ‖ ] ds

6 ε

2

∫

0

δ

λ e− λ s ds + 2 ‖ v ‖
∫

δ

∞
λ e− λ s ds

6 ε

2
+ 2 ‖ v ‖ e− λ δ . ( 1 9)

The RHS is less than ε for all λ > λ 0 ≡ δ− 1 log( 4 ‖ v ‖ /ε) .

3 . For v ∈ B , Jλv ∈ D (A) for all λ > 0 .
We need to show the limit

lim
t↘ 0

1

t
(Tt − Id)Jλv ( 20)

exists.
Compute

1

t
(Tt − Id)Jλv =

1

t
(Tt − Id)

∫

0

∞
λ e− λ sTs v ds

=
1

t

∫

0

∞
λ e− λ s Tt+ s v ds − 1

t

∫

0

∞
λ e− λ sTs v ds

=
1

t

∫

t

∞
λ eλ t e− λ s

′
Ts ′v ds ′ − 1

t

∫

0

∞
λ e− λ sTs v ds

=
eλ t − 1

t

∫

t

∞
λ e− λ sTs v ds − 1

t

∫

0

t

λ e− λ sTs v ds . ( 21 )

It is clear that the limits exist for both terms. More specifically, as t↘ 0 , we have

eλ t − 1

t

∫

t

∞
λ e− λ sTs v ds � λ Jλv ;

1

t

∫

0

t

λ e− λ sTs v ds � λ v. ( 22 )

Therefore Jλv ∈ D (A) , and furthermore

AJλ v = λ (Jλ − Id) v . ( 23)

4. Combining the above, we have the following theorem.

Theorem 6. Let {Tt } t> 0 be a contracting semigroup with infinitesimal generator A . then D (A) is
dense in B.

Remark 7. One can also define the ( two-sided) derivative of Tt at time t > 0 : DtTt : D (DtTt)
� B by set-

ting

(DtTt) v ≡ lim
h→ 0

1

h
(Tt+ h v − Tt v ) ( 24)



and D (DtTt) is the subspace of B in which the above limit exists.
It turns out that such a definition is not necessary, due to the following lemma.

Lemma 8. v ∈ D (A) implies v ∈ D (DtTt) , and furthermore

DtTtv = ATt v = Tt Av. ( 25)

Proof. For any v ∈ D (A) , we have

lim
h↘ 0

1

h
(Tt+ h − Tt) v = lim

h↘ 0

1

h
(Th − Id) Ttv = ATt v. ( 26)

Thus the right derivative exists.
For the left derivative, we write ( h > 0 )

1

− h (Tt− h − Tt) v − Tt Av = Tt− h

[
1

h
(Th − I) v − A v

]
+ (Tt− h − Tt) A v→ 0 ( 27)

as h ↘ 0 , since Tt− h is uniformly bounded and Tt A v is continuous with respect to t . �

3. The resolvent.
The resolvent is defined by

R(λ , A) ≡ ( λ Id − A)
− 1 . ( 28)

We have the following results.

Theorem 9. Let A be the infinitesimal generator of a contracting semigroup. For λ > 0 , the operator
(λ Id − A)

− 1 is invertib le , and we have

(λ Id − A)
− 1

= R( λ , A) =
1

λ
Jλ , ( 29)

that is,

R(λ , A) v =

∫

0

∞
e− λ s Ts v ds . ( 30)

Proof.

− We show first that λ Id − A is injective ( one-to-one) , which implies that ( λ Id − A)
− 1 is well-defined.

S ince λ Id − A is a linear operator, it suffices to show that there is no nonzero v ∈ D (A) such
that (λ Id − A) v = 0 , or equivalently A v = λ v , for λ > 0 .

For this particular v , we have

DtTt v = Tt Av = λ (Tt v ) ( 31 )

which implies

Ttv = eλ t v ( 32 )

This obviously contradicts the assumption that {Tt } is contracting.
− We need to show

(λ Id − A)
− 1v =

1

λ
Jλ v ( 33)

or equivalently

(λ Id − A) Jλ v = λ v ( 34)

for any v ∈ B . But this is just ( 23) .

− Combining the above, we have show

1 . (λ Id − A) is one-to-one on D (A) ;

2 . (λ Id − A) maps the image of Jλ to the whole Banach space B .



This two facts force the image of Jλ to be exactly D (A) and consequently (λ Id − A) is bijective
from D (A) to B . �

Lemma 10. (Resolvent equation) Under the same assumption as the above theorem, we have for λ ,
µ > 0 ,

R(λ , A) − R( µ, A) = ( µ − λ ) R( λ , A) R( µ, A) . ( 35)

Proof. Omitted. �

4. Hille-Yosida Theorem.

Theorem 1 1 . (Hille-Yosida) Let A : D (A) � B be a linear operator whose domain of definition D (A) is
dense in the Banach space B. Suppose that the reso lvent R(n, A) = (n Id − A)

− 1 exists for all n ∈ N , and
that ∥∥∥∥∥

(
Id − 1

n
A

) − 1
∥∥∥∥∥ 6 1 for all n ∈ N , ( 36)

Then A generates a unique contracting semigroup.

Proof. We just sketch the proof. For details see J. Jost Partial Differential Equations , pp. 1 39–1 42 .
Let

Jn ≡
(
Id − 1

n
A

) − 1

. ( 37)

1 . We first show that

lim
n↗∞

Jnv = v ∀v ∈ B. ( 38)

Recall that D (A) is dense in B , therefore since ‖ Jn ‖ 6 1 uniformly it suffices to show this for all
v ∈ D (A) .

For such v we compute

Jn Av = Jn (A − n Id) v + n Jnv = n (Jn − Id) v. ( 39)

Thus

Jn v − v =
Jn A v

n
→ 0 ( 40)

again due to the uniform bound on Jn .

2 . S ince ‖ Jn ‖ 6 1 , we define

Tt
(n ) ≡ exp( − t n) exp( t n Jn) = exp( t A Jn) ( 41 )

which is a contracting semigroup. The plan now is to show that Tt
(n) converges to the desired semi-

group (Note that A Jn→ A strongly so this plan makes sense) .

3. For any u ∈ D (A) ,
∥∥∥ Tt(

n)
v − Tt(

m )
v
∥∥∥ =

∥∥∥∥
∫

0

t

Dt

(
Tt− s

(m )
Ts

(n)
v
)

ds

∥∥∥∥

=

∥∥∥∥
∫

0

t

Tt− s
(m ) Ts

(n)
[A Jn − Jn A] v ds

∥∥∥∥
6 t ‖ (A Jn − Jm A) v ‖
= t ‖ (Jn − Jm) (Av ) ‖ ( 42 )

Thus for each v ∈ D (A) ,
{
Tt

(n)
v
}

is a Cauchy sequence. One can further conclude that this also
holds for all v ∈ B .



4. Now define Tt to be the limit. We claim that it is a continuous contracting semigroup.

‖ Tt+ s v − Tt Ts v ‖ 6
∥∥∥ Tt+ s v − Tt+ s(n)

v
∥∥∥ +

∥∥∥ Tt(
n )
Ts

(n)
v − Tt(

n)
Ts v

∥∥∥

+
∥∥∥ Tt(n) Ts v − Tt Ts v

∥∥∥ � 0 . ( 43)

5 . Next we show that the infinitesimal generator is A . Let v ∈ D (A) , we have

lim
t↘ 0

1

t
(Ttv − v ) = lim

t↘ 0

1

t
lim
n↗∞

(
Tt

(n)v − v
)

= lim
t↘ 0

1

t
lim
n↗∞

∫

0

t

Ts
(n) A Jn v ds

= lim
t↘ 0

1

t

∫

0

t

Ts Av ds

= Av. ( 44)

Thus if Ā is the infinitesimal generator of Tt , we have D (A) ⊂ D
(
Ā
)
and Ā = A in D (A) .

We now show D
(
Ā
)

= D (A) . Take any n > 0 . By assumption we know n Id − A is a bijection
from D (A) to B . On the other hand, since Ã is the generator of a contracting semigroup, n Id − Ã
is a bijection from D

(
Ã
)
to B4 . Therefore D (A) = D

(
Ã
)
.

6 . Finally we show that such Tt is unique.
Assume the contrary, that is there is T̃t with the same generator A . We compute

d

dt
Ts T̃t− s v = ATsT̃t− s v − Ts A T̃t− s v = 0 . ( 45)

Setting s = 0 and t we obtain Tt v = T̃t v . �

5. Application to the heat equation.
We would like to show that A = 4 satisfies the conditions in the Hille-Yosida theorem and thus there

is a unique solution to the heat equation. We set B to be the space of bounded, uniformly continuous
functions.

All we need to show is that, if
(
Id − 1

n
4
) − 1

f = g
�

g − 1

n
4 g = f , ( 46)

then

sup | g | 6 sup | f | , ( 47)

Note that this is equivalent to

sup g 6 sup | f | , sup ( − g) 6 sup | f | ( 48)

Since ( − g) − 1

n
4 ( − g) = ( − f ) and | f | = | − f | , it suffices to show

sup g 6 sup f . ( 49)

There are two cases.

1 . If g attains its maximum at some point x0 , then 4 g( x0 ) 6 0 , which implies

sup f > f (x0 ) = g(x0 ) − 1

n
4 g( x0 ) > g( x0 ) = sup g. ( 50)

2 . If g does not attain its maximum, we consider auxiliary functions

gε (x ) = g(x ) − ε | x | 2 . ( 51 )

S ince g is bounded, gε attains its maximum at some xε , where we have

4 gε (xε ) 6 0 � 4 g( xε ) 6 2 d ε ( 52 )

4. See references for the proof of this .



Now for any y , by the choice of xε we have

g( y) 6 gε ( y) + ε | y | 2

6 gε ( xε ) + ε | y | 2

= g(xε ) − ε | xε | 2 + ε | y | 2

6 g(xε ) + ε | y | 2

6 g(xε ) − 1

n
4 g(xε ) + ε

(
2 d

m
+ | y | 2

)

= f (xε ) + ε

(
2 d

n
+ | y | 2

)

6 sup f + ε

(
2 d

n
+ | y | 2

)
. ( 53)

Taking ε↘ 0 we obtain

g( y) 6 sup f for all y � sup g 6 sup f ( 54)

and finish the proof.

Further reading.

• K. -J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations ,
Chapter 1 and the first 3 sections of Chapter 2 .

• J. Jost, Partial Differential Equations , Chapter 6.

Exercises.

Exercise 1 . Let B be the space Rn . Define a family of operators {Tt } by Ttu0 = u( t) where u solves

u̇ − A u = 0 , u( 0) = u0 . ( 5 5 )

Show that {Tt } is a continuous semigroup. When is it contracting? For those A generating a contracting semigroup,
show directly that λ Id − A is invert ible for all λ > 0 .

Exercise 2 . Let B be Cb
0 (R) . Define a family of operators {Tt } by

(Tt f ) ( x ) = f ( x + t) . ( 5 6)

Show that {Tt } is a continuous semigroup. F ind its infinitesimal generator A ( meaning: both the formula for A and the
domain D (A) ) .


