Oct. 31

Semigroup Method

In this lecture we establish properties of the heat equation through the abstract theory of semigroups. Let u(x,t) be a solution to the heat equation. Then we have

- 1. $u(x, t_1 + t_2)$ is the same as $v(t_2)$ where v solves the heat equation with initial value $u(x, t_1)$;
- 2. $\lim_{t \searrow t_0} u(x,t) = u(x,t_0).$

If we define a family of operators T_t by

$$T_t v(x) = u(x, t) \tag{1}$$

where u(x,t) solves the heat equation with initial value v(x), then one can check:

- 1. $T_0 v = v$ for any v;
- 2. $T_{t_1+t_2}v = T_{t_2}(T_{t_1}v)$ for all $t_1, t_2 \ge 0$;
- 3. $\lim_{t \to t_0} T_t v = T_{t_0} v$ for all v.

This motivates the following definition.

Definition 1. (Continuous semigroup of operators) Let B be a Banach space, and for t > 0, let T_t : $B \mapsto B$ be continuous linear operators with

i. $T_0 = \operatorname{Id};$

ii.
$$T_{t_1+t_2} = T_{t_2} \circ T_{t_1}$$
 for all $t_1, t_2 \ge 0$;

iii. $\lim_{t\to t_0} T_t v = T_{t_0} v$ for all $t_0 \ge 0$ and all $v \in B$.¹

Then the family $\{T_t\}_{t>0}$ is called a continuous² semigroup (of operators).

Example 2. In the case of the heat equation, one can take the space B to be the space of bounded uniformly continuous functions C_b^0 , with the norm

$$\|u\|_{C^0} = \sup |u|. \tag{3}$$

Note that from the maximum principle, we have furthermore

$$\|T_t u\|_{C^0_h} \leqslant \|u\|_{C^0_h} \tag{4}$$

for all $t \ge 0$. A semigroup with this extra property is called "**contracting**".

1. Infinitesimal generators.

The whole theory of semigroups is modeled after the theory of linear constant-coefficient ODE systems:

$$\dot{u} - A u = 0, \qquad u(0) = u_0.$$
 (5)

One can show that a family of operators $\{T_t\}$ defined by $T_t u_0 = u(t)$ is a continuous semigroup. Note that the property of T_t is determined by the matrix A.

Now we try to recover A from T_t . We write

$$A u_0 = \dot{u}(0) = \lim_{t \searrow 0} \frac{1}{t} \left[u(t) - u(0) \right] = \lim_{t \searrow 0} \frac{1}{t} \left[T_t u_0 - T_0 u_0 \right] = \lim_{t \searrow 0} \frac{1}{t} \left[T_t - T_0 \right] u_0.$$
(6)

This holds for any u_0 , therefore

$$A = \lim_{t \searrow 0} \frac{1}{t} [T_t - T_0].$$
⁽⁷⁾

1. One may be tempted to require

$$\lim_{t \to t_0} T_t = T_{t_0},\tag{2}$$

but this requirement would be too strong severely restrict the application of the resulting theory.

^{2.} The "continuous" here refers to the fact that T_t is continuous with respect to the parameter t.

We try to do the same thing for general continuous semigroups.

Definition 3. (Infinitesimal generators) Let $\{T_t\}_{t\geq 0}$ be a continuous semigroup on a Banach space B. We put

$$D(A) \equiv \left\{ v \in B: \lim_{t \searrow 0} \frac{1}{t} \left(T_t - \mathrm{Id} \right) v \ exists \right\} \subset B$$
(8)

 $and \ call \ the \ linear \ operator$

$$A: D(A) \mapsto B, \tag{9}$$

defined as

$$Av \equiv \lim_{t \searrow 0} \frac{1}{t} \left(T_t - \mathrm{Id} \right) v, \tag{10}$$

the infinitesimal generator of the semigroup $\{T_t\}$.

Remark 4. In general, D(A) is not B.

Also note that the limit always exists for v = 0. Therefore D(A) is never empty.

D(A) has the following property.

Lemma 5. For all $v \in D(A)$, and all $t \ge 0$, we have

$$T_t A v = A T_t v. \tag{11}$$

That is A commutes with all T_t 's.

Proof. For $v \in D(A)$, we have

$$T_t Av = T_t \lim_{s \searrow 0} \frac{1}{s} (T_s - \mathrm{Id})v = \lim_{t \searrow 0} \frac{1}{s} [T_{t+s} - T_t]v = \lim_{s \searrow 0} \frac{1}{s} (T_s - \mathrm{Id}) T_t v = AT_t v.$$
(12)

Here the second equality used the fact that T_t is continuous and linear.

2. Contracting semigroups.

Let $\{T_t\}$ be a contracting semigroup, that is $\{T_t\}$ is a continuous semigroup, and furthermore

$$\|T_t v\| \leqslant \|v\|. \tag{13}$$

Let A be its infinitesimal generator. We want to show that D(A) is dense in B. We do this through constructing for any $v \in B$ a sequence $\{J_{\lambda}v\} \subset D(A)$ such that $J_{\lambda}v \to v$ in B as $\lambda \nearrow \infty$, where

$$J_{\lambda}v \equiv \int_{0}^{\infty} \lambda \, e^{-\lambda s} \, T_{s} \, v \, \mathrm{d}s \tag{14}$$

is well-defined for $\lambda>0.^3$

1. $||J_{\lambda}v|| \leq ||v||$.

To see this, compute

$$\begin{aligned} |J_{\lambda}v|| &= \left\| \int_{0}^{\infty} \lambda e^{-\lambda s} T_{s} v \, \mathrm{d}s \right\| \\ &\leqslant \int_{0}^{\infty} \lambda e^{-\lambda s} \|T_{s} v\| \, \mathrm{d}s \\ &\leqslant \int_{0}^{\infty} \lambda e^{-\lambda s} \|v\| \, \mathrm{d}s \quad (\text{Recall } T_{s} \text{ is contracting}) \\ &= \|v\| \int_{0}^{\infty} \lambda e^{-\lambda s} \, \mathrm{d}s \\ &= \|v\|. \end{aligned}$$
(15)

2. $J_{\lambda}v \rightarrow v$ in *B*. That is

$$\|J_{\lambda}v - v\| \to 0 \qquad \text{as } \lambda \nearrow \infty. \tag{16}$$

^{3.} See J. Jost Partial Differential Equations, pp. 130–131 for details.

We compute

$$\|J_{\lambda}v - v\| = \left\| \int_{0}^{\infty} \lambda e^{-\lambda s} T_{s} v \, \mathrm{d}s - v \right\|$$
$$= \left\| \int_{0}^{\infty} \lambda e^{-\lambda s} (T_{s} v - v) \, \mathrm{d}s \right\|.$$
(17)

For any $\varepsilon > 0$, there is $\delta > 0$ such that

$$||T_s v - v|| < \frac{\varepsilon}{2}, \qquad \forall 0 \le s \le \delta.$$
(18)

Thus we write

$$\|J_{\lambda}v - v\| = \left\| \int_{0}^{\infty} \lambda e^{-\lambda s} \left(T_{s} v - v\right) \mathrm{d}s \right\|$$

$$\leq \left\| \int_{0}^{\delta} \lambda e^{-\lambda s} \left(T_{s} v - v\right) \mathrm{d}s \right\| + \left\| \int_{\delta}^{\infty} \lambda e^{-\lambda s} \left(T_{s} v - v\right) \mathrm{d}s \right\|$$

$$\leq \int_{0}^{\delta} \lambda e^{-\lambda s} \|T_{s} v - v\| \mathrm{d}s + \int_{\delta}^{\infty} \lambda e^{-\lambda s} \left[\|T_{s}v\| + \|v\| \right] \mathrm{d}s$$

$$\leq \frac{\varepsilon}{2} \int_{0}^{\delta} \lambda e^{-\lambda s} \mathrm{d}s + 2 \|v\| \int_{\delta}^{\infty} \lambda e^{-\lambda s} \mathrm{d}s$$

$$\leq \frac{\varepsilon}{2} + 2 \|v\| e^{-\lambda \delta}.$$
(19)

The RHS is less than ε for all $\lambda > \lambda_0 \equiv \delta^{-1} \log(4 \|v\| / \varepsilon)$.

3. For $v \in B$, $J_{\lambda}v \in D(A)$ for all $\lambda > 0$.

We need to show the limit

$$\lim_{t \searrow 0} \frac{1}{t} \left(T_t - \mathrm{Id} \right) J_{\lambda} v \tag{20}$$

exists.

Compute

$$\frac{1}{t} (T_t - \mathrm{Id}) J_{\lambda} v = \frac{1}{t} (T_t - \mathrm{Id}) \int_0^\infty \lambda e^{-\lambda s} T_s v \, \mathrm{d}s$$

$$= \frac{1}{t} \int_0^\infty \lambda e^{-\lambda s} T_{t+s} v \, \mathrm{d}s - \frac{1}{t} \int_0^\infty \lambda e^{-\lambda s} T_s v \, \mathrm{d}s$$

$$= \frac{1}{t} \int_t^\infty \lambda e^{\lambda t} e^{-\lambda s'} T_{s'} v \, \mathrm{d}s' - \frac{1}{t} \int_0^\infty \lambda e^{-\lambda s} T_s v \, \mathrm{d}s$$

$$= \frac{e^{\lambda t} - 1}{t} \int_t^\infty \lambda e^{-\lambda s} T_s v \, \mathrm{d}s - \frac{1}{t} \int_0^t \lambda e^{-\lambda s} T_s v \, \mathrm{d}s.$$
(21)

It is clear that the limits exist for both terms. More specifically, as $t \searrow 0$, we have

$$\frac{e^{\lambda t} - 1}{t} \int_{t}^{\infty} \lambda e^{-\lambda s} T_{s} v \, \mathrm{d}s \longrightarrow \lambda J_{\lambda} v; \qquad \frac{1}{t} \int_{0}^{t} \lambda e^{-\lambda s} T_{s} v \, \mathrm{d}s \longrightarrow \lambda v.$$
(22)

Therefore $J_{\lambda}v \in D(A)$, and furthermore

$$A J_{\lambda} v = \lambda \left(J_{\lambda} - \mathrm{Id} \right) v. \tag{23}$$

4. Combining the above, we have the following theorem.

Theorem 6. Let $\{T_t\}_{t\geq 0}$ be a contracting semigroup with infinitesimal generator A. then D(A) is dense in B.

Remark 7. One can also define the (two-sided) derivative of T_t at time t > 0: $D_t T_t: D(D_t T_t) \mapsto B$ by setting

$$(D_t T_t) v \equiv \lim_{h \to 0} \frac{1}{h} (T_{t+h} v - T_t v)$$
(24)

and $D(D_tT_t)$ is the subspace of B in which the above limit exists.

It turns out that such a definition is not necessary, due to the following lemma.

Lemma 8. $v \in D(A)$ implies $v \in D(D_tT_t)$, and furthermore

$$D_t T_t v = A T_t v = T_t A v. (25)$$

Proof. For any $v \in D(A)$, we have

$$\lim_{h \searrow 0} \frac{1}{h} (T_{t+h} - T_t) v = \lim_{h \searrow 0} \frac{1}{h} (T_h - \mathrm{Id}) T_t v = A T_t v.$$
(26)

Thus the right derivative exists.

For the left derivative, we write (h > 0)

$$\frac{1}{-h} (T_{t-h} - T_t) v - T_t A v = T_{t-h} \left[\frac{1}{h} (T_h - I) v - A v \right] + (T_{t-h} - T_t) A v \to 0$$
(27)

as $h \searrow 0$, since T_{t-h} is uniformly bounded and $T_t A v$ is continuous with respect to t.

3. The resolvent.

The resolvent is defined by

$$R(\lambda, A) \equiv (\lambda \operatorname{Id} - A)^{-1}.$$
(28)

We have the following results.

Theorem 9. Let A be the infinitesimal generator of a contracting semigroup. For $\lambda > 0$, the operator $(\lambda \operatorname{Id} - A)^{-1}$ is invertible, and we have

$$(\lambda \operatorname{Id} - A)^{-1} = R(\lambda, A) = \frac{1}{\lambda} J_{\lambda},$$
⁽²⁹⁾

that is,

$$R(\lambda, A) v = \int_0^\infty e^{-\lambda s} T_s v \,\mathrm{d}s. \tag{30}$$

Proof.

- We show first that $\lambda \operatorname{Id} - A$ is injective (one-to-one), which implies that $(\lambda \operatorname{Id} - A)^{-1}$ is well-defined. Since $\lambda \operatorname{Id} - A$ is a linear operator, it suffices to show that there is no nonzero $v \in D(A)$ such that $(\lambda \operatorname{Id} - A) v = 0$, or equivalently $A v = \lambda v$, for $\lambda > 0$.

For this particular v, we have

$$D_t T_t v = T_t A v = \lambda \left(T_t v \right) \tag{31}$$

which implies

$$T_t v = e^{\lambda t} \, v \tag{32}$$

This obviously contradicts the assumption that $\{T_t\}$ is contracting.

We need to show

$$(\lambda \operatorname{Id} - A)^{-1} v = \frac{1}{\lambda} J_{\lambda} v$$
(33)

or equivalently

$$(\lambda \operatorname{Id} - A) J_{\lambda} v = \lambda v \tag{34}$$

for any $v \in B$. But this is just (23).

- Combining the above, we have show
 - 1. $(\lambda \operatorname{Id} A)$ is one-to-one on D(A);
 - 2. $(\lambda \operatorname{Id} A)$ maps the image of J_{λ} to the whole Banach space B.

This two facts force the image of J_{λ} to be exactly D(A) and consequently $(\lambda \operatorname{Id} - A)$ is bijective from D(A) to B.

Lemma 10. (Resolvent equation) Under the same assumption as the above theorem, we have for λ , $\mu > 0$,

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda) R(\lambda, A) R(\mu, A).$$
(35)

Proof. Omitted.

4. Hille-Yosida Theorem.

Theorem 11. (Hille-Yosida) Let $A: D(A) \mapsto B$ be a linear operator whose domain of definition D(A) is dense in the Banach space B. Suppose that the resolvent $R(n, A) = (n \operatorname{Id} - A)^{-1}$ exists for all $n \in \mathbb{N}$, and that

$$\left\| \left(\operatorname{Id} - \frac{1}{n} A \right)^{-1} \right\| \leq 1 \qquad \text{for all } n \in \mathbb{N},$$
(36)

Then A generates a unique contracting semigroup.

Proof. We just sketch the proof. For details see J. Jost **Partial Differential Equations**, pp. 139–142. Let

$$J_n \equiv \left(\operatorname{Id} - \frac{1}{n} A \right)^{-1}.$$
(37)

1. We first show that

$$\lim_{n \neq \infty} J_n v = v \qquad \forall v \in B.$$
(38)

Recall that D(A) is dense in B, therefore since $||J_n|| \leq 1$ uniformly it suffices to show this for all $v \in D(A)$.

For such v we compute

$$J_n Av = J_n (A - n \operatorname{Id})v + n J_n v = n (J_n - \operatorname{Id})v.$$
(39)

Thus

$$J_n v - v = \frac{J_n A v}{n} \to 0 \tag{40}$$

again due to the uniform bound on J_n .

2. Since $||J_n|| \leq 1$, we define

$$T_t^{(n)} \equiv \exp(-t\,n)\exp(t\,n\,J_n) = \exp(t\,A\,J_n) \tag{41}$$

which is a contracting semigroup. The plan now is to show that $T_t^{(n)}$ converges to the desired semigroup (Note that $A J_n \to A$ strongly so this plan makes sense).

3. For any $u \in D(A)$,

$$\begin{aligned} \left\| T_{t}^{(n)}v - T_{t}^{(m)}v \right\| &= \left\| \int_{0}^{t} D_{t} \left(T_{t-s}^{(m)} T_{s}^{(n)} v \right) \mathrm{d}s \right\| \\ &= \left\| \int_{0}^{t} T_{t-s}^{(m)} T_{s}^{(n)} \left[A J_{n} - J_{n} A \right] v \mathrm{d}s \right\| \\ &\leqslant t \left\| (A J_{n} - J_{m} A) v \right\| \\ &= t \left\| (J_{n} - J_{m}) (A v) \right\| \end{aligned}$$
(42)

Thus for each $v \in D(A)$, $\left\{T_t^{(n)}v\right\}$ is a Cauchy sequence. One can further conclude that this also holds for all $v \in B$.

4. Now define T_t to be the limit. We claim that it is a continuous contracting semigroup.

$$\|T_{t+s}v - T_t T_s v\| \leqslant \|T_{t+s}v - T_{t+s}^{(n)}v\| + \|T_t^{(n)}T_s^{(n)}v - T_t^{(n)}T_s v\| + \|T_t^{(n)}T_s v - T_t T_s v\| \longrightarrow 0.$$
(43)

5. Next we show that the infinitesimal generator is A. Let $v \in D(A)$, we have

$$\lim_{t \searrow 0} \frac{1}{t} (T_t v - v) = \lim_{t \searrow 0} \frac{1}{t} \lim_{n \nearrow \infty} \left(T_t^{(n)} v - v \right)$$
$$= \lim_{t \searrow 0} \frac{1}{t} \lim_{n \nearrow \infty} \int_0^t T_s^{(n)} A J_n v \, \mathrm{d}s$$
$$= \lim_{t \searrow 0} \frac{1}{t} \int_0^t T_s A v \, \mathrm{d}s$$
$$= A v. \tag{44}$$

Thus if \overline{A} is the infinitesimal generator of T_t , we have $D(A) \subset D(\overline{A})$ and $\overline{A} = A$ in D(A).

We now show $D(\tilde{A}) = D(A)$. Take any n > 0. By assumption we know $n \operatorname{Id} - A$ is a bijection from D(A) to B. On the other hand, since \tilde{A} is the generator of a contracting semigroup, $n \operatorname{Id} - \tilde{A}$ is a bijection from $D(\tilde{A})$ to B^4 . Therefore $D(A) = D(\tilde{A})$.

6. Finally we show that such T_t is unique.

Assume the contrary, that is there is \tilde{T}_t with the same generator A. We compute

$$\frac{\mathrm{d}}{\mathrm{d}t}T_s\tilde{T}_{t-s}v = A T_s\tilde{T}_{t-s}v - T_s A\tilde{T}_{t-s}v = 0.$$
(45)

Setting s = 0 and t we obtain $T_t v = \tilde{T}_t v$.

5. Application to the heat equation.

We would like to show that $A = \triangle$ satisfies the conditions in the Hille-Yosida theorem and thus there is a unique solution to the heat equation. We set B to be the space of bounded, uniformly continuous functions.

All we need to show is that, if

$$\left(\operatorname{Id}-\frac{1}{n}\bigtriangleup\right)^{-1}f = g \Longleftrightarrow g - \frac{1}{n}\bigtriangleup g = f,$$
(46)

then

$$\sup|g| \leqslant \sup|f|,\tag{47}$$

Note that this is equivalent to

$$\sup g \leqslant \sup |f|, \qquad \sup (-g) \leqslant \sup |f|$$
(48)

Since $(-g) - \frac{1}{n} \triangle (-g) = (-f)$ and |f| = |-f|, it suffices to show

$$\sup g \leqslant \sup f. \tag{49}$$

There are two cases.

1. If g attains its maximum at some point x_0 , then $\Delta g(x_0) \leq 0$, which implies

$$\sup f \ge f(x_0) = g(x_0) - \frac{1}{n} \bigtriangleup g(x_0) \ge g(x_0) = \sup g.$$

$$\tag{50}$$

2. If g does not attain its maximum, we consider auxiliary functions

$$g_{\varepsilon}(x) = g(x) - \varepsilon |x|^2.$$
(51)

Since g is bounded, g_{ε} attains its maximum at some x_{ε} , where we have

$$\Delta g_{\varepsilon}(x_{\varepsilon}) \leqslant 0 \Longrightarrow \Delta g(x_{\varepsilon}) \leqslant 2 \, d \, \varepsilon \tag{52}$$

^{4.} See references for the proof of this.

Now for any y, by the choice of x_{ε} we have

$$g(y) \leq g_{\varepsilon}(y) + \varepsilon |y|^{2}$$

$$\leq g_{\varepsilon}(x_{\varepsilon}) + \varepsilon |y|^{2}$$

$$= g(x_{\varepsilon}) - \varepsilon |x_{\varepsilon}|^{2} + \varepsilon |y|^{2}$$

$$\leq g(x_{\varepsilon}) + \varepsilon |y|^{2}$$

$$\leq g(x_{\varepsilon}) - \frac{1}{n} \bigtriangleup g(x_{\varepsilon}) + \varepsilon \left(\frac{2d}{m} + |y|^{2}\right)$$

$$= f(x_{\varepsilon}) + \varepsilon \left(\frac{2d}{n} + |y|^{2}\right)$$

$$\leq \sup f + \varepsilon \left(\frac{2d}{n} + |y|^{2}\right).$$
(53)

Taking $\varepsilon \searrow 0$ we obtain

$$g(y) \leqslant \sup f \text{ for all } y \Longrightarrow \sup g \leqslant \sup f$$
 (54)

and finish the proof.

Further reading.

- K.-J. Engel, R. Nagel, **One-Parameter Semigroups for Linear Evolution Equations**, Chapter 1 and the first 3 sections of Chapter 2.
- J. Jost, Partial Differential Equations, Chapter 6.

Exercises.

Exercise 1. Let B be the space \mathbb{R}^n . Define a family of operators $\{T_t\}$ by $T_t u_0 = u(t)$ where u solves

$$\dot{u} - A u = 0, \qquad u(0) = u_0.$$
 (55)

Show that $\{T_t\}$ is a continuous semigroup. When is it contracting? For those A generating a contracting semigroup, show directly that $\lambda \operatorname{Id} - A$ is invertible for all $\lambda > 0$.

Exercise 2. Let B be $C_b^0(\mathbb{R})$. Define a family of operators $\{T_t\}$ by

$$(T_t f)(x) = f(x+t).$$
 (56)

Show that $\{T_t\}$ is a continuous semigroup. Find its infinitesimal generator A (meaning: both the formula for A and the domain D(A)).