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Asymptotic Behavior and Energy Methods

In this lecture we first apply the maximum principles to study the asymptotic ( t↗∞ ) behavior of the
heat equation. Then we will introduce energy estimates for the heat equation.

1 . Asymptotic behavior.
First recall that the solution to the initial value problem in Rn × [ 0 , ∞ )

ut − 4u = 0 t > 0 ; u = g t = 0 ( 1 )
is

u(x , t) =
1

( 4 π t) n/ 2

∫

Rn
e
− | x − y |

2

4 t g( y) dy. ( 2 )

Now if g is integrable, we easily estimate

| u( x , t) | 6 1

( 4 π t) n/ 2

∫

Rn
| g( y) | dy ↘ 0 as t↗∞ . ( 3)

Note that the convergence is uniform.
Next we consider the following case

ut − 4u = 0 in Ω × ( 0 , ∞ ) ; u(x , 0) = f ( x) ; u( x , t) = g( x) on ∂Ω × ( 0 , ∞ ) . ( 4)

As t↗∞ , if u→ u∞ ( x) , then since u∞ is independent of t , intuitively it should solve

4u∞ = 0 in Ω , u = g on ∂Ω . ( 5)

We present some justification of this intuition in the following.
We first compute

(∂t − 4 )

(
1

2
ut

2

)
= ut ut t − ut 4ut −

∑

i= 1

n

ux it
2

= ut (ut − 4u) t −
∑

i= 1

n

ux it
2

= −
∑

i= 1

n

ux it
2 6 0 . ( 6)

Therefore by the weak maximum principle,
sup
x ∈ Ω

ut
2 ( 7)

is decreasing with time.

Decay of
∫
ut

2 .
Next we consider

E( t) ≡ 1

2

∫

Ω
| ∇u | 2 dx. ( 8)

Differentiating it we obtain

Ė ( t) =

∫
∇u · ∇ut = −

∫
ut 4u = −

∫
ut

2 dx 6 0 . ( 9)

where we have used the fact that ut = 0 on ∂Ω at any time t .
Differentiating again, we have

Ë ( t) = − d

dt

∫
ut

2

= −
∫
4
(
ut

2
)

dx + 2

∫

Ω
| ∇ut | 2

= −
∫

∂Ω

∂
(
ut

2
)

∂n
dS + 2

∫

Ω
| ∇ut | 2

> 0 . ( 1 0)



Here the last inequality comes from the fact that ut2 > 0 in Ω and = 0 on ∂Ω , therefore the outer-normal
derivative has to be non-positive.

Thus we have Ė ( t) 6 0 but is non-decreasing. This implies there is A 6 0 such that

lim
t↗∞

Ė ( t) = A. ( 1 1 )

Now if A < 0 , it is clear that E( t) < 0 for t large enough, a contradiction. Therefore we conclude A = 0 .
Recalling

Ė ( t) = −
∫
ut

2 dx ( 1 2 )

we see that ∫

Ω

ut
2 dx � 0 as t↗∞ . ( 1 3)

Uniform pointwise decay of ut2 .
We can also obtain uniform decay of ut2 .
To do this, we first extend ut

2 ( x , 0) from Ω to Rn by setting it to be 0 outside Ω . The result is a non-
negative, continuous ( recall that ut2 (x , 0) = 0 on ∂Ω ) , compactly supported function. Denote it by l . Now
define

v (x , t) ≡
∫

Rn

1

( 4 π t) n/ 2
e
− | x − y |

2

4 t l ( y) dy. ( 1 4)

It is clear that v remains nonnegative and

vt − 4v = 0 . ( 1 5)

Setting w ≡ ut2 − v , we have

wt − 4w 6 0 in Ω × ( 0 , ∞ ) ; w 6 0 on ∂Ω × ( 0 , ∞ ) ; w = 0 on Ω × { t = 0} . ( 1 6)

Now weak maximum principle yields w 6 0 for all time and thus

ut
2 6 v � 0 as t↗∞ ( 1 7)

pointwise.

Convergence to solutions of the Laplace equation.
If we know already that the problem

4u∞ = 0 in Ω; u∞ = g on ∂Ω ( 1 8)

has a solution, we have

Theorem 1 . Let Ω be a bounded domain in Rn , and le t g( x , t) be continuous on ∂Ω × ( 0 , ∞ ) , and sup-
pose

lim
t↗∞

g(x , t) = g∞ (x ) uniformly in x ∈ ∂Ω ( 1 9)

Let F( x , t) be continuous on Ω × ( 0 , ∞ ) , and suppose

lim
t↗∞

f (x , t) = f∞ ( x) uniformly in x ∈ Ω ( 20)

Let u(x , t) be a so lution of

4u − ut = f x ∈ Ω , 0 < t < ∞ ; u = g x ∈ ∂Ω , 0 < t < ∞ . ( 21 )

Let v (x ) be a solution of

4u∞ = f∞ x ∈ Ω; v = g∞ x ∈ ∂Ω , ( 22 )

Then

lim
t↗∞

u( x , t) = u∞ (x ) ( 23)

uniformly in x ∈ Ω .



Proof. Let w = u − u∞ . Then clearly

4w − wt = f − f∞ in Ω × ( 0 , ∞ ) ( 24)
w = g − g∞ on ∂Ω × ( 0 , ∞ ) . ( 25)

We will show that there is a constant C such that for any ε > 0 , there is t0 such that supx | w ( x , t) | 6 Cε .
Fix ε . Let τ be such that

sup
x ∈ Ω

| f − f∞ | < ε t > τ ( 26)

sup
x ∈ Ω
| g − g∞ | < ε t > τ ( 27)

Denote

c0 ≡ sup
x ∈ Ω
| w( x , τ) | . ( 28)

Now choose R > 0 such that 2 x1 < R for all (x1 , � , xn) ∈ Ω . Set

k (x ) ≡ eR − ex 1 . ( 29)

Simple computation yields

4k = − ex 1 6 − κ ≡ − inf
x ∈ Ω

ex 1 . ( 30)

Now let

κ0 ≡ inf
x ∈ Ω

k (x ) ; κ1 ≡ sup
x ∈ Ω

k ( x) , ( 31 )

and set

m( x , t) ≡ ε k (x )

κ
+ ε

k (x )

κ0
+ c0

k (x )

κ0
e
− κ

κ 1
( t− τ )

. ( 32 )

Calculation yields

4m − mt < − ε. ( 33)

One further has

m( x , τ) > c0 > | f − f∞ | (x , τ) x ∈ Ω ( 34)

m( x , t) > ε > | g − g∞ | ( x , t) x ∈ ∂Ω , τ 6 t < ∞ . ( 35)

We apply weak maximum principle to m(x , t) ± w (x , t) on Ω × [τ , ∞ ) and obtain

| w (x , t) | 6 m( x , t) 6 ε
(
κ1

κ
+
κ1

κ0

)
+ c0

κ1

κ0
e
− κ

κ 1
( t− τ )

. ( 36)

It is clear that one can choose t0 such that the RHS is less than

ε

(
κ1

κ
+
κ1

κ0
+ 1

)
( 37)

for all t > t0 . Note that κ , κ0 , κ1 are all independent of ε . �

2. Other estimates.

2. 1 . Fourier splitting.
In this section we introduce the Fourier spliting method introduced by Maria Schonbek in the late

1 980s. It has proven to be an effective method in getting quantitative asymptotic behaviors for nonlinear
equation involving the heat operator ( for example, the Navier-Stokes equations and reaction-diffusion type
equations) .

The starting point is the energy inequality1

d

dt

∫
u2 dx 6 −

∫
| ∇u | 2 dx. ( 38)

1 . which is an equality in the case of the heat equation .



Recall Plancherel’ s theorem ∫
f (x )

2
dx =

∫
f̂ ( ξ)

2
dξ ( 39)

where f̂ is the Fourier transform of f . Now taking the Fourier transform of the energy inequality, we
obtain

d

dt

∫

Rn
û 2 dξ 6 − C

∫

Rn
| ξ | 2 | û | 2 dξ 6 − C

∫

| ξ | > r
| ξ | 2 | û | 2 dξ. ( 40)

Taking r =
(

n

C ( t + 1 )

) 1 / 2
we obtain ( this C is the particular C in the above estimate)

d

dt

∫

Rn
| û | 2 dξ 6 − n

t + 1

∫

| ξ | > r
| û | 2 dξ = − n

t + 1

∫

Rn
| û | 2 dξ +

n

t + 1

∫

| ξ | 6 r
| û | 2 dξ. ( 41 )

Multiply both sides by ( t + 1 )
n , we have

d

dt

[
( t + 1 )

n
∫
| û | 2 dξ

]
6 n ( t + 1 )

n− 1
∫

| ξ | 6 r
| û | 2 dξ. ( 42 )

Now assume that

| û | 6 A for all | ξ | 6 r. ( 43)

We obtain

d

dt

[
( t + 1 )

n
∫
| û | 2 dξ

]
6 n ( t + 1 )

n− 1 rn α (n) A2 = C− n/ 2 A2 n
n

2
+ 1

( t + 1 )
n− 1 − n

2 . ( 44)

Integrating this estimate gives

( t + 1 )
n
∫
| û | 2 dξ 6

∫
| û0 | 2 dξ + c ( t + 1 )

n

2 ( 45)

which gives ∫
u2 dx =

∫
| û | 2 dξ 6 c ( t + 1 )

− n/ 2 . ( 46)

Remark 2. It is obvious that the above argument can be easily adapted to the case when the original
energy inequality reads

d

dt

∫
u2 dx 6 − C

∫
| ∇mu | 2 dx. ( 47)

In this case we take r =
(

n

C ( t + 1 )

) 1 / 2m
and obtain

∫
u2 dx 6 c ( t + 1 )

− n

2m . ( 48)

Remark 3. It is clear that the key in the argument is the existence of a constant A such that

| û | 6 A for all | ξ | 6 r =

(
n

C ( t + 1 )

) 1 / 2

. ( 49)

For the heat equation this is true since | û | actually decays with time. One can obtain the same bound for
many other equations including conservation laws, Navier-Stokes equations, MHD equations, etc. See for
example Maria Schonbek The Fourier splitting method , Advances in Geometric Analysis and Continuum
Mechanics, ( 269-274) , Internatl. Press, Cambridge, Ma. ( 1 995) 2 for obtaining such bound for the n-
dimensional scalar conservation law.

3. Energy estimates.

2 . Available online at http: / /math. ucsc. edu/ ~ schonbek/Publicat ions/publicat ions. html.



We use integration by parts to show uniqueness for the initial/boundary-value problem

ut − 4u = f in ΩT ; u = g on ∂∗ΩT . ( 50)

We assume Ω ⊂ Rn is open, bounded, and that ∂Ω is C1 . Let T > 0 be fixed.

Theorem 4. (Uniqueness) There exists at most one so lution in C1
2
(
Ω̄T
)
.

Proof. If ũ , u are two different solutions, we set w = u − ũ . Then w solves

wt − 4w = 0 in ΩT ; w = 0 on ∂∗ΩT . ( 51 )

Now set

e( t) ≡
∫

Ω

w2 (x , t) dx. ( 52 )

It is clear that it suffices to show e( t) ≡ 0 for 0 6 t 6 T . We compute

d

dt
e ( t) =

d

dt

∫

Ω

w2 (x , t) dx

=

∫

Ω

d

dt

(
w2 ( x , t)

)
dx

=

∫

Ω

2 w (x , t) wt( x , t) dx

= 2

∫

Ω

w (x , t) 4w( x , t) dx (We have used the equation here)

= − 2

∫

Ω
| ∇w ( x , t) | 2 dx 6 0 . ( 53)

Combined with e ( 0) = 0 , we conclude that

e ( t) ≡ 0 ( 54)

for all 0 6 t 6 T and ends the proof. �

4. Backward uniqueness.
An application of the energy methods is the following backward uniqueness result.

Theorem 5. (Backward uniqueness) Let u and ũ solve the heat equation in ΩT with the same
boundary conditions on ∂Ω × [ 0 , T] (that is, the initial values may be different). Then if

u(x , T) = ũ (x , T) x ∈ Ω ( 55)

then

u ≡ ũ in ΩT . ( 56)

Remark 6. We know from basic PDE courses ( those solving the heat equation via Fourier expansion)
that the inverse heat equation:

ut − 4u = 0 in ΩT ; u(x , T) = g( x) ( 57)

is ill-posed, in the sense that if

ũt − 4 ũ = 0 in ΩT ; ũ (x , T) = g̃ (x ) ( 58)

then the difference g̃ − g is magnified by an exponential factor, that is

| u − ũ | ( t) ∼ eC (T− t) | g − g̃ | . ( 59)

However, a moment’ s inspection of this suggests that if g = g̃ , u = ũ , which is just the backward unique-
ness we are going to prove now.



Proof. Write w = u − ũ . Set
e( t) =

∫

Ω

w2 (x , t) dx. ( 60)

Again it is clear that all we need to do is proving

e ( t) ≡ 0 0 6 t 6 T ( 61 )

from e (T) = 0 .
Recall that

ė ( t) ≡ d

dt
e ( t) = − 2

∫

Ω
| ∇w | 2 dx. ( 62 )

Differentiating once more, we obtain

ë ( t) ≡ d2

dt2
e( t) = − 4

∫
∇w · ∇wt = − 4

∫
∇w · ∇ (4w) = 4

∫
(4w)

2 dx. ( 63)

Now since w = 0 on ∂Ω , we have
∫

Ω
| ∇w | 2 d =

∫

Ω

∇w · ∇w = −
∫

Ω

w 4w 6
( ∫

Ω

w2

) 1 / 2 ( ∫

Ω
(4w )

2

) 1 / 2

. ( 64)

Therefore

ė ( t)
2 6 e ( t) ë ( t) . ( 65)

Now if e ( t)≡0 , there exists ( t1 , t2 ) such that e ( t) > 0 in ( t1 , t2 ) and e ( t2 ) = 0 . We define

f ( t) ≡ log e( t) t1 6 t < t2 . ( 66)

We calculate

f̈ ( t) =
d

dt

(
ė ( t)

e ( t)

)
=
ë ( t)

e ( t)
− ė ( t)

2

e ( t) 2
> 0 . ( 67)

Thus f is a convex function, and as a consequence3

f ( ( 1 − α) t1 + α t) 6 ( 1 − α ) f ( t1 ) + α f ( t) . ( 70)

for any 0 < α < 1 and t1 < t < t2 . This gives

e ( ( 1 − α) t1 + α t) 6 e ( t1 ) 1 − α
e ( t)

α
. ( 71 )

Letting t↗t2 gives e ≡ 0 . �

Exercises.

Exercise 1 . Consider the following equation

ut − a( x , t) u − ν 4u = 0 in Ω , u= 0 on ∂Ω , ( 72 )

where Ω is a bounded domain and | a(x , t) | 6 A < ∞ for all x ∈ Ω . Using the energy estimate, show that there is a
threshold ν0 > 0 ( depending on A) such that there can be at most one solution in C1

2 ( ΩT) when ν > ν0 . ( H int : Poincaré’ s
inequality is needed at one step of the proof. )

3 . Note that f̈ > 0 implies ḟ ( ξ) > ḟ ( η) for any ξ > η . Using the mean value theorem, we have

f ( t) − f ( ( 1 − α ) t1 + α t)

( 1 − α) ( t − t1 )
> f ( ( 1 − α) t1 + α t) − f ( t1 )

α ( t − t1 )
( 68)

which reduces to

f ( ( 1 − α ) t1 + α t) 6 ( 1 − α) f ( t1 ) + α f ( t) . ( 69)


