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Heat Equation – Maximum principles

In this lecture we will discuss the maximum principles and uniqueness of solution for the heat equations.

1 . Maximum principles.
The heat equation also enjoys maximum principles as the Laplace equation, but the details are slightly

different. Recall that the domain under consideration is

ΩT ≡ Ω × [ 0 , T) ; ∂∗ΩT ≡
(
Ω̄ × { 0}

)
∪ (∂Ω × [ 0 , T] ) . ( 1 )

We have the following strong maximum principle.

Theorem 1 . (Maximum principles of the heat equation) Assume u ∈ C1
2 ( ΩT) ∩ C

(
Ω̄T

)
so lves

ut − 4u = 0 ( 2 )

in ΩT.

i . (Weak maximum principle) Then

max
Ω̄T

u = max
∂ ∗ΩT

u. ( 3)

ii. ( Strong maximum principle) Furthermore, if Ω is connected and there exists a point (x0 , t0 ) ∈
ΩT such that

u(x0 , t0 ) = max
Ω̄T

u , ( 4)

then u is constant in Ω̄ t0 . 1

Remark 2. Intuitively, the maximum principles can be explained by the following observation. Recall
that

u( x , t) =

∫

Rn
Φ (x − y , t − s ) u( x , s ) dy ( 5)

for any s < t , and the nonnegative function Φ satisfies
∫

Rn
Φ (x − y , t − s ) dy = 1 , ( 6)

it is clear that u(x , t) at time t is obtained from “averaging” u( y , s ) at an earlier time s , and therefore the
maximum should be decreasing.

We present two proofs of this theorem. The first is through application of the maximum principle of
the Laplace equation, the second is through establishing a “mean value” property. Note that the first
method only yields the “weak maximum principle”, that is the maximum inside is bounded by that on the
boundary, instead of the “strong maximum principle”, that is the maximum can only be attained at the
boundary, unless the function is a constant.

Proof 1 – Maximum principles of the Laplace equation.

Theorem 3. (Weak maximum principle) Let Ω ⊂ Rn be open and bounded. Let u ∈ C1
2 ( ΩT) ∩

C0
(
Ω̄T

)
, and satisfy

ut − 4u 6 0 ( 7)

in ΩT, we then have

sup
Ω̄T

u = sup
∂ ∗ ΩT

u. ( 8)

1 . Note that Ω̄ t 0 cannot be repla ced b y Ω̄T, a s can be seen b y the fo l lowing consideration . Le t u so lve the heat e qua tion
with initia l va lue M (constant) and (side ) boundary va lue g(x ) 6 M. Now if ut→ 0 as t↘ 0 , we can extend u to t < 0 by se t-
ting u≡M.



(IfT < ∞ , the supreme can be replaced by maximum).

Remark 4. The connection to the theory of Laplace equation can be seen by writing the inequality into

4u > ut . ( 9)

Proof. If suffices to prove the conclusion for Ω̄T ′ for all T ′ < T . Fix one such T ′ . By compactness of Ω̄T ′

we know that the maximum is attained at some point ( x0 , t0 ) .

1 . First consider the case

4u > ut in ΩT . ( 1 0)

Now if (x0 , t0 )
�
∂∗ΩT ′ , at (x0 , t0 ) , we have

a) ut( t0 ) > 0 because otherwise u( x0 , t0 − ε) > u( x0 , t0 ) for ε small enough;

b) 4u( x0 , t0 ) 6 0 because x0 maximizes u on Ω × { t0} .
But the two conclusions contradict each other. 2

2 . For the general case

4u > ut , ( 1 1 )

we consider an auxiliary function

v (x , t) = u(x , t) − ε t. ( 1 2 )

We easily check

4v > vt ( 1 3)

and can apply 1 . Finally letting ε↘ 0 we obtain the conclusion. �

From weak maximum principle one immediately obtains the uniqueness for nonhomogeneous ini-
tial/boundary-value heat equation when the domain Ω is bounded.

Theorem 5. (Weak maximum principle for Ω = Rn) Suppose

ut − 4u 6 0 in ΩT ; u( x , t) 6 Meλ | x |
2

in ΩT for M, λ > 0 ; u(x , 0) = g(x ) , ( 1 4)

then

sup
Ω̄T

u 6 sup
Rn

g. ( 1 5)

Remark 6. The reason why we need a bound on the growth rate at infinity is the following. Recall that
the effect of the heat operator is to obtain solutions at later times from averaging solutions at earlier

times via a kernel of the form e− | x |
2 / 4 . Note that the kernel decays at infinity as e− c | x |

2

. Therefore, if the
solution grows faster than its inverse rate eλ | x |

2

, then it is possible to “input” extra stuff from infinity and
thus violates uniqueness.

Here is an example of how one can “store” energy at ± ∞ and then “input” it through averaging by the
heat kernel, and thus obtain a nonzero solution with zero initial data.

Set

u(x , t) ≡
∑

0

∞
g(n ) ( t)

( 2 n) !
x2n ( 1 6)

with

g( t) ≡
{
e
− 1

t k t > 0 , k > 1
0 t = 0 .

. ( 1 7)

2 . The reason we use T ′ < T here is to conclude ut > 0 at the maximizer. S ince the equation is solved on ΩT only, ut at
t = T is not known.



One can verify that u satisfies the equation by formally differentiating inside the summation.
With some calculation3 , one can further show that the series on the RHS is majorized by the Taylor

expansion of

U (x , t) =





exp
[

1

t

(
x2

θ
− 1

2
t1 − k

) ]
t > 0

0 t 6 0

. ( 1 8)

for some θ > 0 . Note that U ( x , t) cannot be bounded by Meλ x
2
for any constants M, λ .

Proof. First we divide ( 0 , T) into subintervals with size r < 1

4 λ
. It suffices to prove the claim on a sub-

interval. From now on we assume T < 1

4 λ
.

Consider the auxiliary function

v ( x , t) ≡ u( x , t) − δ 1

( 4 π (T + ε − t) ) n/ 2
e

(
| x | 2

4 (T+ ε − t )

)

. ( 1 9)

where ε is chosen such that T + ε <
1

4 λ
.

It is easy to verify that

vt − 4v 6 0 . ( 20)

The strategy is the show first

v ( x , t) 6 sup
Rn

g ( 21 )

for any ( x , t) and then letting δ ↘ 0 .
We first notice that, on the sphere | x − y | = R, we have

v ( x , t) 6 Meλ ( | x | +R )
2 − δ 1

( 4 π (T + ε − t) ) n/ 2
e

(
R2

4 (T+ ε − t )

)

6 sup
Rn

g ( 22 )

once R is big enough. Now apply the weak maximum principle on the domain BR × ( 0 , T) , we obtain v ( x ,
t) 6 sup g . �

Proof 2 – Mean value property.
The mean value property for the heat equation turns out to be much more complicated than the one

for the Laplace equation. We first define the “heat ball”:

Definition 7. (Heat ball) For fixed x ∈ Rn , t ∈ R , r > 0 , we define

E (x , t ; r) ≡
{

( y , s ) ∈ Rn+ 1 � s 6 t , Φ( x − y , t − s ) > 1

rn

}
. ( 23)

Remark 8. We try to gain some idea of what E( x , t ; r) looks like. It is defined by

1

( 4 π ( t − s ) ) n/ 2
e
− | x − y |

2

4 ( t − s ) > 1

rn
. ( 24)

Thus in the time direction, we have

t > s > t − r2

4 π
( 25)

where the lower bound is from the fact that e
− | x − y |

2

4 ( t − s ) 6 1 . Furthermore

E(x , t ; r) ∩ { s = 0} = E( x , t ; r) ∩ { s = t } = {x } . ( 26)

3 . See pp. 2 1 1 –2 1 3 in F . John Part ial D ifferential Equations , 4ed. The constant θ is determined in Problem 3 on p.
73 of the same book.



Next, to find out the correct formula, we need to find a kernel K( x − y , t − s ) such that
∫∫

E ( x , t ; r )

K(x − y , t − s ) dy ds ( 27)

is independent of r . Notice that

1

( 4 π ( t − s ) ) n/ 2
e
− | x − y |

2

4 ( t − s ) > 1

rn �
1

( 4 π ( t ′ − s ′) ) n/ 2
e
−
∣∣∣ x ′ − y ′

∣∣∣
2

4
(
t ′ − s ′ ) > 1 ( 28)

where

t ′ = t/r2 , s ′ = s/r2 , x ′ = x/r , y ′ = y/r. ( 29)

Thus we have ∫

E ( x , t ; r )

K(x − y , t − s ) dy ds =

∫

E ( x ′ , t ′ ; 1 )

K( x − y , t − s ) rn+ 2 dy ′ ds ′ . ( 30)

This implies

K(x ′ , t ′) = K( x , t) rn+ 2 ( 31 )

when

x ′ = x/r , t ′ = t/r2 . ( 32 )

One can somehow4 verify that 5

1

4

∫

E ( 0 , 0 ; 1 )

| x | 2
t2

dx dt = 1 . ( 36)

Thus finally we have the correct formulation.

Theorem 9. (Mean value property for the heat equation) Let u ∈ C1
2 ( ΩT) solve the heat equation,

then

u(x , t) =
1

4 rn

∫∫

E ( x , t ; r )

u( y , s )
| x − y | 2
( t − s ) 2 dy ds . ( 37)

for each E( x , t ; r) ⊂ ΩT.

Proof. Without loss of generality we can set (x , t) = ( 0 , 0) and denote E ( 0 , 0 ; r) by Er . Define

φ( r) ≡ 1

rn

∫∫

Er

u( y , s )
| y | 2
s 2

dy ds =

∫∫

E1

u
(
r y ′ , r2 s ′

) | y ′ | 2
| s ′ | 2

dy ′ ds ′ . ( 38)

In the following we will omit the prime and simply use y and y ′ .

4. I have no idea how to come up with this part icular function.

5 . As the computation is tedious and long, we put it in as a footnote and furthermore only present the main steps. F irst
notice

E( 0 , 0; 1 ) ≡
{

1

( 4 π t) n/ 2
e
| x | 2
4 t > 1

}
=

{
0 6 t 6 1

4 π
; | x | 2 6 ( 2 n t) log

1
4 π t

}
. ( 33)

Thus the integral becomes

∫

0

1 /4π

t− 2

[ ∫

| x | 2 6 2 n t l og 1

4π t

| x | 2 dx

]
dt =

n πn/ 2

n + 2
2 (n+ 2 ) / 2 n(n+ 2 ) / 2

Γ
(
n

2
+ 1

)
∫

0

1

4π

t
n − 2

n

(
log 1

4 π t

) n
2
+ 1

dt. ( 34)

where we have used polar coordinates and the formula α (n) =
πn/ 2

Γ
( n

2
+ 1

) for the volume of n-dimension balls . Now sett ing
s = 4 π t and using the formulas

λ− z Γ( z) =

∫

0

1

tλ − 1

(
log

1

t

) z − 1

dt ; Γ( z + 1 ) = z Γ( z) , ( 35 )

we will see after careful calculations that most terms cancel out and what remains is 4.



thus we compute

φ ′( r) =
d

dr

[ ∫∫

E1

u
(
r y , r2 s

) | y | 2
| s | 2

dy ds

]

=

∫∫ ∑

i= 1

n

(∂yiu) yi
| y | 2
| s | 2

+ 2 r (∂su)
| y | 2
s

dy ds

=
1

rn+ 1

∫∫

Er

∑

i= 1

n

(∂yiu) yi
| y | 2
| s | 2

+
1

rn+ 1

∫∫

Er

2 (∂su)
| y | 2
s

≡ A + B. ( 39)

Now we introduce

ψ ≡ − n

2
log( − 4 π s ) +

| y | 2
s

+ n log r , ( 40)

and note that ψ = 0 on ∂Er .
Now we have

B =
1

rn+ 1

∫∫

Er

4 (∂su)
∑

i= 1

n

yi (∂yiψ ) dy ds

= − 1

rn+ 1

∫∫

Er

4 n us ψ + 4
∑

i= 1

n

us yiyi ψ dy ds . ( 41 )

Now integrate by parts w. r. t. s , we have

B =
1

rn+ 1

∫∫

Er

− 4 n us ψ + 4
∑

i= 1

n

u yiyi ψs dy ds

=
1

rn+ 1

∫∫

Er

− 4 n us ψ + 4
∑

uyi yi

(
− n

2 s
− | y |

2

4 s 2

)
dy ds

=
1

rn+ 1

∫∫

Er

− 4 n us ψ − 2 n

s

∑
uyi yi dy ds − A. ( 42 )

Consequently, using the equation, we have

φ ′( r) = A + B

=
1

rn+ 1

∫∫

Er

− 4 n 4u ψ − 2 n

s

∑
uyi yi dy ds

=
∑ 1

rn+ 1

∫∫

Er

− 4 n uyi ψyi −
n

2 s
uyi yi dy ds

= 0 . ( 43)

Thus we have

φ ( r) = lim
t→ 0

φ( t) = u( 0 , 0)

(
lim
t→ 0

1

tn

∫∫

Et

| y | 2
s 2

dy ds

)
= 4 u( 0 , 0) . ( 44)

�

From the mean value property we immediately have the strong maximum principle:

Proof. ( of the strong maximum principle)
Suppose there is (x0 , t0 ) ∈ ΩT such that u( x0 , t0 ) = maxΩ̄T u , then by picking r small enough so that

E(x0 , t0 ; r) ⊂ ΩT , and using the mean value property, we conclude that u is constant inside E(x0 , t0 ; r) .
Next for any ( y0 , s 0 ) ∈ ΩT such that the line segment connecting x0 , y0 is in ΩT , we can show that

u( y0 , s 0 ) = u( x0 , t0 ) whenever s 0 < t0 by covering the line segment connecting ( y0 , s 0 ) and (x0 , t0 ) with the
heat balls.

Finally, since Ω is connected, any y0 can be connected from x0 via finitely many line segments. And
therefore u( y , s ) = u( x0 , t0 ) for all y ∈ Ω , s < t0 . �



Remark 1 0. It turns out there is also a version of mean value property involving only the surface inte-
gral over ∂E (x , t ; r) . The idea is to compute the integral of

[
Φ(x − y , T − t) − r− n

]
( ut − 4u) over E (x , t ;

r) via integration by parts. This will give a representation formula for u( x , t) , which turns out to be

u(x , t) =
1

rn

∫

∂E ( x , t ; r )

u( y , s )
| x − y |
2 ( t − s ) dS. ( 45)

See J. Jost Partial Differential Equations , pp. 81 – 83 for details.
The strong maximum principle can also be proved using this formula. See Theorem 4. 1 . 3 on p. 86 of J.

Jost Partial Differential Equations .

2. Uniqueness.
As in the elliptic case, uniqueness is established through maximum principles.

Theorem 1 1 . (Uniqueness on bounded domains) Let g ∈ C(∂∗ΩT) , f ∈ C( ΩT) . Then there exists at
most one so lution u ∈ C1

2 ( ΩT) ∩ C
(

Ω̄T
)
of the initial/boundary value prob lem

ut − 4u = f in ΩT ; u = g on ∂∗ΩT . ( 46)

In the case Ω = Rn , we have to add extra condition.

Theorem 1 2. (Uniqueness when Ω = Rn) Suppose g ∈ C(Rn) , f ∈ C (Rn × [ 0 , T] ) . Then there exists at
most one so lution u ∈ C1

2 (Rn × ( 0 , T] ) ∩ C (Rn × [ 0 , T] ) of the initial value prob lem

ut − 4u = f in Rn × ( 0 , T) ; u = g on Rn × { t = 0} ( 47)

satisfying the growth estimate

| u(x , t) | 6 Meλ | x |
2

( 48)

for constants M, λ > 0 .

Remark 1 3. There are in fact infinitely many “physically incorrect” solutions, which do not satisfy the
growth bound, to the zero initial value problem. See Chapter 7 of F. John Partial Differential Equa-
tions .

Exercises.

Exercise 1 . Let u ∈ C1
2 ( ΩT) ∩ C

(
Ω̄T
)
be a solution to

ut − 4u= 0 in ΩT ; u = 0 on ∂Ω × [ 0 , T] ; u = g on Ω × { t = 0} , ( 49)

where g > 0 . Then u is positive everywhere within ΩT if g is positive somewhere on Ω .


