Oct. 08

THEORY OF LINEAR ErLrLIPTIC PDE

We will sketch, in this section, the theory of general linear elliptic PDEs:

)= Z &vl&v] +Z bi(x axz +c(z) u(z) = f(2) (1)

=1

in some domain 2 C R™. We make the following assumptions

a) Ellipticity: There is A > 0 such that for all x € Q and £ € R",

Z ) &€ > M€ (2)
We further assume a*/ = a’*. =
b) Boundedness: There exists K < oo such that
la® ()], [b¥(x)|, |e(x)| < K Vo €. (3)

¢) (For Schauder estimates only) Holder continuous coefficients: There exists K < oo such that

<K (4)

|a

ooy IV

Hca Q)’ || HCQ(Q)
for all 4, j.
1. Maximum principles.
We first note that, in the general case, the sign of ¢(x) becomes important.

Example 1. Consider the 1D Dirichlet problem
u’(z)+u(x)=0  on (0,7); u(0) =u(r) =0, (5)

which has a sin z as its solutions. Thus no maximum principle could possibly hold. Therefore we should
not expect maximum principles when ¢ > 0.

Theorem 2. Assume c(z) =0, and let u satisfy in )

L(u) >0, (6)

that is

- f%(év)
z_] 7 >
Z: 61‘1 &CJ + Zl b( ox; = 0, (7)
then

= . 8
sup u(z) = max u(z) (8)

In the case L(u) <0, a corresponding result holds with sup /max replaced by inf /min .

Proof. (Sketch).

1. Consider the case L(u) > 0. Let xo be an interior maximum. Then Vu(zo) =0 and V?u(z¢) nega-
tive semidefinite. Show that any symmetric matrix can be written as a sum of rank one matrices,?
and obtain contradiction.

2. For the case L(u) > 0, consider the function v. =u+¢e**. And show that appropriate choices of «
guarantees

L(ve) >0 (9)

1. A matrix A= (a;;) is rank-one if there is a vector £ such that a;; = §;&;.



and then apply the first step. Finally take £ \ 0. O
Remark 3. A consequence is the uniqueness of solutions when ¢(z) =0.

Corollary 4. Suppose c¢(x) <0 in Q. Let ue C*Q) N CO(Q) satisfy L(u) =0 in Q. Write u™(z) = max
(u(z),0), we then have

suput <maxut. (10)
Q o

Proof. Let QT ={x€Q: u(xz)>0}. Then apply the theorem. O
Now we turn to the strong maximum principle of E. Hopf.

Theorem 5. Suppose c(x) =0, let u satisfy
L(u)=0 in €. (11)
If u attains its maximum in the interior of €, then it has to be constant.
If ¢(z) <0, then u has to be a constant if it attains a nonnegative interior mazimum.
Proof. (Sketch)
1. Assume by contradiction that u is not constant. Then
V={reQu(z) <m=maxu}+ ¢, (12)
and

o' N+ ¢. (13)

2. Choose y such that there is r that B,(y) C ' and 0B,(y) N 0Q' = {zo} C Q. Apply the following
boundary point lemma of E. Hopf.

Lemma. Suppose c¢(z) <0 and
L(u) >0 in QCR", (14)
and let xg € 0N). Moreover, assume
1. u 1S continuous at xg;
it. u(xo) =0 if c(z)#0;
iii. u(xo) >u(x) for all v €Q;
iv. there exists an open ball B,(y) C Q with xo € 0B, (y).

Then we have

g

%(IO) >0, (15)

where n is the outer normal of the ball B.(y) at xg, provided that this derivative exists.
3. Proof of the lemma (sketch).
a. By taking a smaller ball, we can assume B,(y) N0 = {xo}.
b. Consider v(z) = e~ le=vl® _ o= op B, \B,, for 0 < p<r. Show L(v) > 0.
c. Find € such that
we(x) =u(x) —u(zo) +ev(z) <0, x € 0B,. (16)

d. Show that L(w.;) >0. And apply weak maximum principle. a



2. Schauder estimates.
Schauder estimates are generalizations of the C?® estimates of the Poisson equation Au= f.

Theorem 6. Let f € C*(Q), and suppose u€ C**(Q) satisfies

Lu=f (17)
in Q with 0<a<1. Then for any Qo C C Q) we have
el gy < € (1 sy + el ey ) (18)

where the constant depends on €, Qg, a,n, A, K.

Proof. (Sketch)

1. Note that when b* =0, ¢ = 0, and @’/ are constants, one can obtain the estimate easily by doing a
linear change-of-variables.

2. For xg€ Qg, one can write Lu = f in the following form:

» Ou(x)
(% o\
3 ate) gt g =0 (19)
where 7
— 1] ] _ g —
o(x) Z (a"(0) —a¥(@)) g Z V() 5o~ clw) ul@) + f (). (20)
3. Some computation yields
HS"”ca(BR(mO)) < - sup |aij($0) - aij(x)| Hu||02~a(BR(m0)) +C HUHC2(BR(IO)) + Hf”ca (21)
i,j,x€BRr(xo)
4. The result of step 1 implies
lullceom,uy < € | sw @) — a¥@)] ullropue T € Illoxsae +
i,j,x € BRr(xo)
11l |- (22)
for some r < R.
5. Choose R small enough so that
sup |ati () — a' (x)] < % (23)

i,7,2€ Br(z0)

6. Recall that for any € >0, there is N(e) such that
il ngeayy <& Nl cngingonyy + VO 1l 2(neoy
Finally note that only finitely many such balls are needed to cover Q. O

Theorem 7. Let Q CR™ be a bounded domain of class C**. Let f € C*(Q) and g€ C**(Q). Assume u €
C?(Q) satisfy

Lu(x)= f(x) x el u(z) = g(z) x € S (25)
Then

el y € (1F ey 19l mnm gy + 11l ) (26)
Here the constant depends on Q,a,d, \ and K.

Proof. (Sketch)

1. First let u=u — g we make the boundary condition 0.



2. Locally we can stretch 9 into a straight line using a C?“ change of varaible.

3. Obtain the estimate for the problem

Au=f inBf,  feC*(Bf), (27)
u=0  on d"Bf. (28)

for 0<r<R:
1l g ) 0<||fllca<3§) + ||“”L2<B;))- (29)

By considering ¢ =nu for certain cut-off function 7.

4. Finish the proof by a “frozen-coefficients” and “finite covering” argument. 0

3. Weak solutions.
Weak solutions are easily defined for equations in the divergence form:

L(u)= Z 61( Z a'd(x) dpu(z) + bi(x) u(x)) +c(z) u(z) = f(z), u=g on 0f2. (30)

J
Definition 8. u€ W1H2(Q) is a weak solution if u — g€ Wy *(Q) and for any ve Wy *(Q),

/Q;aij(:c) 6jU(:E)8iv(:v)+bi(:v)U(:C)aiv(:v)+c(:c)u(:c)v(:v)d:c+/ﬂ f(x)v(z)=0. (31)

For such weak solutions, one can obtain a priori esitimates similar to that of the Poisson equation. On the
other hand, the existence is more involved.



