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Theory of Linear Elliptic PDE

We will sketch, in this section, the theory of general linear elliptic PDEs:

L (u) ≡
∑

i , j= 1

n

ai j(x )
∂2u

∂x i ∂x j
+
∑

i= 1

n

bi( x)
∂u(x )

∂x i
+ c( x) u( x) = f (x ) ( 1 )

in some domain Ω ⊂ Rn . We make the following assumptions

a) Ellipticity: There is λ > 0 such that for all x ∈ Ω and ξ ∈ Rn ,

∑

i , j= 1

n

ai j(x ) ξi ξj > λ | ξ | 2 . ( 2 )

We further assume ai j = aji .

b) Boundedness: There exists K < ∞ such that
∣∣ ai j( x)

∣∣ ,
∣∣ bi(x )

∣∣ , | c( x) | 6 K ∀x ∈ Ω . ( 3)

c) ( For Schauder estimates only) Hölder continuous coefficients: There exists K < ∞ such that
∥∥ ai j

∥∥
Cα ( Ω )

,
∥∥ bi

∥∥
Cα ( Ω )

, ‖ c ‖ Cα ( Ω )
6 K ( 4)

for all i , j .

1 . Maximum principles.
We first note that, in the general case, the sign of c(x ) becomes important.

Example 1 . Consider the 1 D Dirichlet problem

u ′′( x) + u(x ) = 0 on ( 0 , π) ; u( 0) = u(π) = 0 , ( 5)

which has a sin x as its solutions. Thus no maximum principle could possibly hold. Therefore we should
not expect maximum principles when c > 0 .

Theorem 2. Assume c( x ) ≡ 0 , and let u satisfy in Ω

L (u) > 0 , ( 6)

that is
∑

i , j= 1

n

ai j(x )
∂2u

∂xi ∂x j
+
∑

i= 1

n

bi(x )
∂u( x)

∂x i
> 0 , ( 7)

then

sup
x ∈ Ω

u( x) = max
x ∈ ∂Ω

u(x ) . ( 8)

In the case L ( u) 6 0 , a corresponding result holds with sup /max replaced by inf /min .

Proof. ( Sketch) .

1 . Consider the case L (u) > 0 . Let x0 be an interior maximum. Then ∇u(x0 ) = 0 and ∇2u( x0 ) nega-
tive semidefinite. Show that any symmetric matrix can be written as a sum of rank one matrices, 1

and obtain contradiction.

2 . For the case L( u) > 0 , consider the function vε ≡ u + ε eα x 1 . And show that appropriate choices of α
guarantees

L ( vε ) > 0 ( 9)

1 . A matrix A = ( ai j ) is rank-one if there is a vector ξ such that ai j = ξi ξj .



and then apply the first step. Finally take ε↘ 0 . �

Remark 3. A consequence is the uniqueness of solutions when c(x ) ≡ 0 .

Corollary 4. Suppose c(x ) 6 0 in Ω . Let u ∈ C2 ( Ω) ∩ C0
(
Ω̄
)
satisfy L (u) > 0 in Ω . Write u+ (x ) ≡ max

(u(x ) , 0) , we then have

sup
Ω

u+ 6 max
∂Ω

u+ . ( 1 0)

Proof. Let Ω+ = {x ∈ Ω: u(x ) > 0} . Then apply the theorem. �

Now we turn to the strong maximum principle of E. Hopf.

Theorem 5. Suppose c(x ) ≡ 0 , le t u satisfy

L ( u) = 0 in Ω . ( 1 1 )

If u attains its maximum in the interior of Ω , then it has to be constant.
If c(x ) 6 0 , then u has to be a constant if it attains a nonnegative interior maximum.

Proof. ( Sketch)

1 . Assume by contradiction that u is not constant. Then

Ω ′ ≡ {x ∈ Ω: u( x) < m ≡ max u }
�
φ , ( 1 2 )

and

∂Ω ′ ∩ Ω
�
φ. ( 1 3)

2 . Choose y such that there is r that Br ( y) ⊂ Ω ′ and ∂Br ( y) ∩ ∂Ω ′ = {x0} ⊂ Ω . Apply the following
boundary point lemma of E. Hopf.

Lemma. Suppose c(x ) 6 0 and

L( u) > 0 in Ω ⊂ Rn , ( 1 4)

and let x0 ∈ ∂Ω . Moreover, assume

i. u is continuous at x0 ;

ii. u( x0 ) > 0 if c(x )≡0 ;

iii. u( x0 ) > u( x) for al l x ∈ Ω ;

iv. there exists an open ball Br( y) ⊂ Ω with x0 ∈ ∂Br ( y) .

Then we have
∂u

∂n
( x0 ) > 0 , ( 1 5)

where n is the outer normal of the ball Br( y) at x0 , provided that this derivative exists.

3. Proof of the lemma ( sketch) .

a. By taking a smaller ball, we can assume Br( y) ∩ ∂Ω = {x0} .

b. Consider v (x ) ≡ e− γ | x − y | 2 − e− γr 2
on Br \Bρ for 0 < ρ < r . Show L( v ) > 0 .

c. Find ε such that

wε (x ) ≡ u(x ) − u( x0 ) + ε v (x ) 6 0 , x ∈ ∂Bρ . ( 1 6)

d. Show that L (wε ) > 0 . And apply weak maximum principle. �



2. Schauder estimates.
Schauder estimates are generalizations of the C2 , α estimates of the Poisson equation 4u = f .

Theorem 6. Let f ∈ Cα ( Ω) , and suppose u ∈ C2 , α ( Ω) satisfies

Lu = f ( 1 7)

in Ω with 0 < α < 1 . Then for any Ω 0 ⊂ ⊂ Ω we have

‖ u ‖
C 2 , α ( Ω 0 )

6 C
(
‖ f ‖ Cα ( Ω )

+ ‖ u ‖ L 2 ( Ω )

)
. ( 1 8)

where the constant depends on Ω , Ω0 , α , n , λ , K.

Proof. ( Sketch)

1 . Note that when bi = 0 , c = 0 , and ai j are constants, one can obtain the estimate easily by doing a
linear change-of-variables.

2 . For x0 ∈ Ω0 , one can write Lu = f in the following form:

∑

i , j

ai j(x0 )
∂u( x)

∂x i ∂x j
= ϕ (x ) ( 1 9)

where

ϕ (x ) =
∑

i , j

(
ai j(x0 ) − ai j(x )

) ∂2u(x )

∂xi ∂x j
−
∑

i

bi( x)
∂u(x )

∂xi
− c( x) u( x) + f ( x) . ( 20)

3. Some computation yields

‖ ϕ ‖ Cα (BR( x 0 ) )
6 sup
i , j , x ∈ BR( x 0 )

∣∣ ai j(x0 ) − ai j( x)
∣∣ ‖ u ‖

C 2 , α (BR( x 0 ) )
+ C ‖ u ‖ C 2 (BR( x 0 ) )

+ ‖ f ‖ Cα . ( 21 )

4. The result of step 1 implies

‖ u ‖
C 2 , α (Br ( x 0 ) )

6 C
[

sup
i , j , x ∈ BR( x 0 )

∣∣ ai j(x0 ) − ai j(x )
∣∣ ‖ u ‖

C 2 , α (BR( x 0 ) )
+ C ‖ u ‖ C 2 (BR( x 0 ) )

+

‖ f ‖ Cα
]
. ( 22 )

for some r < R .

5 . Choose R small enough so that

sup
i , j , x ∈ BR( x 0 )

∣∣ ai j(x0 ) − ai j(x )
∣∣ 6 1

2
. ( 23)

6 . Recall that for any ε > 0 , there is N( ε) such that

‖ u ‖ C 2 (BR( x 0 ) )
6 ε ‖ u ‖

C 2 , α (BR( x 0 ) )
+ N( ε) ‖ u ‖ L 2 (BR( x 0 ) )

. ( 24)

Finally note that only finitely many such balls are needed to cover Ω0 . �

Theorem 7. Let Ω ⊂ Rn be a bounded domain of class C2 , α . Let f ∈ Cα ( Ω) and g ∈ C2 , α ( Ω) . Assume u ∈
C2 , α ( Ω) satisfy

Lu(x ) = f (x ) x ∈ Ω; u( x) = g(x ) x ∈ ∂Ω . ( 25)

Then

‖ u ‖
C 2 , α ( Ω )

6 C
(
‖ f ‖ Cα ( Ω )

+ ‖ g ‖
C 2 , α ( Ω )

+ ‖ u ‖ L 2 ( Ω )

)
. ( 26)

Here the constant depends on Ω , α , d , λ and K.

Proof. ( Sketch)

1 . First let u = u − g we make the boundary condition 0 .



2 . Locally we can stretch ∂Ω into a straight line using a C2 , α change of varaible.

3. Obtain the estimate for the problem

4u = f in BR
+ , f ∈ Cα

(
BR

+ ) , ( 27)

u = 0 on ∂0BR
+ . ( 28)

for 0 < r < R:

‖ u ‖
C 2 , α

(
Br

+
) 6 C

(
‖ f ‖

Cα
(
BR

+
) + ‖ u ‖

L 2
(
BR

+
)
)
. ( 29)

By considering ϕ = η u for certain cut-off function η .

4. Finish the proof by a “frozen-coefficients” and “finite covering” argument. �

3. Weak solutions.
Weak solutions are easily defined for equations in the divergence form:

L (u) ≡
∑

i

∂i

( ∑

j

ai j( x ) ∂ju( x) + bi( x ) u(x )

)
+ c( x) u( x) = f ( x) , u = g on ∂Ω . ( 30)

Definition 8. u ∈ W1 , 2 ( Ω) is a weak solution if u − g ∈ W0
1 , 2 ( Ω) and for any v ∈ W0

1 , 2 ( Ω) ,
∫

Ω

∑

i , j

ai j(x ) ∂ju(x ) ∂iv ( x) + bi(x ) u(x ) ∂iv ( x) + c( x) u( x) v (x ) dx +

∫

Ω

f ( x) v (x ) = 0 . ( 31 )

For such weak solutions, one can obtain a priori esitimates similar to that of the Poisson equation. On the
other hand, the existence is more involved.


