Theory of Linear Elliptic PDE

We will sketch, in this section, the theory of general linear elliptic PDEs:

$$
\begin{equation*}
L(u) \equiv \sum_{i, j=1}^{n} a^{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b^{i}(x) \frac{\partial u(x)}{\partial x_{i}}+c(x) u(x)=f(x) \tag{1}
\end{equation*}
$$

in some domain $\Omega \subset \mathbb{R}^{n}$. We make the following assumptions
a) Ellipticity: There is $\lambda>0$ such that for all $x \in \Omega$ and $\xi \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\sum_{i, j=1}^{n} a^{i j}(x) \xi_{i} \xi_{j} \geqslant \lambda|\xi|^{2} \tag{2}
\end{equation*}
$$

We further assume $a^{i j}=a^{j i}$.
b) Boundedness: There exists $K<\infty$ such that

$$
\begin{equation*}
\left|a^{i j}(x)\right|,\left|b^{i}(x)\right|,|c(x)| \leqslant K \quad \forall x \in \Omega \tag{3}
\end{equation*}
$$

c) (For Schauder estimates only) Hölder continuous coefficients: There exists $K<\infty$ such that

$$
\begin{equation*}
\left\|a^{i j}\right\|_{C^{\alpha}(\Omega)},\left\|b^{i}\right\|_{C^{\alpha}(\Omega)},\|c\|_{C^{\alpha}(\Omega)} \leqslant K \tag{4}
\end{equation*}
$$

for all i, j.

1. Maximum principles.

We first note that, in the general case, the sign of $c(x)$ becomes important.
Example 1. Consider the 1D Dirichlet problem

$$
\begin{equation*}
u^{\prime \prime}(x)+u(x)=0 \quad \text { on }(0, \pi) ; \quad u(0)=u(\pi)=0 \tag{5}
\end{equation*}
$$

which has $a \sin x$ as its solutions. Thus no maximum principle could possibly hold. Therefore we should not expect maximum principles when $c>0$.

Theorem 2. Assume $c(x) \equiv 0$, and let u satisfy in Ω

$$
\begin{equation*}
L(u) \geqslant 0 \tag{6}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sum_{i, j=1}^{n} a^{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b^{i}(x) \frac{\partial u(x)}{\partial x_{i}} \geqslant 0 \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\sup _{x \in \Omega} u(x)=\max _{x \in \partial \Omega} u(x) . \tag{8}
\end{equation*}
$$

In the case $L(u) \leqslant 0$, a corresponding result holds with sup / max replaced by $\mathrm{inf} / \mathrm{min}$.
Proof. (Sketch).

1. Consider the case $L(u)>0$. Let x_{0} be an interior maximum. Then $\nabla u\left(x_{0}\right)=0$ and $\nabla^{2} u\left(x_{0}\right)$ negative semidefinite. Show that any symmetric matrix can be written as a sum of rank one matrices, ${ }^{1}$ and obtain contradiction.
2. For the case $L(u) \geqslant 0$, consider the function $v_{\varepsilon} \equiv u+\varepsilon e^{\alpha x_{1}}$. And show that appropriate choices of α guarantees

$$
\begin{equation*}
L\left(v_{\varepsilon}\right)>0 \tag{9}
\end{equation*}
$$

1. A matrix $A=\left(a_{i j}\right)$ is rank-one if there is a vector ξ such that $a_{i j}=\xi_{i} \xi_{j}$.
and then apply the first step. Finally take $\varepsilon \searrow 0$.
Remark 3. A consequence is the uniqueness of solutions when $c(x) \equiv 0$.
Corollary 4. Suppose $c(x) \leqslant 0$ in Ω. Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfy $L(u) \geqslant 0$ in Ω. Write $u^{+}(x) \equiv \max$ $(u(x), 0)$, we then have

$$
\begin{equation*}
\sup _{\Omega} u^{+} \leqslant \max _{\partial \Omega} u^{+} \tag{10}
\end{equation*}
$$

Proof. Let $\Omega^{+}=\{x \in \Omega: u(x) \geqslant 0\}$. Then apply the theorem.
Now we turn to the strong maximum principle of E. Hopf.
Theorem 5. Suppose $c(x) \equiv 0$, let u satisfy

$$
\begin{equation*}
L(u)=0 \quad \text { in } \Omega \tag{11}
\end{equation*}
$$

If u attains its maximum in the interior of Ω, then it has to be constant.
If $c(x) \leqslant 0$, then u has to be a constant if it attains a nonnegative interior maximum.

Proof. (Sketch)

1. Assume by contradiction that u is not constant. Then

$$
\begin{equation*}
\Omega^{\prime} \equiv\{x \in \Omega: u(x)<m \equiv \max u\} \neq \phi, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial \Omega^{\prime} \cap \Omega \neq \phi \tag{13}
\end{equation*}
$$

2. Choose y such that there is r that $B_{r}(y) \subset \Omega^{\prime}$ and $\partial B_{r}(y) \cap \partial \Omega^{\prime}=\left\{x_{0}\right\} \subset \Omega$. Apply the following boundary point lemma of E. Hopf.

Lemma. Suppose $c(x) \leqslant 0$ and

$$
\begin{equation*}
L(u) \geqslant 0 \quad \text { in } \Omega \subset \mathbb{R}^{n} \tag{14}
\end{equation*}
$$

and let $x_{0} \in \partial \Omega$. Moreover, assume
i. u is continuous at x_{0};
ii. $u\left(x_{0}\right) \geqslant 0$ if $c(x) \not \equiv 0$;
iii. $u\left(x_{0}\right)>u(x)$ for all $x \in \Omega$;
iv. there exists an open ball $B_{r}(y) \subset \Omega$ with $x_{0} \in \partial B_{r}(y)$.

Then we have

$$
\begin{equation*}
\frac{\partial u}{\partial n}\left(x_{0}\right)>0 \tag{15}
\end{equation*}
$$

where n is the outer normal of the ball $B_{r}(y)$ at x_{0}, provided that this derivative exists.
3. Proof of the lemma (sketch).
a. By taking a smaller ball, we can assume $B_{r}(y) \cap \partial \Omega=\left\{x_{0}\right\}$.
b. Consider $v(x) \equiv e^{-\gamma|x-y|^{2}}-e^{-\gamma r^{2}}$ on $B_{r} \backslash B_{\rho}$ for $0<\rho<r$. Show $L(v) \geqslant 0$.
c. Find ε such that

$$
\begin{equation*}
w_{\varepsilon}(x) \equiv u(x)-u\left(x_{0}\right)+\varepsilon v(x) \leqslant 0, \quad x \in \partial B_{\rho} . \tag{16}
\end{equation*}
$$

d. Show that $L\left(w_{\varepsilon}\right) \geqslant 0$. And apply weak maximum principle.

2. Schauder estimates.

Schauder estimates are generalizations of the $C^{2, \alpha}$ estimates of the Poisson equation $\triangle u=f$.
Theorem 6. Let $f \in C^{\alpha}(\Omega)$, and suppose $u \in C^{2, \alpha}(\Omega)$ satisfies

$$
\begin{equation*}
L u=f \tag{17}
\end{equation*}
$$

in Ω with $0<\alpha<1$. Then for any $\Omega_{0} \subset \subset \Omega$ we have

$$
\begin{equation*}
\|u\|_{C^{2, \alpha}\left(\Omega_{0}\right)} \leqslant C\left(\|f\|_{C^{\alpha}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) \tag{18}
\end{equation*}
$$

where the constant depends on $\Omega, \Omega_{0}, \alpha, n, \lambda, K$.
Proof. (Sketch)

1. Note that when $b^{i}=0, c=0$, and $a^{i j}$ are constants, one can obtain the estimate easily by doing a linear change-of-variables.
2. For $x_{0} \in \overline{\Omega_{0}}$, one can write $L u=f$ in the following form:

$$
\begin{equation*}
\sum_{i, j} a^{i j}\left(x_{0}\right) \frac{\partial u(x)}{\partial x_{i} \partial x_{j}}=\varphi(x) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(x)=\sum_{i, j}\left(a^{i j}\left(x_{0}\right)-a^{i j}(x)\right) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}-\sum_{i} b^{i}(x) \frac{\partial u(x)}{\partial x_{i}}-c(x) u(x)+f(x) \tag{20}
\end{equation*}
$$

3. Some computation yields

$$
\begin{equation*}
\|\varphi\|_{C^{\alpha}\left(B_{R}\left(x_{0}\right)\right)} \leqslant \sup _{i, j, x \in B_{R}\left(x_{0}\right)}\left|a^{i j}\left(x_{0}\right)-a^{i j}(x)\right|\|u\|_{C^{2, \alpha}\left(B_{R}\left(x_{0}\right)\right)}+C\|u\|_{C^{2}\left(B_{R}\left(x_{0}\right)\right)}+\|f\|_{C^{\alpha}} . \tag{21}
\end{equation*}
$$

4. The result of step 1 implies

$$
\begin{align*}
& \|u\|_{C^{2, \alpha}\left(B_{r}\left(x_{0}\right)\right)} \leqslant C\left[\sup _{i, j, x \in B_{R}\left(x_{0}\right)}\left|a^{i j}\left(x_{0}\right)-a^{i j}(x)\right|\|u\|_{C^{2, \alpha}\left(B_{R}\left(x_{0}\right)\right)}+C \|_{C^{2}\left(B_{R}\left(x_{0}\right)\right)}+\right. \\
& \left.\|f\|_{C^{\alpha}}\right] . \tag{22}
\end{align*}
$$

for some $r<R$.
5. Choose R small enough so that

$$
\begin{equation*}
\sup _{i, j, x \in B_{R}\left(x_{0}\right)}\left|a^{i j}\left(x_{0}\right)-a^{i j}(x)\right| \leqslant \frac{1}{2} . \tag{23}
\end{equation*}
$$

6. Recall that for any $\varepsilon>0$, there is $N(\varepsilon)$ such that

$$
\begin{equation*}
\|u\|_{C^{2}\left(B_{R}\left(x_{0}\right)\right)} \leqslant \varepsilon\|u\|_{C^{2, \alpha}\left(B_{R}\left(x_{0}\right)\right)}+N(\varepsilon)\|u\|_{L^{2}\left(B_{R}\left(x_{0}\right)\right)} . \tag{24}
\end{equation*}
$$

Finally note that only finitely many such balls are needed to cover $\overline{\Omega_{0}}$.
Theorem 7. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain of class $C^{2, \alpha}$. Let $f \in C^{\alpha}(\bar{\Omega})$ and $g \in C^{2, \alpha}(\bar{\Omega})$. Assume $u \in$ $C^{2, \alpha}(\bar{\Omega})$ satisfy

$$
\begin{equation*}
L u(x)=f(x) \quad x \in \Omega ; \quad u(x)=g(x) \quad x \in \partial \Omega \tag{25}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|u\|_{C^{2, \alpha}(\Omega)} \leqslant C\left(\|f\|_{C^{\alpha}(\Omega)}+\|g\|_{C^{2, \alpha}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right) \tag{26}
\end{equation*}
$$

Here the constant depends on $\Omega, \alpha, d, \lambda$ and K.
Proof. (Sketch)

1. First let $u=u-g$ we make the boundary condition 0 .
2. Locally we can stretch $\partial \Omega$ into a straight line using a $C^{2, \alpha}$ change of varaible.
3. Obtain the estimate for the problem

$$
\begin{gather*}
\Delta u=f \quad \text { in } B_{R}^{+}, \quad f \in C^{\alpha}\left(\overline{B_{R}^{+}}\right), \tag{27}\\
u=0 \quad \text { on } \partial^{0} B_{R}^{+} \tag{28}
\end{gather*}
$$

for $0<r<R$:

$$
\begin{equation*}
\|u\|_{C^{2, \alpha}\left(B_{r}^{+}\right)} \leqslant C\left(\|f\|_{C^{\alpha}\left(B_{R}^{+}\right)}+\|u\|_{L^{2}\left(B_{R}^{+}\right)}\right) . \tag{29}
\end{equation*}
$$

By considering $\varphi=\eta u$ for certain cut-off function η.
4. Finish the proof by a "frozen-coefficients" and "finite covering" argument.

3. Weak solutions.

Weak solutions are easily defined for equations in the divergence form:

$$
\begin{equation*}
L(u) \equiv \sum_{i} \partial_{i}\left(\sum_{j} a^{i j}(x) \partial_{j} u(x)+b_{i}(x) u(x)\right)+c(x) u(x)=f(x), \quad u=g \text { on } \partial \Omega \tag{30}
\end{equation*}
$$

Definition 8. $u \in W^{1,2}(\Omega)$ is a weak solution if $u-g \in W_{0}^{1,2}(\Omega)$ and for any $v \in W_{0}^{1,2}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j} a^{i j}(x) \partial_{j} u(x) \partial_{i} v(x)+b_{i}(x) u(x) \partial_{i} v(x)+c(x) u(x) v(x) \mathrm{d} x+\int_{\Omega} f(x) v(x)=0 . \tag{31}
\end{equation*}
$$

For such weak solutions, one can obtain a priori esitimates similar to that of the Poisson equation. On the other hand, the existence is more involved.

